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Abstract
The polar oceans of Earth are covered by sea ice. On timescales
much greater than a day, the motion and deformation of the sea ice
cover (i.e., its dynamics) are primarily determined by atmospheric
and oceanic tractions on its upper and lower surfaces and by inter-
nal ice forces that arise within the ice cover owing to its deforma-
tion. This review discusses the relationship between the internal ice
forces and the deformation of the ice cover, focusing on representa-
tions suitable for inclusion within global climate models. I first draw
attention to theories that treat the sea ice cover as an isotropic con-
tinuum and then to the recent development of anisotropic models
that deal with the presence of oriented weaknesses in the ice cover,
known as leads.
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Sea ice: frozen sea water
that typically consists of
floes separated by cracks
and leads

Floe: an irregularly shaped
sheet of sea ice

Pressure ridge: forms
when floes collide and
override each other; consists
of a sail and keel

Lead: a long, narrow
region of open water or thin
ice in the sea ice cover

Linear kinematic feature:
a long, narrow region of
concentrated sea ice
deformation observed in
satellite-derived imagery
(longer than a lead)

1. SEA ICE AS A COMPONENT OF THE CLIMATE SYSTEM

As the winter night descends on the polar oceans, the surface mixed layer cools and
begins to freeze, forming a floating layer of sea ice. The sea ice covers of the Arctic
and Southern Oceans alternately wax and wane seasonally, with sea ice at its maximum
extent covering approximately 10% of Earth’s oceans.

Much of the sea ice cover is formed from brittle floes that are of approximately
convex polygonal shape, have lateral dimensions between 100 m and 5 km, and are
typically several meters thick. During winter, the floes weld together to form larger
floe aggregates that form a continuous cover (see Figure 1). Under imposed stress,
exerted by the wind and ocean, sea ice fails to form a network of cracks, typically
initiated at existing weaknesses, with a density of approximately 1 km of crack length
in every square kilometer of (horizontal) area (Hibler 2001). The floes, or floe ag-
gregates, defined by these cracks, are sensibly rigid and grind along their common
edges as they slide past each other in granular motion. Under sufficient compressive
stresses, the ice can break up and override to form long, sinuous piles of rubble above
and beneath the ice cover, known as pressure ridges (see Figure 2). Adjacent cracks
may join up to form longer, narrow features, known as leads, whose length typically
spans many floe widths (see Figure 3). Although the open water in a lead quickly
freezes over in winter, a lead typically contains ice thinner than the surrounding floes
and is a local weakness in the ice cover. In winter, leads typically occupy approxi-
mately 5% of the ice cover. Processing of sequential satellite synthetic aperture radar
imagery (Kwok 2001) indicates the presence of concentrated regions of shear in the
sea ice cover, known as linear kinematic features, that are several hundred kilometers
in length and may be reasonably interpreted as regions of strong lead alignment.

~0.25 km

Figure 1
Photograph of a typical
region of Arctic sea ice in
the east-central Chukchi
Sea northwest of Alaska in
May 2002, taken from a
helicopter. The width of the
scene in the foreground is
approximately 1 km. Figure
reproduced with kind
permission from H. Eicken.
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~1 m

Figure 2
Photograph of a pressure
ridge in the east-central
Chukchi Sea northwest of
Alaska in June 2002, taken
from an icebreaker. The
ridge is fairly narrow,
approximately 3 m wide,
and formed from ice less
than 1 m thick. There is
some flooding visible to the
right of the ridge owing to
the local submergence of
the parent ice sheet. The
width of the scene in the
foreground is approximately
10 m. Figure reproduced
with kind permission from
H. Eicken.

Sea ice plays an important role in determining polar climate and is believed to
influence the global climate in many ways. In particular, (a) the high albedo (re-
flectance) of sea ice and snow-covered sea ice compared with seawater causes reduced
solar energy input into the ocean in sea ice–covered regions and a reduction in air
temperature over ice-covered seas. The reduction in air temperature can promote
further ice formation, leading to the so-called positive albedo feedback mechanism;
(b) the ice cover reduces the rates of heat and moisture transport between the ocean
and atmosphere; (c) sea ice provides a dynamic interface that moderates momentum
transport between the ocean and atmosphere; and (d ) as seawater freezes to form sea
ice, high salinity brine is expelled (sea ice is approximately 4–10 times less saline than
seawater), and as sea ice melts, relatively fresh water is released, both of which af-
fect the thermohaline forcing of the ocean and influence convective overturning and
deep-water formation. For these reasons, all modern global climate models contain
relatively sophisticated descriptions of the sea ice cover.

The motion and deformation of the sea ice cover, known as its dynamics, are
determined by its inertia, atmospheric and oceanic tractions on its upper and lower
surfaces, the Coriolis force, sea-surface tilt, and internal ice forces that arise within
the ice cover owing to its deformation (discussed below). In this review, I focus on the
relationship between the sea ice stress tensor (related to the internal ice force) and
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~25 m

Figure 3
Photograph of a lead in the
east-central Chukchi Sea
northwest of Alaska in May
2002, taken from a
helicopter. The width of the
scene in the foreground is
approximately 200 m.
Figure reproduced with
kind permission from H.
Eicken.

sea ice deformation, hereafter referred to as sea ice rheology. The included material
comprises what I feel are the main theoretical achievements in the development of
continuum models of sea ice rheology suitable for inclusion within regional or global
climate models. Owing to space limitations, I omit significant studies not directly
aligned with this development, such as discrete models (e.g., Hopkins & Tuhkuri
1999, Hopkins et al. 2004) or models of the sea ice edge (e.g., Feltham 2005, Shen
et al. 1987). The article is structured as follows: Section 2 describes the momen-
tum balance of sea ice; Section 3 introduces elastic-plastic and viscous-plastic models
of sea ice rheology; Section 4 focuses on the principal approaches taken to deter-
mine the plastic yield curve; Section 5 draws attention to models of anisotropy of
the sea ice cover; and, finally, Section 6 presents some concluding remarks. I have
placed much interesting material in Supplementary Appendices, which are available
online (follow the Supplemental Material link from the Annual Reviews home page
at http://www.annualreviews.org); I suggest the interested reader obtain this sup-
plemental information for a more balanced review.

