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ABSTRACT

Sea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice
properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental
length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ
boundaries have emerged in the literature—wave penetration, floe size, sea ice concentration, etc.—and a
variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable
mathematical properties for defining MIZ width are proposed: invariance with respect to translation and
rotation on the sphere; uniqueness at every point in theMIZ; and generality, including nonconvex shapes. The
previously published streamline definition is shown to satisfy all three properties, wherewidth is defined as the
arc length of a streamline through the solution to Laplaces’s equation within theMIZ boundaries, while other
published definitions each satisfy only one of the desired properties.When definingMIZ spatial averagewidth
from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was
left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an
analytically tractable idealization of MIZ geometry—the eccentric annulus. Finally, satellite-retrieved Arctic
sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is ap-
proximated by alternative definitions that lack desirable mathematical properties or local width values but
offer computational efficiency.

1. Introduction

Declines in Arctic sea ice coverage, age, and thick-
ness over the past few decades have been dramatic and
appear to be accelerating, particularly during the
warm season (Polyakov et al. 2012; Comiso 2012;
Stammerjohn et al. 2012; Cavalieri and Parkinson
2012, and references therein). Record-breaking extent

minima and abrupt changes in Arctic sea ice season-
ality have been observed, including an abrupt increase
in the amplitude of the seasonal cycle since 2007
(Stammerjohn et al. 2012; Livina and Lenton 2013).
These changes in Arctic sea ice suggest scientifically
important changes in the position, width, and area of
the marginal ice zone (MIZ)—a dynamic and biolog-
ically active region that transitions from the dense
inner pack ice zone to open ocean (e.g., Squire 1998;
Wadhams 2000; Squire 2007; Weeks 2010; Barber et al.
2015). The width of the MIZ in particular is recognized
as a fundamental length scale for climate dynamics
and polar ecosystem dynamics (e.g., Wadhams 2000;
Stroeve et al. 2016). The MIZ represents a region of
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intense air–sea ice interactions that have major effects
on atmospheric boundary layer structure and meteo-
rological processes (e.g., Shaw et al. 1991; Glendening
1994), and the MIZ provides a physical buffer that
largely protects the more consolidated inner pack from
the effects of ocean waves (e.g., Squire 2007). In-
creasing Arctic open water area may allow waves to
evolve into swells that enhance sea ice breakup and
further accelerate sea ice retreat (Thomson and
Rogers 2014). The width of the MIZ and its variability
are important drivers of marine habitat selection for a
broad range of biota (Ribic et al. 1991; Perrette et al.
2010; Post et al. 2013; Williams et al. 2014), including
Antarctic minke whales (Williams et al. 2014). Finally,
changes in the MIZ also impact human accessibility to
the Arctic, as broken ice in the MIZ is more navigable
than dense inner pack ice (Stephenson et al. 2011;
Schmale et al. 2013; Rogers et al. 2013).
Strong (2012) introduced an objective and automated

method for identifying and measuring the width of the
MIZ from satellite-retrieved sea ice concentrations. A
follow-up application of the method to satellite data
(Strong and Rigor 2013) revealed that the warm-season
(July–September) Arctic MIZ widened over the past
three decades by 39% while moving poleward and
that the cold-season (February–April) Arctic MIZ
narrowed by 15%over the same period. A representative

warm-season sea ice configuration from early in the
satellite record (Fig. 1a) shows a large region of inner
pack ice (gray shading) surrounded by a narrow MIZ
(white shading). More recently in the satellite era
(Fig. 1b), the inner pack ice has retreated more rapidly
than the marginal ice, leaving a markedly widenedMIZ,
particularly in the East Siberian and Beaufort Seas.
There are challenges associated with objective defi-

nition and automated analysis of MIZ width in part
because of the nonconvex shape of the MIZ (e.g.,
Fig. 1b). In medical imaging, Jones et al. (2000)
introduced a definition of the width of a nonconvex
region as the arc length of a curve (streamline) along
=f, where f is the solution of Laplace’s equation
(=2f5 0) in this region. Strong (2012) adapted this
definition of width to the MIZ as illustrated in Fig. 1c.
In this example, the solution to =2f5 0 was obtained
numerically with MIZ ice concentration boundary
conditions f5 0:80 on the high-concentration edge
adjacent to dense inner pack ice and f5 0:15 on the
low-concentration edge adjacent to open ocean. Strong
(2012) defined MIZ width by averaging the arc length
of the streamlines with respect to distance along
the perimeter of the MIZ, but other definitions are
possible (e.g., averaging the arc lengths with respect
to area). Stroeve et al. (2016) measured the width of
the Antarctic MIZ along meridians, finding that the

