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ABSTRACT. The flow of liquid through porous sea ice is a fundamental process affecting problems in
polar biology, oceanography and geophysics. The geometry and connectedness of the pore
microstructure of sea ice determine its fluid permeability, which depends strongly on temperature.
Here we analyze a simple pipe network as a basis for modeling fluid flow through the complex porous
microstructure, and for numerical approximations of the fluid permeability of sea ice as a function of
temperature. For slow flow the fluid system is equivalent to an electrical resistor network, and the
network is solved using a fast multi-grid method. The radii of the pipes in the network are chosen
randomly from distributions describing measured cross-sectional areas of brine inclusions in sea ice. At
this stage, the model reflects only the most general features of brine microstructure and its evolution
with temperature. Preliminary results for a basic implementation in two dimensions are presented. They
are consistent with theoretical bounds on the vertical fluid permeability of sea ice found recently.
Moreover, the results agree roughly with laboratory data for higher porosities. For lower porosities
and colder temperatures, the fully connected network of pipes in the model, albeit with smaller radii,
overestimates observed values. This finding provides evidence that the brine network becomes more
disconnected with lower temperatures, which is consistent with transitional behavior near a
percolation threshold.

1. INTRODUCTION

Sea ice is a porous composite of pure ice with brine, air and
salt inclusions (Weeks and Ackley, 1986; Eicken, 2003). As
brine, sea water or snowmelt flows through sea ice, it carries
salt, heat and nutrients. Upward-flowing liquid can flood the
ice surface, providing an important mechanism for ice
production, particularly in the Antarctic (Ackley and others,
1995; Maksym and Jeffries, 2001). Fluid transport through
sea ice also plays an important role in heat transfer between
the ocean and atmosphere (Lytle and Ackley, 1996; Trodahl
and others, 2000), and in the input of dense brine and fresh
water into the upper ocean from freezing, melting and
drainage processes (Weeks and Ackley, 1986; Thomas and
Dieckmann, 2003). Moreover, brine transport substantially
controls the replenishment of nutrients for sea-ice algal
communities (Fritsen and others, 1994; Lizotte and Arrigo,
1998), and it controls bacterial uptake of dissolved organic
matter (Lizotte, 2003).

While fluid transport controls a broad range of sea-ice
processes, the sizes, shapes and connectivity of the brine
inclusions control fluid transport. For a typical temperature
range between –208C and –18C, the volume fraction � of
brine in sea ice with salinity of 5 ppt ranges between 0.9%
and 24.7%. Over this temperature interval, the pore
microstructure ranges from small brine pockets, discon-
nected at all but the smallest scales, to the development of
large, vertically oriented brine channels penetrating much of
the ice thickness (Cole and Shapiro, 1998). Correspondingly,
the fluid permeability k(�) of sea ice in the vertical direction
varies over many orders of magnitude. However, not much is
known about the function k(�) and how it depends on the
microstructural properties of sea ice.

As one facet of a combined theoretical and experimental
effort to address this fundamental issue, we propose a

random pipe network to model the flow of liquid through
the porous microstructure of sea ice. The radii of pipes
joining the nodes of the two-dimensional square lattice are
chosen from distributions describing brine inclusion cross-
sections (Perovich and Gow, 1996; Light and others, 2003;
Bock and Eicken, 2005). The equivalence of slow flow of a
viscous fluid through a pipe network and the flow of electric
current through a resistor network (Koplik, 1982; Chayes and
Chayes, 1986; Friedman and Seaton, 1998) opens the
problem to useful types of solution, analysis and general-
ization. We develop a fast multi-grid method to find not only
the equivalent resistance of the resistor network, that is, the
fluid permeability of the pipe network, but the local electric
potential or fluid pressure field at the nodes of the network
as well. Our results lie inside recently found void upper
bounds on k(�) (Golden and others, 2006), and are in rough
agreement with laboratory data on k(�). One realization of
the random network of size 1024�1024 can be solved on a
G5 desktop computer in less than 2min, and a network of
size 2048�2048 with the same variance in the local
properties can be solved in about 6min.