2. MOMENTUM BALANCE OF SEA ICE

Gudkovich & Nikiforov (1963) considered the drift of an individual floe, based on
the earlier observations of Nansen (1902), and deduced that the speed and direction
of drift depended on floe size and shape. More generally, however, it is necessary to
account for interactions between sea ice floes as the floes are either in direct contact,
frozen together to form aggregates, or close to each other, possibly separated by
refrozen leads.
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The Arctic Ice Dynamics Joint Experiment (AIDJEX), a joint venture funded by
the United States and Canada, was instigated to study the dynamics of sea ice and
its interactions with the atmosphere and ocean. Between 1970 and 1978, AIDJEX
scientists made coordinated measurements of atmospheric motion, wind stress, ice
strain, ice stress, water motion, and water stress and developed new models and ideas.

Coon et al. (1974) introduced the AIDJEX sea ice model, which considered the
ice cover to move in a two-dimensional, horizontal plane. When working with scales
much larger than individual floes, one considers the velocity of the sea ice to be
defined by a continuously differentiable velocity field u(x), where x is the horizontal
position in the surface. The deformation rate of the sea ice cover is given by the strain
rate

ε̇ij ≡ 1
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (1)

with principal values ε̇1 and ε̇2 < ε̇1. It is useful to consider the two invariants given
by

ε̇I ≡ ε̇1 + ε̇2 = divergence; ε̇II ≡ ε̇1 − ε̇2 = maximum shear rate, (2)

which may also be expressed as

ε̇I = ||ε̇|| cos θ, ε̇II = ||ε̇|| sin θ, (3)

where

||ε̇|| =
√

ε̇2
I + ε̇2

II, θ = tan−1
(

ε̇II

ε̇I

)
(4)

define the magnitude of the strain rate and the ratio of rates of shearing and diver-
gence, respectively. In particular, θ = 0, π/4, π/2, 3π/4, and π correspond to pure
divergence, uniaxial extension, pure shear, uniaxial contraction, and pure conver-
gence, respectively.

The AIDJEX (horizontal) momentum balance for sea ice was deduced through
a consideration of the forces acting on a single floe with an additional force due to
interactions between floes:

D(mu)
Dt

= −mfC k × u + τ a + τw − mĝ�H + ∇ · σ, (5)

where each term has units of force per unit area of the sea ice cover, and t is time. The
rate of change of momentum (left-hand side of Equation 5) is set equal to the balance
of forces (the right-hand side), which are as follows (from left to right): Coriolis force,
atmospheric drag, ocean drag, force due to sea-surface tilt, and the ice interaction
force given by the divergence of the sea ice stress tensor. The sea ice stress tensor σij

is the integral of the Cauchy stress tensor through the depth of the sea ice, in excess
of the isostatic stress 1

2 ρiceh2 ĝδij (where ρice is the ice density, ĝ is the acceleration due
to gravity, and h is the ice depth). In the momentum equation, D/Dt is the material
derivative, k is the unit vector normal to the ice surface directed into the atmosphere,
fC is the Coriolis parameter, m is the ice mass per unit area, and H is the sea-surface
dynamic height. The ice mass is determined by

m = ρice

∫ ∞

0
g(h)hdh, (6)
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where g(h) is the thickness distribution function defined such that the fractional area
of ice with thickness in the range h to h + dh is given by g(h)dh. Force-balance
calculations using reasonable parameterizations for air and ocean drags and sea ice
stress (Steele et al. 1997) show that the acceleration term is negligible for timescales
much larger than a day, and the sum of the Coriolis and sea-surface tilt terms is
always small compared with the remaining terms. On timescales greater than weeks,
the force balance is typically dominated by atmospheric drag, oceanic drag, and the
ice interaction force with the precise balance depending on time and location.

The evolution of the ice thickness distribution is given by

Dg
Dt

= 
 − g
(

ε̇I + ∂ f
∂h

)
, (7)

where 
 is the redistribution function, and f is the vertical freeze/melt rate
(Thorndike et al. 1975). The redistribution function 
 accounts for the mechani-
cal redistribution of thin ice into ridges of thicker ice during convergence and for the
production of open water as a result of divergence; it may be expressed as


 = ||ε̇||[αr (θ )ψ + χ (h)αo (θ )], (8)

where αr (θ ) and αo (θ ), known as the ridging and opening coefficients, describe the
relative amount of deformation realized through pure convergence–type ridging and
pure divergence–type opening, respectively [defined such that αr (π ) = 1, αo (0) = 1,
and α0 = αr + cos θ ]. The function χ (h) is twice the Dirac delta function, so defined
that χ (h) = 0, ∀h > 0 and

∫ ∞
0 χ (h)dh = 1.

Gray & Morland (1994) subsequently derived the horizontal momentum balance
for sea ice more systematically from the three-dimensional momentum and mass
balance equations for the sea ice and ocean using mixture (interacting continua)
theory. These equations were simplified by integration through layer depth and by
exploiting the small geometrical aspect ratio of an individual floe and the smallness of
the ratio of the magnitude of horizontal to vertical (gravitational) forces. To leading
order, this determined a two-dimensional momentum balance of similar form to
Equation 5. However, the momentum balance determined by Gray & Morland applies
to the mixture of sea ice and the water between the floes because otherwise the
unknown ice–ocean actions must be taken into account (these cancel out when the
momentum balance of the ice is added to that of the water).