FIG. 1. (a) For 18 Sep 1984, the inner pack ice is shaded gray, the MIZ is shaded white, and sparse ice and open
ocean are shaded blue. Land is shaded black, islands over which concentrations were interpolated are outlined in
black, and bays or inland seas where the MIZ was not analyzed are shaded orange. (b) As in (a), but for 29 Aug
2010. (c) Solution to Laplace’s equation within the MIZ (f) is shaded, and black curves are streamlines through
f whose arc length define MIZ width. (d)–(f) How eccentric annulus models can be used to approximate the
observed patterns in (a)–(c). Specifically, (d),(e) are eccentric annuli (white shading) that approximate the
geometry in (a),(b), respectively. (f) Simplified, eccentric annulus version of (c) constructed by solving Laplace’s
equation within the MIZ from (e).
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significance of trends depended on the algorithm used
to retrieve concentration from the passive microwave
satellite data.
The motivation of the present study is to provide a

mathematically rigorous basis for defining MIZ width
and MIZ spatial average width. The first novel compo-
nent in the manuscript is articulation and illustration
of three desirable mathematical properties for width:
invariance with respect to translation and rotation,
uniqueness at every point on the MIZ, and nonheuristic
handling of both convex and nonconvex regions
(section 2). The second novel component is the devel-
opment of the mathematics of an annulus as an ana-
lytically tractable idealized MIZ geometry, enabling us
to quantitatively investigate the response of various
spatial averaging formulas to changes in MIZ shape
(section 3). The results in sections 2 and 3 support a
recommendation to defineMIZ width using streamlines
through the solution to Laplace’s equation within the
MIZ and to average those results with respect to dis-
tance along the MIZ boundaries to yield the spatial
average width. While the analyses in Strong (2012) and
Strong and Rigor (2013) used these formulations, their
mathematical justification was implicit and is here made
rigorous. Finally, in section 4, we apply the streamline
method to Arctic warm-season MIZ for 1979–2015 [a
3-yr extension of the results in Strong andRigor (2013)],
and we compare this extended time series to results
from three alternative definitions that lack desirable
mathematical properties or local width values but offer
computational efficiency (one previously published,
and two formulated for this study).

2. Definition of MIZ width

While theMIZmay be defined as the portion of the ice
pack over which ocean waves significantly impact the
dynamics of the sea ice cover (Wadhams 2000; Weeks
2010), several definitions of the MIZ based on sea ice
concentrations have been used in recent studies founded
on multidecade passive microwave satellite data (Strong
2012; Strong andRigor 2013;Williams et al. 2014; Stroeve
et al. 2016). Concentration-based definitions of the MIZ
are also implemented operationally by the National Ice
Center (NIC 2016). In most cases, concentration-based
MIZ width is defined as the distance on the sphere be-
tween two concentration contours: typically 0.15, corre-
sponding to the conventional ice edge (Comiso 2006); and
0.80, corresponding to what the World Meteorological
Organization refers to as ‘‘close ice’’ (WMO 2009). We
note that the methods for measuring width between the
boundaries of the MIZ explored here do not require that
the boundaries be defined by concentration thresholds,

and they can applied in settings where the boundaries are
defined by, for example, wave penetration or floe size
(Williams et al. 2013).
Once the MIZ boundaries have been identified, a

rationale is needed for defining the path along which
the MIZ width is to be measured. Strong (2012) and
Strong and Rigor (2013), for example, measured width
along streamlines through the solution to Laplace’s
equation within the MIZ, and we refer to this as the
streamline definition. MIZ width has also been mea-
sured along meridians, and we refer to this as the
meridian definition. Examples of the meridian defini-
tion in the literature often involve some form of time
averaging prior to the width calculation. For example,
Comiso and Zwally (1984) applied the meridian defi-
nition to MIZ boundaries identified in monthly mean
concentrations, and Stroeve et al. (2016) averaged
the latitude of the inner and outer edges of the MIZ at
each meridian prior to calculating the distance between
them. In medical imaging applications, Jones et al.
(2000) note two other potential definitions: width de-
fined as the shortest distance from a measurement
point on one edge to the opposite edge, referred to here
as the shortest path definition, and width defined as the
distance along a straight line (geodesic on the sphere)
that is orthogonal to the edge at the measurement
point, referred to here as the orthogonal geodesic
definition.
As a framework for considering the properties of

