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How mushy layers form	
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Binary Mixtures: Cartoon Equilibrium Phase Diagram	


Freezing temperature (liquidus) is a function of composition 	


Solid that forms has a different composition (given by the solidus) than the liquid	
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Planar growth of a binary alloy, no mushy layer	




Constitutional Supercooling	


C = C∞ + Ci −C∞( )erfc z / 2 Dt( ) / erfc a / 2 Dt( )
T = T∞ + Ti −T∞( )erfc z / 2 κ t( ) / erfc a / 2 κ t( )
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The growth rate of a planar solid–liquid interface is limited by the rate of removal of solute. 
Constitutional supercooling leads to the planar ice-ocean interface becoming unstable.	
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Corrugations of the ice-ocean interface grow to become platelets/dendrites. 	

The greater solid-liquid surface area results in enhanced expulsion of heat and salt until 	

local thermodynamic equilibrium is achieved. 	


Formation of a mushy layer	




A	  mushy	  layer	  consists	  of	  a	  (typically)	  porous	  matrix	  of	  (almost)	  pure	  solid	  
bathed	  in	  (highly	  concentrated)	  inters00al	  liquid.	  	  

	  

The	  convoluted	  geometry	  enhances	  expulsion	  of	  solute	  and	  heat.	  
	  

Sea	  ice	  (all	  of	  it)	  is	  an	  example	  of	  a	  mushy	  layer,	  and	  the	  mushy	  layer	  equa0ons	  
are	  used	  for	  the	  heat	  and	  salt	  balances.	  

Sea	  ice	  is	  a	  mushy	  layer	  

WeOlaufer	  et	  al.	  [1997]	  

~1 mm	




Modelling mushy layers	




Developing a continuum mushy layer model from conservation equations	
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Local conservation of an arbitrary scalar      ,	

e.g. heat, salt etc, is	
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where S is a source/sink per unit volume and J is a flux of 	
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Φ

Using the divergence theorem                           	

	

we can write, since the control volume is arbitrary and fixed, that	
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+ ∇ ⋅U( )Φ+U ⋅ ∇Φ =∇ ⋅ DΦ∇Φ( ) + S

(+ radiative flux for heat)	














The mathematical description of a mushy layer	


NOTE: We have not considered conservation of momentum. 	

Mushy layer theory DOES NOT prescribe the interstitial fluid (brine) velocity U. This is 
determined by a local momentum balance, which is well approximated by Darcy’s Law 
in a porous medium	
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Notz, Wettlaufer and Worster [2005]	




Mushy layer model of sea ice with no brine flow	


The local bulk concentration is	
 CB = 1−ϕ( )C so	
 ϕ = 1− CB
C

The interstitial concentration C is related to the local temperature T by the liquidus relation	


The thermal inertia (specific heat capacity) of sea ice is dominated by 	

the internal release of latent heat.	


ρcp
∂T
∂t

= ∇⋅ k∇T( ) + ρsL
∂ϕ
∂t

Then if ∂CB
∂t

≡ 0,  so that CB = CB x( )  only,

T =TL C( ) ≡Tm −mC

ρcp +ρsL
mCB

Tm −T( )2
#

$
%
%

&

'
(
(

∂T
∂t

=∇⋅ k∇T( )

The mushy layer equations with no brine flow are essentially the same 
as the Maykut and Untersteiner [1971] model of sea ice. In recent years, 
mushy layer theory has been used to model desalination of sea ice, morphological 
instability, melt pond evolution, nutrient dynamics, consolidation of rafted sea ice, etc.	




Brine flow in sea ice: 	

condition for onset of buoyancy-driven convection	


(not flushing) 	




Brine Drainage from Sea Ice	


Unstable density profile of brine salinity in sea ice can drive so-called “gravity drainage”.	