3. SEA ICE RHEOLOGY

The relationship between sea ice stressσ, caused by floe–floe or floe–lead interactions,
to the large-scale deformation of the ice cover ε̇, the material properties of sea ice,
and the state of the ice cover is known as sea ice rheology. The determination of
suitable constitutive relations to describe sea ice rheology has guided sea ice–dynamics
research since it began, and it remains an outstanding problem that limits the success
of sea ice models.

Early models of sea ice rheology, such as those of Ruzin (1959) and Reed &
Campbell (1960), parameterized the stress resulting from interactions between sea
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ice floes using a two-dimensional Laplacian operator with an effective, constant eddy
viscosity, i.e., effectively treating the ice cover like a viscous fluid. However, obser-
vations of flow with weak horizontal divergence led Rothrock (1970) and Solomon
(1970) to include a pressure term to prevent unrealistic convergence in the Beaufort
Sea. Subsequent theoretical development of models of sea ice rheology was revolu-
tionized through the conception of sea ice as a plastic material, as introduced in the
AIDJEX model.

3.1. Elastic-Plastic Sea Ice Rheology

The AIDJEX sea ice model treats the macroscopic mechanical behavior of sea ice
using an elastic-plastic rheology. Supplemental Appendix A gives a brief descrip-
tion of plasticity (follow the Supplemental Material link from the Annual Reviews
home page at http://www.annualreviews.org). The strongest argument for adopt-
ing a plastic model for sea ice is that, despite relatively smooth variations in at-
mospheric and oceanic forcing fields, local events such as ridging and formation
of leads occur sporadically and irreversibly, as though a critical stress state in the
ice had been reached. In addition, theoretical arguments suggest that, provided the
shape of a pressure ridge is independent of the rate at which it forms, the nonre-
coverable work done against gravity (Parmerter & Coon 1973, Rothrock 1975) and
sliding friction (Rothrock 1975) is also rate independent. A final argument for plastic
behavior invokes a compelling visual analogy between sea ice and such granular ma-
terials as soils, which have been modeled successfully as a plastic (Schofield & Wroth
1968).

The case for an elastic (subcritical) response was largely made for mathematical
convenience: A rigid plastic model does not allow subcritical stresses to be calculated,
so it is not possible to decide if the stress is critical or subcritical, i.e., whether there
is plastic deformation or no deformation. In addition, Coon et al. (1974) reasoned
that, in a dense pack, thick floes are wedged together with little thin ice present, so as
subyield stresses are applied, there can be only elastic deformations in the thick floes.
The deformations are negligible compared with plastic deformations associated with
opening and closing cracks, but the elastic stresses can be large and must be evaluated.

Coon et al. (1974), and most subsequent modelers, considered sea ice to be
isotropic, which allows the plastic yield surface to be expressed as a yield curve in
the plane of the principal stresses σ1 and σ2 or, equivalently, through the stress in-
variants σI and σII , where

σI ≡ 1
2

(σ1 + σ2) = negative pressure; σII ≡ 1
2

(−σ1 + σ2) = maximum shear stress.
(9)

The yield criterion is written as

F (σI , σII ; scalars) = 0, (10)

where F is the (scalar) yield function and defines a family of yield curves in the {σI , σII}
plane owing to the variation of the scalar properties of the sea ice. For an isotropic
material, F must be symmetric about σII = 0 (Truesdell & Noll 1965).
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The strain rate is typically split into elastic ε̇e and plastic ε̇p components, where,
by assumption, ε̇ = ε̇e + ε̇p. The elastic strain is related to stress through an elastic
law, and the plastic strain rate is related to stress through a plastic flow law and is zero
when the stress state lies within the yield curve. Strain must be measured relative to
an unloaded (stress-free) reference configuration, which is constantly evolving owing
to plastic deformation (Pritchard 1975).

Whenever the stress state lies on the yield curve, irreversible plastic deformation
occurs. Coon et al. (1974) adopted the associated normal flow law

ε̇
p
k = λ

∂ F
∂σk

∣∣∣∣
F=0

k = I, II, (11)

where ε̇
p
k is the plastic strain rate, and λ is an unknown, positive scalar that is de-

termined as part of the solution of the dynamical equations. Equation 11 states that
at a given stress state on the yield curve, the plastic strain rate is in the direction of
the exterior normal to the yield curve but is of unknown magnitude; i.e., the normal
flow rule specifies the ratio of shear straining to divergence for each point on the
yield curve but places no restriction on their absolute rates. Almost all models of sea
ice dynamics use this flow rule; its justification largely seems based on its successful
application to granular materials such as soils and its satisfactory performance (within
the limits of experimental error and parameter tuning) in sea ice simulations.

3.2. Viscous-Plastic Sea Ice Rheology

Hibler (1979) based his sea ice model on the isotropic, plastic approach of Coon
et al. (1974) but replaced the elastic-subplastic yield behavior with a viscous behavior.
Hibler introduced this rheology in part to avoid the need to keep track of an evolving
unload configuration from which to measure strain. To reduce the computational
burden of calculating the evolution of a thickness distribution, Hibler also replaced
the thickness distribution with just two categories: (a) thick ice of thickness h and
area fraction (concentration) A and (b) thin ice (which included open water) with area
concentration 1 − A. Evolution equations were introduced for the thick-ice thickness
and area concentration, which included artificial (regularizing) diffusion terms.