these four definitions (streamline, meridian, shortest
path, and orthogonal geodesic), we propose a set of
three desirable mathematical properties for MIZ width:

d Invariance: the width at every point in the MIZ is
invariant with respect to translation and rotation of
the ice field.

d Uniqueness: the width at every point in the MIZ is
uniquely defined.

d Generality: the width at every point in the MIZ
generalizes to nonconvex shapes without requiring
heuristic or arbitrary rules.

Table 1 indicates which of the abovementioned three
properties are satisfied by the four width definitions,

TABLE 1. Entries indicate which mathematical properties (rows)
are satisfied by four width definitions (columns), as detailed in
section 2.

Property Streamline Meridian
Shortest
path

Orthogonal
geodesic

Invariance Yes No Yes Yes
Uniqueness Yes Yes No No
Generality Yes No No No
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providing a summary of the remarks in sections
2a–c below.

a. Invariance

We view width as an intrinsic property that does not
change if a shape is moved or rotated on the sphere. The
streamline definition yields widths that are invariant
with respect to translation and/or rotation because the
solution to Laplace’s equation provides width-defining
streamlines that are determined by the shape of theMIZ
and hence move with the MIZ, as illustrated by the
idealized example in Figs. 2c,d. Results from the
meridian method may change under translation and/or
rotation as illustrated by the corresponding example
in Figs. 2a,b (the shapes in Fig. 2 represent a single
observation, but it could also represent MIZ bound-
aries diagnosed from time-averaged concentrations or

boundaries constructed by time-averaging the latitude
of the inner and outer MIZ edges). The shortest-path
method and orthogonal-geodesic definitions are invari-
ant with respect to translation and rotation because
minimum-distance and orthogonality criteria are de-
fined by the shape of, and hence move with, the MIZ.

b. Uniqueness

We view width at every point in the MIZ as an in-
trinsic property that does not change depending on
whether width is measured from the point or to the
point. Stated differently, every point on one boundary of
the MIZ is mapped to one and only one point on the
other boundary of the MIZ by a width measurement
path. The uniqueness property assures an unambiguous
width for every point in the MIZ and is provided by the
streamline definition. As illustrated in Fig. 3b, for every

FIG. 2. (a) Dark gray shading represents a portion of an idealized inner pack ice region, and light gray shading
represents a segment of an idealized MIZ. This panel is a polar stereographic projection with the pole indicated by
the filled black circle near the lower edge of the panel, and the straight line indicates a meridian. The width of the
MIZ through the red point as defined by the ‘merid method is the length of the bold portion of themeridian. (b) As in
(a), except the inner pack ice and MIZ have been translated to the right on the diagram with respect to the pole.
(c) MIZ segment from (a) with the solution to Laplace’s equation (shading) and a subset of the streamlines along
whichwidth is measured (black curves; streamline through the red point is bold). (d)As in (c), except the inner pack
ice and MIZ have been translated to the right as in (b).
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point in the MIZ (interior or boundary), the streamline
definition provides exactly one width because every
point is intersected by exactly one streamline. The width
of the MIZ at point P in Fig. 3b, for example, is the arc
length of the streamline intersecting P, and this value
holds for all points along the streamline, including its
point of intersectionwith the outer edge of theMIZ. The
width at point P thus does not depend on whether the
measurement is made from P or to P. The meridian
definition also satisfies the uniqueness property because
meridians do not intersect (except at the poles), and they
uniquely map points between the two edges of the MIZ
(unless curvature on an edge results in a meridian

intersecting the same edge more than once; see discus-
sion in section 2c).
As pointed out by Jones et al. (2000), seemingly nat-

ural or intuitive concepts such as the shortest distance
and orthogonality to an edge work well in simple shapes,
such as rectangles, but they can result in ambiguity and
nonuniqueness when applied to regions with curved
boundaries. To illustrate, consider the points fP,Q,Rg
in Fig. 3a for the shortest-path definition. For point R,
the shortest path across the MIZ is along the geodesic
RP (geodesics intersecting P map to lines in this pro-
jection), but the shortest distance across the MIZ from
P returns to Q (along the geodesic PQ) rather than to