Wettlaufer, Worster, and Huppert [1997]	




Linear stability analysis of a mushy layer	

 - onset of convection (brine drainage)	


adapted from Worster 1992 	

	


‘Ideal mushy layer’— thermal properties constant and independent of phase and	
 ρs = ρl

Conservation of heat	

∂T
∂t

+u ⋅∇T =κ∇2T + L
cp

∂ϕ
∂t

Conservation of salt	
 1−ϕ( ) ∂C
∂t

+u ⋅∇C =C ∂ϕ
∂t

ignore diffusion of salt	


Liquidus constraint	


Darcy’s equation	

for flow in a porous medium	


µu =Π −∇p+ρg[ ]

Consititutive relation	
 ρ = ρ0 1−α T −T0( )+β C −C0( )%& '(= ρ0 1+β * C −C0( )%& '(

T   C   ϕ   u

~1 mm	


T =TL C( ) =T0 −m C −C0( )

Incompressibility	
 ∇⋅u = 0

Methodology:	

perturb a steady state and calculate if perturbations grow	




Non-dimensionalising and scaling	


Suppose that system is solidifying at rate V  and scale	


velocities with V time with κ /V 2lengths with κ /V pressure with with Δρgκ /V

Write	
 where	


S = L
cpΔT
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Indicative Stability Analysis	
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Write	

θ =1− z+θ̂ z( )eiαx+σ t

w =          ŵ z( )eiαx+σ t
u = u,w( )

Substitute, linearize and look for marginal (steady) states with	
 σ = 0

−Ωŵ = D2 −α2( )θ̂
D2 −α2( ) ŵ =α2Rmθ̂

D2 −α2( )2 ŵ = −α2ΩRmŵ⇒
D ≡

d
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perturbations	
steady state	
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θss =1− z; wss = 0

σ is the growth rate	

α is the wavenumber	




Marginal Stability Results	


D2 −α2( )2 ŵ = −α2ΩRmŵ

ŵ = 0 θ̂ = 0⇒ D2ŵ = 0

Dŵ = 0 Dθ̂ = 0⇒ D3ŵ = 0

No flow, constant temperature	


Constant pressure and heat flux	
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Lowest (most unstable) mode has n=0	
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i.e. the circulation cell is of the same size as the	

 mushy layer depth	




Critical Rayleigh Number	


ΩRm =
π 2
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“most unstable” wavenumber is	
 αc =
π
2

where the critical Rayleigh number is	
 ΩRm > Rc = π
2 ≈ 10

Unstable	


Stable	


σ > 0

σ < 0

σ = 0

Brine drainage	


No brine drainage	


Brine drainage will not occur until the critical Rayleigh number is reached.	
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Brine  Drainage  from Laboratory  Sea  Ice	

Stages of Evolution	


A: Quiescent	

B: Transition	

C: Draining from brine channels	
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Wettlaufer, Worster, and Huppert [1997]	




Stages of Drainage from Sea Ice	


A: Quiescent	


C: Draining	
Surface expression of brine channels	




Strong compositional convection
through brine channels

Weak convection

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

hc(CA−CO)

φc

=
gβ ΔC Π h
κ νRm R crit=

Onset of Brine Drainage	


Convection is determined by a critical value of a Rayleigh number	


    hcritΔC ∝ Π−1 φ( )Thus	


NB  Rcrit =10 gives a permeability  Π ≈ 10−10  m2  at ϕ=0.8



Understanding the Critical Condition	
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A parcel of interstitial brine displaced downwards:	

1:  Comes to thermal equilibrium with its new surroundings by diffusion	


2:  Comes to complete equilibrium (liquidus) by dissolving the ice matrix	


1.	


2.	


The driving force for convection is the unstable density profile. However, once the 
fluid starts moving its buoyancy is dissipated by thermal diffusion and its kinetic 
energy is dissipated by friction (viscosity). 	
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Summary	


Rate of solidification of a mixture at a flat solid–liquid interface is limited by solute 
diffusivity.	


Rejected solute causes local constitutional supercooling and morphological instability ...	


... leading to the development of a mushy layer.	


Sea ice is a mushy layer. Local conservation equations describe a mushy layer.	


Brine fluxes arise due to the unstable buoyancy profile of brine in sea ice.	


Convection in sea ice causes formation of brine channels by dissolution. 	


Convection in a mushy layer seems to be confined to a region where the porous medium 
Rayleigh number is close to the critical value of about 10.	