The concept of a viscous subyield behavior came from the idea that the random
jostling of a collection of perfectly plastic floes leads to an averaged viscous behavior
of the collection of floes at small averaged strain rates. Hibler (1977) showed that
when a two-dimensional, rigid plastic model with an elliptical yield curve is used,
large stochastic variations in strain rate compared with the mean strain rate cause
the relationship between averaged stress and averaged strain rate to be approximately
linear viscous with a pressure term.

An essential difference between the viscous-plastic rheology and the elastic-plastic
rheology is the way in which relatively motionless ice is treated: In the elastic-plastic
case, a high stress can be maintained without any relative motion, whereas in the
viscous-plastic case, such stationary states are approximated by a state of very slow
flow or creep. By using sufficiently large viscosities, one can make the strain rate
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I

II

1

2

P/2

S

S
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Figure 4
Elliptical yield curve for a viscous-plastic rheology. For plastic flow, the stress state lies on the
solid curve with the location determined by the ratio of strain rate principal components; e.g.,
the stress state for pure shear is located at S, pure convergence is at C, and pure divergence is
at O. For very small strain rates, the stress state moves inside the yield curve as illustrated by
the dashed ellipse.

at which plastic behavior occurs effectively negligible, and the viscous-plastic model
does not make a distinction between the plastic strain rate and the total strain rate.

The plastic and viscous behavior can be represented using the standard (reduced)
Reiner-Rivlin form (e.g., Hunter 1983),

σij = 2ηε̇ij + [ζ − η]ε̇kkδij − Pδij/2, (12)

where P/2 is a pressure term. Hibler (1979) chose ζ (ε̇ij; P ) and η(ε̇ij; P ) to depend
on ε̇ij and P in such a way as to ensure that for typical strain rate magnitudes, the
normal plastic flow law applies and the stress state lies on an elliptical yield curve pass-
ing through the origin (so there is no ice stress for pure divergence) (see Figure 4).
The general shape of the yield curve was chosen to agree with the expected be-
havior of sea ice (namely that it should be weak in tension, strong in shear, and
strongest in compression) and to satisfy the requirements of continuum mechan-
ics (namely that it should not be concave and should be symmetric about the σI

axis). The particular choice of an elliptical yield curve, however, was solely made for
mathematical convenience because this allowed ζ and η to be expressed in closed
form:

ζ = P/2�, η = ζ/e2, (13)

where

� = [(
ε̇2

11 + ε̇2
22

)
(1 + e−2) + 4e−2ε̇2

12 + 2ε̇11ε̇22(1 − e−2)
]1/2

, (14)

and e is the yield curve eccentricity. Hibler defined upper bounds on ζ and η, depen-
dent on the ice strength P , which are reached at small strain rates (creep) and cause the
stress state to lie on a concentric ellipse inside the yield curve, as in Figure 4. In prac-
tice, these upper values are chosen to be large enough that they do not significantly
affect the calculations of ice motion.
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The viscous-plastic rheology is completed with an equation of state for the ice
strength, or pressure. Hibler (1979) used

P = P∗h exp[−C(1 − A )], (15)

where P∗ and C are fixed (positive) empirical constants. For high concentrations of
thick ice A, more thick ice is deformed, and the strength depends on the thick-ice
thickness h. For a large amount of thin ice, 1 − A approaches unity, and the effective
ice strength decreases significantly. Although it predicts feasible trends of ice strength,
there is dubious justification for the precise form of the strength equation, with the
constant P∗ in particular being frequently tuned within a factor of 10 or so of about
105 Nm−1 to improve correspondence with observations (C is normally fixed at
C = 20).

Hibler’s viscous-plastic rheology, or, more recently, a numerically efficient variant
that includes some artificial elasticity to render the stress calculation explicit (often
misleadingly referred to as the elastic-viscous-plastic rheology) (Hunke & Dukowicz
1997), has been implemented in many sea ice and climate models. Supplemental
Appendix B discusses some undesirable features of the Hibler (1979) sea ice model
and its subsequent modification.

4. DETERMINATION OF THE PLASTIC YIELD CURVE

A model framework in which the sea ice cover is treated as an isotropic continuum
that routinely deforms plastically has dominated approaches to modeling sea ice rhe-
ology since the AIDJEX model was first introduced. Subsequent effort has largely
focused on determining an appropriate plastic behavior. Two main approaches have
been taken: (a) determination of the plastic yield curve and flow rule through a con-
sideration of the energetics of subcontinuum-scale deformation of the ice cover and
(b) imposition of a scale-invariant, Mohr-Coulomb rheology.

4.1. Energetics of Subcontinuum Deformation

Rothrock (1975) generalized the earlier arguments of Parmerter & Coon (1973)
to develop a relationship between the plastic yield curve shape and size and the
redistribution of ice thickness during the formation of a pressure ridge. He did this
by equating the plastic work of deformation to the gravitational potential energy of a
pressure ridge and frictional losses in the formation of the ridge. Two sinks of energy
were knowingly neglected: the loss of energy due to fracture of the ice sheet, which
was shown by Parmerter & Coon to be negligible, and the frictional loss in shearing
between floes. The frictional loss due to shearing was later shown to be significant
(Pritchard 1981, Ukita & Mortiz 1995, Wilchinsky et al. 2006), but this does not
qualitatively affect Rothrock’s arguments.