Our scheme can be directly generalized to three
dimensions, and can be modified to simulate diffusion
processes in the pore microstructure, or low-frequency
electromagnetic wave propagation through the composite.
The network model can be used to study processes on
various scales. For example, rather than representing flow
through individual inclusions, the pipe radii could represent
effective or homogenized flow through individual crystals,
each comprising some array of typical brine inclusions. In
media such as sea ice with a wide range in local properties,
critical path analysis (CPA), the idea that bottlenecks control
bulk flow (Ambegaokar and others, 1971; Friedman and
Seaton, 1998; Golden and Kozlov, 1999), often plays an
important role in understanding transport. Since we find the

Annals of Glaciology 44 2006 129



local fields and choose the local properties from a distri-
bution, our model can facilitate assessment of CPA and its
applicability to sea ice. Also, dynamic models of micro-
structural evolution which depend on local fluxes in
determining increments of microstructural change can be
built on our model.

Network modeling or approximation is a useful approach
to analyzing the behavior of fluids in porous media, or most
transport phenomena in heterogeneous materials (Fatt, 1956;
Berkowitz and Balberg, 1992; Dullien, 1992; Golden, 1997;
Friedman and Seaton, 1998; Torquato, 2002). The only
results in this direction for sea ice that we know of are found
in the notable work of Freitag (1999), where fluid flow in a
network model of sea ice is found using a lattice-Boltzmann
approach. Also, the percolation threshold of a network
formed the basis for the work of Golden and others (1998) in
explaining critical behavior of some processes in the
Antarctic.

2. THE NETWORK MODEL
We consider sea ice with brine volume fraction �. For slow
flow of the brine with viscosity � through the pore
microstructure, the local velocity and pressure fields U
and P in the brine phase satisfy the Stokes equations,

rP ¼ ��U, r �U ¼ 0, ð1Þ
with the no-slip condition U ¼ 0 on the pore boundaries.
Under appropriate microstructural assumptions, the aver-
aged or macroscopic fluid velocity and pressure fields u and
p satisfy Darcy’s law and the incompressibility condition,

u ¼ � 1
�
k rp, r � u ¼ 0, ð2Þ

where k is the effective permeability tensor. We shall be
interested in the permeability in the vertical direction
k ¼ kzz in units of m2. These macroscopic equations can
be obtained through two-scale homogenization (Hornung,
1996; Torquato, 2002), where the fast or micro-scale is
homogenized while slower variations in microstructural
properties are incorporated through dependence of the
effective permeability tensor on position, such as with depth
in the sea ice. The mathematical analogy with electricity can
be elucidated by inserting Darcy’s law into the incompres-
sibility condition, and comparing with the equation for
electrical conduction,

r � k rp ¼ 0, r � � r� ¼ 0, ð3Þ
where � is the conductivity tensor describing the medium
and � is the electric potential. Discretizing either equation

on a square or cubic lattice leads to a network model
equivalent to the following, although we build this model
here directly.

To simulate fluid flow through the porous microstructure
of sea ice, we focus on the effective fluid transport properties
of the medium at a given equilibrium state, and consider an
ice sample over which the microstructural properties are
constant. The dimensions of the block sample are assumed
to be L�D�h, where D is the vertical depth, L is the
horizontal span and h, which is comparatively very small, is
the horizontal thickness. The brine microstructure of the
sample is approximated by a two-dimensional lattice of
nodes connected by ducts that are filled with fluid. The
block has a rectangular L�D vertical cross-section, which is
divided into a grid with m equally spaced sections in the
horizontal direction and n equally spaced sections in the
vertical direction, so that L=m ¼ D=n ¼ h, for some large
integers m and n. The model parameter h can be viewed as
the dimension of a cell in which a typical brine inclusion is
contained. In this network model, h will be chosen
according to the sea ice we simulate, its brine volume
fraction and our computing capacities. The ducts are
assumed to have circular shapes with different radii, and
the flow through the medium is induced by a pressure drop
pb –pt, where pb and pt are the pressures at the bottom and
the top of the sea-ice sample, with the assumption that
pb > pt so there is an upward flow in the medium. The
effective permeability generated from this model will be
independent of the pressure drop as long as it is small
enough so the assumptions of Darcy’s law and the Poiseuille
flow structure stated below are valid. The cross-sectional
areas of the pipes chosen below generate fluid pores
comparable to the brine inclusions found in young sea ice.
The lattice nodes are the vertices (i,j ), 0 � i � m, 0 � j � n,
of a rectangular grid, as in Figure 1a. Nearest neighbors are
connected by vertical and horizontal ducts, with a
pressure pi,j defined at each node (i,j ). To each node (i,j )
with 0 � i � m � 1, 0 � j � n � 1, the horizontal duct to
the right of (i,j ) has radius R ¼ Rh

