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How mushy layers form	
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Binary Mixtures: Cartoon Equilibrium Phase Diagram	



Freezing temperature (liquidus) is a function of composition 	



Solid that forms has a different composition (given by the solidus) than the liquid	
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Planar growth of a binary alloy, no mushy layer	





Constitutional Supercooling	



C = C∞ + Ci −C∞( )erfc z / 2 Dt( ) / erfc a / 2 Dt( )
T = T∞ + Ti −T∞( )erfc z / 2 κ t( ) / erfc a / 2 κ t( )
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The growth rate of a planar solid–liquid interface is limited by the rate of removal of solute. 
Constitutional supercooling leads to the planar ice-ocean interface becoming unstable.	
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Corrugations of the ice-ocean interface grow to become platelets/dendrites. 	


The greater solid-liquid surface area results in enhanced expulsion of heat and salt until 	


local thermodynamic equilibrium is achieved. 	



Formation of a mushy layer	





A	
  mushy	
  layer	
  consists	
  of	
  a	
  (typically)	
  porous	
  matrix	
  of	
  (almost)	
  pure	
  solid	
  
bathed	
  in	
  (highly	
  concentrated)	
  inters00al	
  liquid.	
  	
  

	
  

The	
  convoluted	
  geometry	
  enhances	
  expulsion	
  of	
  solute	
  and	
  heat.	
  
	
  

Sea	
  ice	
  (all	
  of	
  it)	
  is	
  an	
  example	
  of	
  a	
  mushy	
  layer,	
  and	
  the	
  mushy	
  layer	
  equa0ons	
  
are	
  used	
  for	
  the	
  heat	
  and	
  salt	
  balances.	
  

Sea	
  ice	
  is	
  a	
  mushy	
  layer	
  

WeOlaufer	
  et	
  al.	
  [1997]	
  

~1 mm	





Modelling mushy layers	





Developing a continuum mushy layer model from conservation equations	
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Local conservation of an arbitrary scalar      ,	


e.g. heat, salt etc, is	
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where S is a source/sink per unit volume and J is a flux of 	
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Φ

Using the divergence theorem                           	


	


we can write, since the control volume is arbitrary and fixed, that	
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+ ∇ ⋅U( )Φ+U ⋅ ∇Φ =∇ ⋅ DΦ∇Φ( ) + S

(+ radiative flux for heat)	















The mathematical description of a mushy layer	



NOTE: We have not considered conservation of momentum. 	


Mushy layer theory DOES NOT prescribe the interstitial fluid (brine) velocity U. This is 
determined by a local momentum balance, which is well approximated by Darcy’s Law 
in a porous medium	
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Mushy layer model of sea ice with no brine flow	



The local bulk concentration is	

 CB = 1−ϕ( )C so	

 ϕ = 1− CB
C

The interstitial concentration C is related to the local temperature T by the liquidus relation	



The thermal inertia (specific heat capacity) of sea ice is dominated by 	


the internal release of latent heat.	
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The mushy layer equations with no brine flow are essentially the same 
as the Maykut and Untersteiner [1971] model of sea ice. In recent years, 
mushy layer theory has been used to model desalination of sea ice, morphological 
instability, melt pond evolution, nutrient dynamics, consolidation of rafted sea ice, etc.	





Brine flow in sea ice: 	


condition for onset of buoyancy-driven convection	



(not flushing) 	





Brine Drainage from Sea Ice	



Unstable density profile of brine salinity in sea ice can drive so-called “gravity drainage”.	