Rothrock assumed an isotropic constitutive equation with the alignment of the
principal axes of stress and strain rate and, as his central hypothesis, set

σI ε̇I + σII ε̇II = Rpot + Rfric. (16)
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The left-hand side of this equation is the rate of doing plastic work per unit area, Rpot

is the rate of the mechanical production of gravitational potential energy per unit area,
and Rfric is the rate of frictional energy dissipation per unit area. After calculations,
Rothrock showed that the rate of doing plastic work is

σI ε̇I + σII ε̇II = ||ε̇||αr (θ )P∗, (17)

where the right-hand side contains both the rate of potential energy production and
the frictional energy loss combined into the factor P∗,

P∗ = ξ

∫ ∞

0
h2a(h)dh, (18)

where a(h) is the distribution of thin ice lost in ridging, and ξ is a constant related to
the density difference between ice and seawater, the coefficient of friction of ice, the
ridge angle of repose, and the thickness redistribution in ridging. The parameter P∗

is the strength of the ice pack in pure convergence. To see this, let us consider the case
ε̇I = −||ε̇||, ε̇II = 0, and αr (π ) = 1 for which Equation 17 states that convergence
can only occur if the compressive stress σI is equal to −P∗. Weaker stresses cannot
do enough work to build ridges and therefore do not cause deformation.

Using Equation 3 and nondimensionalizing stress with P∗, we can rewrite the
plastic power (Equation 17) as

σII = − 1
tan θ

σI + αr (θ )
sin θ

. (19)

Rothrock (1975) assumed that the normal plastic flow law applies; simple geometry
gives the angle between the σI axis and the yield curve’s normal as

tan θ = −
(

dσII

dσI

)−1

. (20)

Equations 19 and 20 constitute a nonlinear differential equation for σII (σI ) and allow
the calculation of the plastic yield curve. Although Rothrock demonstrated a rela-
tionship between the ridging coefficient αr (θ ) and the plastic yield curve σII (σI ), there
was no rationale given for determining either one independently, except that the yield
curve should be physically reasonable.

Ukita & Moritz (1995, 2000; Moritz & Ukita 2000) generalized Rothrock’s ap-
proach by including an energy sink due to the sliding motion of floes parallel to cracks
in Equation 17 and by providing a method of determining the ridging and sliding
coefficients. Ukita & Moritz’s rate of plastic work equation (divided by the strain rate
magnitude, ||ε̇||) is

σI cos θ + σII sin θ cos 2γ = P∗[αr (θ ) + kαs (θ )], (21)

where the sliding coefficient αs (θ ) has been introduced, the parameter k is the ratio of
energy transformations associated with sliding relative to ridging, and γ is the angle
between the directions of principal stress and strain rate (which were not initially
assumed to be parallel). Ukita & Moritz simplified their analysis by setting P∗ = 1
and only considering σI ≤ 0. They used a principle of minimization of maximum
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shear stress σII as σI , γ , and θ varied that led to γ = 0 and expressions for the yield
curve and flow rule.

Moritz & Ukita (2000) determined the ridging and sliding coefficients, αr (θ ) and
αs (θ ), respectively, using a kinematic model: (a) They divided a plane region into an
irregular, random tiling of convex polygon floes separated by cracks (leads), obtained
using the Poisson process (see Moritz & Ukita 2000 for details); (b) they used a Taylor
expansion of the continuum velocity field to find the rigid body velocity of each of the
floes, assuming no spinning of the floes, and used the difference between adjacent floe
velocities to calculate the rate of opening/closing and sliding in the cracks separating
the floes; and, finally, (c) they summed the rates of opening/closing and sliding from
all the cracks to determine the opening coefficient αo (θ ), ridging coefficient αr (θ ),
and sliding coefficient αs (θ ).

Figure 5 shows the yield curves obtained by minimizing σII using αr (θ ) and αs (θ )
calculated for the randomly determined convex polygons. With k = 0 (no frictional
energy of sliding), the yield curve has a sine-lens shape. With sliding, there is an
increase in the maximum shear stress, as well as an elongation along the σI axis. With
sliding, there is asymmetry between the divergent (dσII/dσI < 0) and convergent
(dσII/dσI > 0) regimes, resulting in a teardrop shape. This can be understood by
realizing that for the same ratio of the magnitude of shearing to divergence, closing
and sliding at cracks result in larger shear stresses than opening and sliding at cracks.
Similar reasoning led Rothrock (1975) and Coon et al. (1974) to suggest teardrop
shapes for the yield curve.

Although Ukita & Moritz (1995) included the role of frictional sliding into the
plastic deformation power equation, by normalizing the rate of work done with a con-
stant ice strength (setting P∗ = 1), they ignored the different dependence of ridging

–0.5–1.0–1.5 0.0
0

0.2

0.4

0.6

0.8

I

II

k = 0

k = 0.5

k = 1

Figure 5
Yield curves computed by minimizing shear stress using ridging and sliding coefficients
calculated using a random isotropic geometry with varying values of frictional energy loss k.
Without the contribution from sliding (k = 0), the yield curve has a sine-lens shape. As k
increases, the yield curve shape changes to tear dropped and becomes more asymmetric.
Figure adapted from Ukita & Moritz 2000.
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work and sliding work on ice thickness. Wilchinsky & Feltham (2004b) addressed
this deficiency for an ice cover of uniform thickness (which was considered in Ukita
& Moritz’s theory), and Wilchinsky et al. (2006) generalized this to an ice cover with
a discrete thickness distribution. Because the ridging and sliding coefficients, αr and
αs , determined by Moritz & Ukita (2000) were found from kinematic considerations
concerning floe geometry but not ice thickness, Wilchinsky et al. adopted the same
ridging and sliding coefficients for an ice cover consisting of ice of various thicknesses.
They wrote the rate of doing plastic work of a nonuniform-thickness sea ice cover
(divided by the strain rate magnitude, ||ε̇||) as