i,j, and the vertical duct on
top of (i,j ) has radius R ¼ Rv

i,j, as shown in Figure 1b. Along
the right edge with i ¼ m the nodes have one vertical duct,
and along the top edge the nodes have one horizontal duct
(except the last).

For each duct of radius R, the viscous flow within is
assumed to have a classic, parabolic Poiseuille flow
structure, with the maximum velocity at the center of the
duct. The fluxQ through the duct (Dullien, 1992) is given by

Q ¼ � �R4

8�
rP , ð4Þ

where rP is the constant pressure gradient. This approx-
imation is valid because the flow Reynolds number within
the brine inclusions is sufficiently small. For each duct
connecting two neighboring nodes, the pressure gradient is
well approximated by the difference between the pressures
at these nodes, divided by the spacing h. Given the pressures
at neighboring nodes, different fluxes converging to the node
(i,j ) can be easily computed, and they must balance due to
the incompressibility condition. This leads to the following
equations,

ðRv
i, jÞ4ðpi, jþ1 � pi, jÞ þ ðRv

i, j�1Þ4ðpi, j�1 � pi, jÞ
þ ðRh

i, jÞ4ðpiþ1, j � pi, jÞ þ ðRh
i�1, jÞ4ðpi�1, j � pi, jÞ ¼ 0,

ð5Þ

Fig. 1. (a) Random pipe or resistor network. (b) Close-up of a node
and adjoining ducts.
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for i ¼ 1, . . . ,m � 1, and j ¼ 1, . . . , n � 1, with appropriate
modifications on the edges of the lattice. It should be pointed
out that this condition is equivalent to the divergence-free
condition in a continuous model. At the top of the region
(j ¼ n), we assume pi, n ¼ pt, and at the bottom (j ¼ 0) of the
region pi, 0 ¼ pb: LetQi, j be the flux through the vertical duct
on top of the (i,j ) node. The total flux through the system is

�Q ¼
Xm
i¼0

Qi,n�1 ¼ �

8�

Xm
i¼0

ðRv
i,n�1Þ4

pi, n�1 � pt
h

, ð6Þ

where Rv
i,n�1, i ¼ 0, . . . ,m are the radii of the ducts con-

nected to the top of the sample, and pi, n�1 are the pressures
at the nodes just below the top surface.

When the sea-ice sample is viewed as a porous medium,
the effective permeability k can be defined through

�U ¼ � k
�

pt � pb
D

, ð7Þ

where �U is the average velocity through the medium. We
make the connection between �U and �Q through

�U ¼
�Q
Lh

, ð8Þ

where Lh is the horizontal cross-sectional area of the slice.
Based on these assumptions, we have the effective
permeability

k ¼ �D
8Lh2

Xm
i¼0

ðRv
i,n�1Þ4

pt � pi, n�1

pt � pb
: ð9Þ

The microstructure of the slice is described by the duct
cross-sectional areas, and we sample them from a log-
normal distribution, based on measurements of brine
inclusions in first-year sea ice (Perovich and Gow, 1996;
Light and others, 2003; Bock and Eicken, 2005). That is, we
sample radii R so that log(�R2) is distributed according to a
normal probability density Nð�,�2Þ with mean � and vari-
ance �2. We also assume that all the random radii are
independent from each other. Given a particular sample of
the duct radii, the volume fraction � of the slice can be
readily computed by