FIG. 3. (a) Dark gray shading represents a portion of an idealized inner pack ice region, and light gray shading
represents a segment of an idealized MIZ in a stereographic projection with the origin at P so that geodesics
intersecting P are projected as straight lines. (b) MIZ segment from (a) with the solution to Laplace’s equation
(shading) and a subset of the streamlines along which width is measured (black solid and dashed curves). (c) As in
(a), but with a modified outer edge of the MIZ. (d) MIZ segment from (c) with the solution to Laplace’s equation
(shading) and a subset of the streamlines along which width is measured (black solid and dashed curves).
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R—an ambiguity Jones et al. (2000) refer to as loss of
reciprocity or loss of uniqueness because there are at
least two width measurement paths associated with
point P. Similar ambiguities arise from the orthogonal-
geodesic definition. For point Q in Fig. 3a, for example,
the orthogonal geodesic across the MIZ is to point P,
but the orthogonal geodesic from P returns to R rather
than back to Q. These examples illustrate that the
shortest-path and orthogonal-geodesic definitions do
not satisfy the uniqueness property, meaning they yield
results for a given point that may depend on the di-
rection of measurement.

c. Generality

The actual MIZ features curvature and concavity,
which may render it nonconvex, as seen in the example
in Fig. 1b. Such nonconvexity may require arbitrary or
heuristic decision-making formethods based on lines (or
geodesics on the sphere) as illustrated by the idealized
example in Fig. 3c. For point P, the path PS in Fig. 3c
indicates the geodesic along which the shortest-path
definition and the orthogonal–geodesic method would
be applied, and it could additionally represent a segment
of a meridian used for the meridian definition. This
geodesic crosses theMIZ (segment PQ), leaves theMIZ
(segment QR), and then reenters the MIZ (segment
RS), rendering the width at point P ambiguous and not
uniquely defined in the absence of an arbitrary rule. For
the same MIZ configuration, the streamline definition
has a unique width at P along the streamline (bold curve,
Fig. 3d) that terminates at the outer edge of the MIZ,
and additional streamlines objectively handle the sur-
rounding nonconvexity by establishing nonoverlapping
width measurement paths that do not leave the MIZ
(e.g., dashed curves, Fig. 3d). Every point along theMIZ
outer edge in Fig. 3d is mapped to a unique point on the
inner edge by a streamline that connects the pair of
points without leaving the MIZ, and the black solid and
dashed curves in Fig. 3d are illustrative examples.
In summary, only the streamline definition provides the

three mathematical properties of invariance, uniqueness,
and generality (Table 1). Each of the other three defini-
tions considered provide only one of the three properties.
The remainder of the manuscript thus proceeds using the
streamline definition, but in section 4 we consider some
computationally efficient alternatives that can approxi-
mate results from the streamlinemethod when calculated
as a spatial average over the MIZ.

3. Definition of MIZ spatial average width

Now that we have width defined for every point on the
MIZ interior and boundaries based on the streamline

definition (denoted ‘), we next consider how to
formulate a summary statistic defining the MIZ spatial
average width ‘. The results in this section support a
recommendation to use the MIZ spatial average width
‘per as formulated by Strong (2012) and Strong and
Rigor (2013), which is an average with respect to dis-
tance along the MIZ perimeter (meaning the inner and
outer boundaries). Implicit in these two prior studies,
the rationale for using ‘per is that it is relatively in-
sensitive to changes inMIZ shape that should intuitively
leave the MIZ spatial average width unchanged. To il-
lustrate, consider the MIZ shaded white in the eccentric
annulus in Fig. 4a, which can be thought of as narrow on
the right side and wide on the left side of the figure. If we
envision moving the gray shaded inner pack ice region
around within the circle, then an appropriately defined
spatial average width should not respond markedly to
these shifts because the areas of the inner pack ice and
MIZ are not changing (i.e., some portions of the MIZ
narrow while others comparably widen). Likewise, if we
consider a circular MIZ and introduce sinusoidal mod-
ulations to the radius of one of its boundaries (here re-
ferred to as edge ‘‘waviness’’; e.g., cf. Figs. 5a,d), an
appropriately defined spatial average width should not
respond markedly because some segments narrow while
others comparably widen. Finally, if the inner radius is
reduced (e.g., cf. Figs. 5b,c), then an appropriately de-
fined spatial average width should respond approxi-
mately linearly.
To more rigorously investigate the properties of the