σI cos θ + σII sin θ = Prαr (θ ) + Ps αs (θ ) + Po αo (θ ), (22)

where the final term accounts for work done in opening, and they demonstrated that
the ridging, sliding, and opening contributions can be considered separately,

σ(ε̇) = Prσ
r(ε̇) + Psσ

s (ε̇) + Poσ
o(ε̇), (23)

where Pr , Ps , and Po are the ridging, sliding, and opening strengths, respectively,
and σr(ε̇), σs (ε̇), and σo(ε̇) are the normalized (i.e., independent of ice thickness h)
ridging, sliding, and opening stress tensors, respectively, determined by the pairs of
coupled equations

σ x
I cos θ + σ x

II sin θ = αx(θ )

σ x
II = min

θ

(
αx (θ )
sin θ

− σ x
I cot θ

)
⎫⎬
⎭ (x = r, s , o ). (24)

The solutions {σ r
I (θ ), σ r

II (σ
r
I )}, {σ s

I (θ ), σ s
II (σ

s
I )} were calculated numerically using the

ridging and sliding coefficients of Moritz & Ukita (2000) [the normalized opening
stress σo(ε̇) can be linearly related to the ridging stress σr(ε̇)]. The direction of the
strain rate for each of the ridging, sliding, and opening yield curves was found to be
nearly normal to the yield curves.

The sea ice stress (Equation 23) depends on the thickness distribution through
the ridging Pr , sliding Ps , and opening strengths Po . The ridging ice strength was
determined using results from the discrete element simulation of ridge formation by
Hopkins (1998); the sliding ice strength was determined by assuming a linear friction
law acts as floes slide past each other; and the opening strength was set to zero because
the limited data available suggest it is very small. As the thickness distribution varies,
the relative contribution of ridging, sliding, and opening to the total sea ice stress may
vary (resulting in a slight change of shape of the yield curve). For example, because
thick ice is hard to ridge, the sea ice stress of an ice cover containing relatively thick
ice is determined predominantly by frictional sliding and opening. Wilchinsky et al.
(2006) included their new sea ice rheology into the sea ice component of a global
climate model (Los Alamos CICE model, version 3.0) and showed that their new
rheology helped to more accurately model the spatial distribution of ice in the central
Arctic Ocean, as compared with submarine observations.
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4.2. Mohr-Coulomb Failure

The arguments in the above section relate the continuum-scale plastic behavior to
the subcontinuum deformation; another popular approach has been to simply assert
a continuum-scale yield curve based on the idea of shear fracture or frictional sliding
along flaws. In terms of determining a continuum-scale yield curve, shear fracture and
frictional sliding are treated in the same way. The traction on a line in a horizontal
plane of sea ice is given by

σ · n = σnn + τnt, (25)

where n and t are the unit normal and tangent vectors to this line, respectively; σn

is the normal stress across the line; and τn is the shear stress along the line. In the
application of Mohr’s theory to sea ice rheology, failure (i.e., flow) of the ice cover
occurs when the component of shear stress τn attains a critical value related to the
component of normal stress σn given by Mohr’s failure law:

|τn| = �(σn; scalars). (26)

The sea ice is assumed to be perpetually in a critical state in which the above relation
holds along what are known as slip lines. The slip lines are at an angle, measured from
the principal directions of stress, that minimizes the shear stress τn. One can easily
show that the angle between the principal direction σ1 and the slip line normals is

ψ± = ±(π/4 − �/2), (27)

where the angle of internal friction � is defined by

tan � = − 1
�′ , (28)

where �′ is the total derivative of � with respect to its argument. The shear and
normal stresses, τn and σn, are related to the isotropic pressure σI and maximum
shear stress σII through

τ 2
n + (σn + σI )2 = σ 2

II, (29)

which defines the Mohr circle in the {σn, τn} plane. As Figure 6 shows, the envelope
of the set of Mohr circles (obtained as σI varies) comprises two yield curves associated
with the failure law (Equation 26).

Erlingsson (1988) suggested that, depending on the boundary conditions on the sea
ice deformation field, the slip lines were collinear with pressure ridges and orthogonal
to leads. Thus observations of ridges and leads, assumed to be at a fixed angle to the
slip lines, would allow one to determine the directions of the slip lines, the angle of
internal friction, and deduce the stress law. [Pritchard (1988) made a similar suggestion
with regard to the characteristics of strain rate in a model with a more general plastic
rheology.] Erlingsson (1988) examined several images, including Landsat imagery of
the ice field off the Greenland coast (1976) and Seasat SAR images for the central
Arctic (1986), and determined � = 15◦ ±2◦ over horizontal length scales from 100 m
to 100 km. He took this to imply that the internal angle of friction was a scale-invariant
property that could be used to relate sea ice dynamics over a range of length scales.
Although Erlingsson’s ideas are promising, they have not been taken much further,
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2   –

2
+

n

  n Figure 6
The symmetrical yield
criterion
|τn| = �(σn ; scalars) and the
Mohr circle at the point
with internal angle of
friction �.

which is probably because of the complexity of the observed ice cover, which makes
the identification of active leads and ridges (as opposed to fossils of past deformation)
difficult.