� ¼ �

LD

Xm�1,n

i¼0, j¼0

ðRh
i, jÞ2 þ

Xm, n�1

i¼0, j¼0

ðRv
i, jÞ2

0
@

1
A: ð10Þ

The goal of this study is to investigate the dependence of
effective permeability k on the porosity �, which is reflected
in our model by the layout and probability distribution of
the duct radii. As an interpolation of measured averages for
the cross-sectional area A as a function of brine volume
fraction � (Golden and others, 2006), we use

Ah i ¼ �ð�Þ ¼ �ð7� 10�5 þ 1:6� 10�4�Þ2 m2� �
: ð11Þ

This function approximates the dependence of the mean
cross-sectional area on � observed by Perovich and Gow
(1996) in horizontal thin sections of young, primarily
columnar sea ice. In the simulations below, we focus on
the permeability in the vertical direction, and ignore
observed anisotropy in the medium (Freitag, 1999; Bock
and Eicken, 2005). We have investigated making the sizes of
the horizontal pipes uniformly smaller, and observed little
effect on k, the permeability in the vertical direction. The
resulting horizontal permeability decreases correspondingly,

though, and observed anisotropy can be modeled in this
way, as well as through other related probabilistic ap-
proaches currently under investigation.

3. NUMERICAL RESULTS AND DISCUSSION
To solve the linear system consisting of Equations (5), a large
sparse matrix problem is formed, with random entries in the
matrix. For large sparse matrices the preferred methods are
iterative methods, where an initial guess at the solution is
iterated many times with the approximation improved at
each iteration, until the resulting approximate solution
becomes acceptable. Depending on the distribution used
to sample the radii, the linear system could be ill-
conditioned and therefore difficult to solve, in that the
convergence becomes slow. For the work presented here, a
multi-grid package is developed and tested for many
different distribution parameters � and �. In a multi-grid
algorithm, the linear system is solved on different levels of
grids by a simple iterative scheme. The idea is to take
advantage of the fact that low-frequency modes are damped
more effectively on a coarse grid. By iterating the approxi-
mate solution on different grids via interpolation and
restriction, errors of different frequency modes are damped
in very efficient ways.

In our simulations, we choose � and � to reflect
measurements of brine inclusion cross-sectional areas. The
procedure is described as follows. The mean cross-sectional
area Ah i of the inclusions has the volume fraction depend-
ence as shown in Equation (11), and we have included this
dependence in our simulations. Namely, to include the
relation Ah i ¼ �ð�Þ in the model, we use the fact that for a
normally distributed random variable X with mean � and
variance �2,

E½eX � ¼ e�þ
1
2 �

2
and V ½eX � ¼ e2�ðe2�2 � e�

2Þ, ð12Þ
where E½�� denotes expectation and V ½�� denotes variance. In
our case, the mean of the areas is specified, and we simulate
the log-normal distribution by sampling normally distributed
random numbers X with variance �2 and mean

� ¼ log Ah i � 1
2
�2: ð13Þ

The sample value of the area will then be exp(X).
In our first set of simulations we use a dimensionless �

value of 0.5. In our second set of simulations we use a larger
value of � ¼ 1, which roughly corresponds to values of �
measured by Perovich and Gow (1996). A range of standard
deviations and mean cross-sectional areas in mm2 are
displayed in Table 1. When the variance in the cross-
sectional areas is increased, the coefficients of the resulting
linear system become more oscillatory. This poses serious
challenges to any solver. On the other hand, the oscillatory

Table 1. Mean and standard deviation of the cross-sectional areas
(in mm2) used in the simulations, with corresponding brine volume
fractions

� 0.02 0.05 0.1 0.15 0.2 0.25
Ah i 0.0168 0.0191 0.0232 0.0278 0.0327 0.0380
� ¼ 0.5 0.0090 0.0102 0.0124 0.0148 0.0174 0.0203
� ¼ 1.0 0.0221 0.0251 0.0305 0.0364 0.0428 0.0498
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structure of the cross-sectional areas is subject to correla-
tions in the distribution, which is assumed to be independent
in this model. Once the correlation structure is imposed, for
example in modeling large channels which span most or all
of a sample, the difficulty of dealing with highly oscillatory
coefficients should be alleviated to a large extent.