spatial averagewidth and support the recommendation to
use ‘per, we now adopt an eccentric annulus as an ideal-
izedmodel ofMIZ geometry and derive a formula for the
arc length of the streamlines through the solution to
Laplace’s equation within the annulus. Associated nota-
tion and equations are established in section 3a, and we
define ‘per and five other candidate formulations for MIZ
spatial average width in section 3b. Finally, we use the
annulus to explore how results from the various width for-
mulations respond to changes in eccentricity (section 3c),
changes in the length of the inner and outer radii
(section 3d), and changes in edge waviness (section 3e).

a. Annulus model and Laplace’s equation

To illustrate how an annulus can provide a useful
approximation to the MIZ, we show two actual MIZ
configurations in Figs. 1a,b with corresponding annuli in
Figs. 1d,e, respectively. In this approximation of the
geometry, the MIZ is the annulus (white shading,
Figs. 1d,e) defined by a unit radius outer circle at the
MIZ–ocean interface and an inner circle at the inner
pack ice–MIZ interface. The eccentric annulus enables
us to use an analytical solution for Laplace’s equation
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and to derive an explicit formula for the arc length of the
associated streamlines (i.e., the MIZ width). Consider
Laplace’s equation =2f5 0 in the eccentric annulus
model with the geometry shown in Fig. 4a. The function
f represents an idealized (smooth) sea ice concentration
field within the MIZ modeled by the annulus with
boundary conditions f5 0:15 on the outer edge (mar-
ginal ice/ocean interface) andf5 0:80 on the inner edge
(marginal ice/inner pack ice interface). The outer edge
of the marginal ice has radius r2 5 1, the inner edge has
radius r1, and displacement of the inner pack ice center
(x0) from the origin defines the eccentricity h. Assume
that the x–y plane in Fig. 4a represents a complex z plane
with z5 x1 iy. Using a conformal mapping detailed in
appendix A, Laplace’s equation has a solution given by
the complex potential

F(z)5a ln

!
z2 a

az2 1

"
1 k , (1)

where a is determined by the geometry of the annulus
[x1 and x2, Fig. 4a; Eq. (A2)], and the constants k5 0:15
and a5 (0:802 0:15)/lnR0 are determined by the
boundary conditions [R0 is given by Eq. (A3)]. The real
part of F(z) is the potential (Fig. 4b) given by

f5a ln

####
z2 a

az2 1

####1 k , (2)

and the imaginary part of F(z) is the streamfunction
(Fig. 4c) given by

c5aarg

!
z2 a

az2 1

"
. (3)

The solution f represents an idealized sea ice concen-
tration field for the MIZ that transitions smoothly be-
tween its boundary conditions (sea ice concentrations
0.80 on the pack ice edge and 0.15 on the ocean edge), as
shown for an actual MIZ configuration in Fig. 1c.

FIG. 4. (a) Schematic indicating notation for the eccentric annulus model: r1 5 x1 2 x0 is the radius of inner circle,
r25 1 is the radius of outer circle, the inner circle’s center x0 is offset from the origin by eccentricity h, and the
annulus is denoted byV. (b) The real part of the solution to Laplace’s equation within the annulus (f), and (c) the
imaginary part (c). (d) Shading indicates ‘ at a particular point defined by the arc length of the streamline (level set
of c) through that point.
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At a point in the annulus V, ‘ is defined as the arc
length of the level set of c through that point (example
streamline curves representing the level sets of c are

shown by black contours in Figs. 1c,d, 4c). For the ec-
centric annulus model, we derived an explicit expression
for ‘ as a function of c,

‘(c
c
/a, a)5

a2 2 1

a sin(c
c
/a)

tan21

"
at2 cos(c

c
/a)

sin(c
c
/a)

######

t5R0

t51

, if c
c
a21;f0,pg,

11 x2 , if c
c
a21 5 0,

12 x
1
, if c

c
a21 5p .