Tremblay & Mysak (1997) presented a dynamic sea ice model based on a granular
material rheology for sea ice (i.e., they did not consider the initial failure of a ho-
mogeneous cover). For sea ice deformation along a sliding line, the failure criterion,
which Tremblay & Mysak chose to be given by Coulomb’s fiction law (a special case
of Mohr’s failure law), must be met:

τn = σn tan � + S, (30)

where � is now a constant angle of internal friction, and S is the inherent shear
strength (cohesion) and is set to zero. For stress ratios τn/(−σn) less than tan �,
deformation does not occur, and when the stress ratio equals tan �, Tremblay &
Mysak asserted that the sea ice deforms by sliding equally along the two sliding lines.
Writing the traction components τn and σn in terms of the stress invariants, one can
rewrite the failure criterion (Equation 30) as

σII = −σI sin �, (31)

and Tremblay & Mysak limited the pressure −σI to a maximum value of P, set equal
to Hibler’s (1979) ice strength (Equation 15). When −σI reaches this value, the ice
can no longer support the compressive load, the floes override each other, and a
pressure ridge forms. Supplemental Figure 2 shows the yield curve described by
these equations in stress-invariant space (follow the Supplemental Material link from
the Annual Reviews home page at http://www.annualreviews.org). Note that the
normal flow rule does not apply here, but the global strain rate can be related to the
rate of sliding along the sliding lines under the assumption of no spinning.

Tremblay & Mysak (1997) considered the divergence associated with the shearing
of a granular assembly. The angle between the plane of motion of individual grains
(floes) and the macroscopic sliding plane is called the angle of dilatancy, denoted
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δ. They showed that the angle of dilatancy modified the effective angle of internal
friction to

�eff = � + δ, (32)

and, for simplicity, assumed the effective angle of internal friction to have reached a
saturation value, which they set to �eff = 30◦ based on the observations of Overland
& Pease (1988).

5. ANISOTROPY OF THE SEA ICE COVER

Because leads contain ice that is thinner than the thick ice in which they are embed-
ded, they determine the stresses that can be maintained in the ice layer, and because
leads are oriented features, this introduces anisotropy at the scale of the leads. The
constitutive laws for continuum-scale sea ice stress described above are isotropic.
Aside from the huge theoretical convenience of the assumption of isotropy, the most
compelling argument cited in its favor is that on length scales of 100 km and greater,
the distribution of leads appears to be nearly isotropic (e.g., Coon et al. 1974, Hibler
1979, Rothrock 1975) so that a mean-field rheology is isotropic. However, increasing
evidence has shown that lead orientation, at least in the central pack, has a marked bi-
modality with the leads defining diamond-shaped floe aggregates (e.g., Hibler 2001,
Schulson 2004). Coon et al. (1998) argue from field observations and stress mea-
surements that length scales of the order of 100 km and timescales of several weeks
are required for a model grid cell to contain three or more active leads. To parame-
terize dynamic processes at resolutions finer than 100 km (and timescales finer than
several weeks), one must consider the effect of one or a few leads on the local rhe-
ology. If one believes that the sea ice rheology is truly scale invariant, so that the
rheology of the large-scale ice pack is the same as that of an individual floe, then
running an existing isotropic rheology sea ice model at sufficiently fine resolution
would enable the accounting of the dynamics of leads. Supplemental Appendix C
presents a discussion of scale-invariant and scale-dependent approaches to sea ice
rheology.

The investigation of anisotropic models of sea ice dynamics is relatively recent.
By combining the yield curves of floes and one or two leads, Coon et al. (1998)
constructed the composite yield surface for a given strain rate. With two leads of
weak ice at an angle, for example, the composite yield surface predicts sliding before
ridging can occur at all. Hibler & Schulson’s (2000) approach has been to apply the
continuity of normal traction at the interfaces of thick ice (floes) and thin ice (leads).
Explicit calculation of the strain rates for an imposed stress allows the calculation of
the variation of preferred flaw (lead) orientation as the confinement ratio of stresses
is varied. Schreyer et al. (2006) considered an elastic-decohesion model of sea ice
failure that is used to indicate when a lead is initiated, its mode of failure, and the
subsequent evolution of the lead (decohesion). Supplemental Appendix D discusses
these developments in more detail.

The models of anisotropy discussed above consider lead formation and the in-
fluence of one or several leads on the local failure stress. However, as these models
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require that the orientation and characteristics of each lead are known at all times, cal-
culations of stress and dynamics are impractical on an ocean-basin scale. Wilchinsky
& Feltham’s (2004a, 2006a,b) approach has been to develop an anisotropic model
of sea ice dynamics that is simple enough to be incorporated into climate models.
The model consists of a mean-field sea ice rheology that depends on continuous and
differentiable tensor variables describing the orientation of leads, and the orientation
weighted by lead ice thickness and width, and evolution equations for these variables.

5.1 A MEAN-FIELD ANISOTROPIC SEA ICE MODEL

To construct a tractable continuum anisotropic sea ice model, Wilchinsky & Feltham
(2004a) introduced a representative area element (RAE) that is equally subdivided into
square basic elements, each of which contains one lead passing through its center (see
Figure 7). The RAE contains a representative sample of thick ice and disconnected
leads and defines the smallest length scale at which it makes sense to apply a continuum
approach. In the RAE, the formation or termination of a lead of given orientation,
width, and thickness is accounted for by changing the probability of this lead being
found in a basic element. Lead length change within a basic element is determined
by the deformation of the thick ice so that lead length is not tracked within a basic
element. The lengthening of a lead across the RAE is determined by the realignment
of the leads in the adjacent basic elements along the lead direction. Because the
RAE generally contains disconnected leads in the basic elements, the deformation of
these leads is accompanied by the deformation of the thick ice, and their rotation is
determined by the global deformation (Hibler 2001, Stern et al. 1995).