Wettlaufer, Worster, and Huppert [1997]	





Linear stability analysis of a mushy layer	


 - onset of convection (brine drainage)	



adapted from Worster 1992 	


	



‘Ideal mushy layer’— thermal properties constant and independent of phase and	

 ρs = ρl

Conservation of heat	


∂T
∂t

+u ⋅∇T =κ∇2T + L
cp

∂ϕ
∂t

Conservation of salt	

 1−ϕ( ) ∂C
∂t

+u ⋅∇C =C ∂ϕ
∂t

ignore diffusion of salt	



Liquidus constraint	



Darcy’s equation	


for flow in a porous medium	



µu =Π −∇p+ρg[ ]

Consititutive relation	

 ρ = ρ0 1−α T −T0( )+β C −C0( )%& '(= ρ0 1+β * C −C0( )%& '(

T   C   ϕ   u

~1 mm	



T =TL C( ) =T0 −m C −C0( )

Incompressibility	

 ∇⋅u = 0

Methodology:	


perturb a steady state and calculate if perturbations grow	





Non-dimensionalising and scaling	



Suppose that system is solidifying at rate V  and scale	



velocities with V time with κ /V 2lengths with κ /V pressure with with Δρgκ /V

Write	

 where	
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Indicative Stability Analysis	
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Write	


θ =1− z+θ̂ z( )eiαx+σ t

w =          ŵ z( )eiαx+σ t
u = u,w( )

Substitute, linearize and look for marginal (steady) states with	

 σ = 0

−Ωŵ = D2 −α2( )θ̂
D2 −α2( ) ŵ =α2Rmθ̂

D2 −α2( )2 ŵ = −α2ΩRmŵ⇒
D ≡

d
dz

perturbations	

steady state	
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θss =1− z; wss = 0

σ is the growth rate	


α is the wavenumber	





Marginal Stability Results	



D2 −α2( )2 ŵ = −α2ΩRmŵ

ŵ = 0 θ̂ = 0⇒ D2ŵ = 0

Dŵ = 0 Dθ̂ = 0⇒ D3ŵ = 0

No flow, constant temperature	



Constant pressure and heat flux	
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Lowest (most unstable) mode has n=0	



ΩRm =
π 2

4 +α
2$

%
&
'
2

α2
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i.e. the circulation cell is of the same size as the	


 mushy layer depth	





Critical Rayleigh Number	
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“most unstable” wavenumber is	

 αc =
π
2

where the critical Rayleigh number is	

 ΩRm > Rc = π
2 ≈ 10

Unstable	



Stable	



σ > 0

σ < 0

σ = 0

Brine drainage	



No brine drainage	



Brine drainage will not occur until the critical Rayleigh number is reached.	





Thermistors
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Stages of Evolution	



A: Quiescent	


B: Transition	


C: Draining from brine channels	
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Wettlaufer, Worster, and Huppert [1997]	





Stages of Drainage from Sea Ice	



A: Quiescent	



C: Draining	

Surface expression of brine channels	





Strong compositional convection
through brine channels

Weak convection
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Convection is determined by a critical value of a Rayleigh number	



    hcritΔC ∝ Π−1 φ( )Thus	



NB  Rcrit =10 gives a permeability  Π ≈ 10−10  m2  at ϕ=0.8



Understanding the Critical Condition	
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Liquidus	



Warm, fresh	



Cold, salty	



A parcel of interstitial brine displaced downwards:	


1:  Comes to thermal equilibrium with its new surroundings by diffusion	



2:  Comes to complete equilibrium (liquidus) by dissolving the ice matrix	



1.	



2.	



The driving force for convection is the unstable density profile. However, once the 
fluid starts moving its buoyancy is dissipated by thermal diffusion and its kinetic 
energy is dissipated by friction (viscosity). 	
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Summary	



Rate of solidification of a mixture at a flat solid–liquid interface is limited by solute 
diffusivity.	



Rejected solute causes local constitutional supercooling and morphological instability ...	



... leading to the development of a mushy layer.	



Sea ice is a mushy layer. Local conservation equations describe a mushy layer.	



Brine fluxes arise due to the unstable buoyancy profile of brine in sea ice.	



Convection in sea ice causes formation of brine channels by dissolution. 	



Convection in a mushy layer seems to be confined to a region where the porous medium 
Rayleigh number is close to the critical value of about 10.	