Since our model implies

� ¼ E
�ðRv

i, jÞ2 þ �ðRh
i, jÞ2Þ

h2

" #
¼ 2

h2 Ah i ¼ 2
h2 �ð�Þ, ð14Þ

then for each value of �, a particular value h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�Þ=�p

is
chosen from the above equation to correspond to sea ice
with that particular volume fraction. In a multi-grid
algorithm, the number of gridpoints has to be a power of
2. In our simulations shown in Figure 2 we fix
n ¼ m ¼ 1024. By changing the value of L ¼ D, we can
match the value of h to the value suggested from the above
formula for a specific value of �.

Our model of fluid flow through the brine microstructure
at this point is two-dimensional and reflects only the most
basic features of pore microstructure, with no regard to
changes in connectivity with temperature. Nevertheless, the
results of our numerical simulations shown in Figure 2 lie
inside void bounds (Torquato and Pham, 2004; Golden and
others, 2006) on the permeability of a porous medium. The
bounds developed by Golden and others (2006) for the
vertical permeability of sea ice correspond to pore geom-
etries where all the brine is arranged in vertical pipes each
having the same radius R and cross-sectional area Að�Þ ¼
�R2 ¼ �ð�Þ m2 increasing with � according to Equation (11).
In this case, the void bound can be written as

kð�Þ � �

8�
Að�Þ: ð15Þ

This bound represents the fluid version of the classical
arithmetic mean upper bound on the effective conductivity,
known since the early 1900s. The general void bounds
(Torquato and Pham, 2004; Golden and others, 2006) are
optimal within an appropriate class of porous media, and
optimal geometries include arrays of vertical pipes. In terms
of the above discussion of the values of � used in the

simulations, the bound in Equation (15) essentially corres-
ponds to the case � ¼ 0. In this case, both the network model
and the optimal geometry have vertical pipes whose cross-
sectional areas are all the same, and increase with � via
Equation (11). For the network model, in this special case,
the horizontal bonds play no role in bulk vertical transport.
As � is increased from 0 to 0.5 and then to 1 in Figure 2, even
though some larger-diameter pipes are introduced, net fluid
flux through the vertical columns of the network is controlled
primarily by the bottlenecks to the flow, or the smallest pipes
or constrictions, as in CPA (Friedman and Seaton, 1998;
Golden and Kozlov, 1999). As the variance in pipe radii is
increased, more serious bottlenecks are introduced, and the
effective permeability decreases, as seen in Figure 2. For
larger-radius pipes to enhance bulk flow they must be strung
together to make larger tubes and channels. However, in the
current model there are no such correlations leading to this
effect, which will be considered in more detailed micro-
structural modeling.

For higher values of the porosity, where there appears to
be a well-developed connected brine network in actual sea
ice, the numerical simulations agree roughly with laboratory
data on k in Figure 2. Measurements were completed with a
permeameter on centrifuged ice samples prepared accord-
ing to Weissenberger and others (1992), grown artificially in
a large-scale tank (Freitag, 1999).

For lower porosities the numerical simulations for both
values of � significantly overestimate observed values for the
vertical permeability. In view of the discussion above, the
values for the simulation could be lowered in this regime if
the network microstructure had even more bottlenecks to
the flow, or disconnections of the brine microstructure. Of
course, one can view an extremely thin pipe connecting two
larger fluid regions as a ‘degree of disconnection’. Modeling
which pays attention to the increasingly disconnected
structure of the brine phase as the temperature is lowered
appears to be necessary for accurate consideration of the
effective fluid transport properties. This finding is entirely
consistent with postulated critical behavior of the brine
microstructure around a percolation threshold value of
�c � 0:05 (Golden and others, 1998). We expect that with
generalization of the network model to three dimensions,
and with particular attention to disconnection in the brine
microstructure as the temperature drops, the numerical
results will reflect more closely the behavior of sea ice over a
larger range of porosities.
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