Owing to the presence of a lead in a basic element, the local (i.e., basic element)
strain rate is not uniform and is generally different from the strain rate ε̇ applied to

w

Representative area element

Basic element

n

t

Figure 7
A representative area
element of sea ice consisting
of square basic elements and
single leads completely
intersecting them. Figure
adapted from Wilchinsky &
Feltham 2004a.
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v

v

v

v

v v

vv

a bFigure 8
A basic element under a
shearing deformation
(a) and uniaxial compression
(b) without interaction with
the adjacent basic elements.
Figure adapted from
Wilchinsky & Feltham
2004a.

the RAE (see Figure 8). Shearing of a basic element along its lead, and compression
across it, occurs through deformation inside the lead only (the lead is active), whereas
shearing of the basic element across the lead and compression along it occur mainly
through the deformation of the thick ice (the lead is passive). Wilchinsky & Feltham
(2004a, 2006a) summed the contributions of lead and thick-ice stress to give a basic
element stress, accounted for interactions between adjacent basic elements, and aver-
aged over all possible lead configurations to obtain an expression for the continuum,
RAE stress. They made assumptions to reduce the dependency of the RAE sea ice
stress to the form

σ = σ(ε̇, A, R), (33)

where

A = 〈t ⊗ t〉 and R = 〈h2αt ⊗ t〉 (34)

are known as the structure tensor and thickness tensor, respectively, and ⊗ de-
notes the dyadic (tensor) product. The averaging operator 〈·〉 = ∫H

0 ∫1
0 ∫S(·)φd tdwdh,

where S is a unit-radius circle in R2, and φ(t, h, w) is the probability density function
for finding a lead along the direction of unit vector t and with thickness h and width w

in any given basic element [φ(t, h, w) = φ(−t, h, w) because, by definition, t and −t
describe the same lead orientation]. The functional form σ(ε̇, A, R) derived satisfies
continuum mechanics requirements of material frame indifference and dissipation.

Wilchinsky & Feltham (2004a, 2006a) derived equations governing the evolution
of the state variables A and R of the form

◦
A = �A(A, ε̇) and

◦
R = �R(R, ε̇), where ◦

denotes the Jaumann corotational time derivative. The mathematical derivations are
too complex to repeat here, but the evolution equations account for lead formation
and termination, narrowing (closing) and thickening under convergence, widening
(opening) under divergence, rotation under shear, and the thermodynamic change of
lead thickness through melting and freezing. To account for widening, narrowing,
and extinction of leads, one must introduce an additional state variable,

C = 〈wt ⊗ t〉, (35)

known as the width tensor, and a corresponding evolution equation,
◦
C = �C(C, ε̇).

The evolution equations for the state variables contain contractions of fourth-order
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tensors with a strain rate that cannot be exactly represented in terms of the state
variables. This constitutes a closure problem akin to that encountered in modeling
velocity fluctuations in a turbulent Newtonian fluid, and it is addressed by approxi-
mating the relevant terms with forms shown to be accurate for low and high degrees
of lead alignment.

Supplemental Appendix E presents an example of the evolution of state variables
and sea ice stress for the case of pure shear deformation. Wilchinsky & Feltham
(2006b) subsequently introduced a somewhat simpler anisotropic model of sea ice
rheology based on the concept of leads defining diamond-shaped floe aggregates.

6. SUMMARY AND CONCLUDING REMARKS

The state of the cryosphere, and sea ice in particular, is undergoing significant
changes, with rapid reductions in sea ice thickness (e.g., Rothrock et al. 1999) and
extent (e.g., Stroeve et al. 2005) measured in the Arctic over the past few decades.
These changes have led to increasing interest in the polar regions and acknowledg-
ment of their intricate dynamics. Numerical calculations using sea ice models or
climate models containing representations of sea ice demonstrate that the character-
istics of the sea ice cover, such as its thickness and motion, depend at leading order
on the representation of sea ice stress.

This review discusses the main theoretical contributions toward a continuum
model of sea ice rheology suitable for climate prediction. The development of a
definitive model of sea ice rheology, however, has been hampered by the lack of suffi-
cient quantities of suitable data with which to test models of sea ice dynamics. Satellite
passive microwave measurements have provided maps of ice extent and concentra-
tion (area fraction), but, until recently, measurements of sea ice thickness have been
sparse and largely limited to observations of ice draft from submarines and moorings
using upward-looking sonar, and drilling measurements at field sites. Additionally,
uncertainties concerning the manner in which sea ice stress scales make it difficult
to translate stress measurements at the field-site scale (approximately 0.1–1 km) or
the laboratory scale (approximately 0.01–1 m) to the scale of a typical grid cell in a
climate model, approximately 100 km (see Supplemental Appendix C). Thankfully,
innovations in the remote sensing of sea ice afford cause for optimism: The exploita-
tion of satellite altimetry has led to basinwide estimates of sea ice thickness in the
Arctic (Laxon et al. 2003); improved feature-tracking algorithms have led to enhanced
maps of sea ice motion; and high-resolution synthetic aperture radar imagery has led
to unprecedented detail in maps of sea ice deformation (Kwok 2001). Confidence is
now sufficiently great in remotely sensed data that it is beginning to be used to con-
strain the sea ice rheology used in models without arbitrary parameter tuning (e.g.,
Wilchinsky et al. 2006). Advances in computer technology have also made it possible
to run regional models of the Arctic Ocean at very fine resolutions of approximately
10 km (Maslowski & Lipscomb 2003).

The combination of greater quantities of suitable data and understanding of the
sources of error in the data, enhanced data processing, and more powerful computers
has made it feasible to better characterize sea ice rheology in climate models. Observed
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rapid change in the Arctic sea ice cover makes the study of sea ice rheology especially
timely. This review discusses some aspects of the theoretical approaches taken to
modeling anisotropy in the sea ice cover. Although these modeling approaches are at
a relatively early stage, it seems reasonable to conclude that they may form the basis
of the next generation of sea ice models. These models may be used for climate
prediction or, perhaps, given the observed rapid reductions in Arctic sea ice, for the
purposes of navigating trade routes.
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