8
>>>>>>><

>>>>>>>:

(4)

Shading in Fig. 4d shows width calculated at each point
using Eq. (4).

b. Candidate formulations for MIZ spatial average
width

The streamline definition provides a unique width at
every point on the MIZ (interior and boundaries), so
there is potential flexibility in how the MIZ spatial

average width can be defined. For example, width could
be averaged with respect to area over the MIZ, meaning
averaged over the white shaded region for the example in
Figs. 1a,b. Alternatively, width could be averaged with
respect to distance along a curve, such as the outer
boundary of the MIZ, meaning the boundary between
blue and white shading for the examples in Figs. 1a,b. We
define and investigate the properties of various candidate

FIG. 5. Shading indicates ‘ at a particular point defined by the arc length of the streamline (level set of c)
through that point. Each panel is an eccentric annulus example used to illustrate the effect of h and r1:
(a) h5 0, r1 5 0:7. (b) h5 0:25, r1 5 0:7, and (c) h5 0:25, r1 5 0:35. Examples used to illustrate the effect of
(d) waviness with fd5 0:1, f 5 10, r1 5 1, r2 5 0:7, h5 0g [see Eq. (14)], and (e) waviness on the inner edge with
fd5 0:1, f 5 7, r1 5 1, r2 5 0:7, h5 0g.
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formulations for MIZ spatial average width in this sub-
section, culminating in the recommendation to use width
averaged with respect to distance along the perimeter ‘per
as in Strong (2012) and Strong and Rigor (2013). In Table
2 we consider five ways to average with respect to distance
along a curve and one way to average with respect to area.
To establish notation, width averaged with respect to

arc length s along the curve g is

‘
g
5

1

L
g

ð

g

‘(s) ds , (5)

where Lg is the arc length of the curve g. As a first
specific case of Eq. (5), we consider width averaged with
respect to arc length around the MIZ’s outer boundary
gout,

‘
out

5
1

Lout

ð

gout

‘(s) ds , (6)

whereLout is the arc length of the outer boundary.When
applied to the annulus, Lout 5 2pr2 for its circular outer
perimeter (Fig. 4a). We can also consider width aver-
aged with respect to arc length along the MIZ’s inner
boundary gin,

‘in 5
1

L
in

ð

gin

‘(s) ds , (7)

where Lin is the arc length of the inner boundary. When
applied to the annulus, Lin 5 2pr1 for its circular inner
boundary (Fig. 4a).
We might also consider the average of the outer and

inner boundary results,

‘avg 5
1

2
(‘out 1 ‘in) . (8)

The approach taken in Strong (2012) was to average
with respect to arc length along the perimeter (meaning
both the inner and outer MIZ boundaries), which is
equivalently the weighted average of ‘out and ‘in, where
the weighting is the arc length of each boundary,

‘per 5
L

out
‘
out

1L
in
‘
in

L
out

1L
in

. (9)

As a final example of averaging with respect to dis-
tance, we also consider an average with respect to arc
length along a specific level set f5f* on the interior of
the annulus (i.e., 0:15,f*, 0:80),

‘
f
*
5

1

L
f
*

ð

gf
*

‘(s) ds , (10)

where Lf
*
is the arc length of the level set f5f*.

When applied to the annulus, Lf
*
is the circumference

of a circle because the level sets of f are circles
(Fig. 4b).
For averages with respect to arc length along bound-

aries, we note that both the length Lin(out) of the curve
gin(out) and the integral along this curve may grow
without bound with increasing resolution. Here we as-
sume that the resolution is limited, so the length of the
curve gin(out) is bounded.
Finally, because the streamline definition provides a

width at every point on theMIZ (hereV), we might also
consider an average with respect to area,

‘area 5
1

AV

ð

V
‘(x, y) dA, (11)

where AV is the total area of the annulus. This areal
average is analogous to the average with respect to

TABLE 2. Average annulus width for six definitions of average width (definitions A–F). Columns indicate the associated formula, the
equation number, and the average width for the examples in Figs. 5a–e.

Definition Formula Eq. Fig. 5a Fig. 5b Fig. 5c Fig. 5d Fig. 5e

A: With respect to area ‘area 5
1

AV

ð

V
‘(x, y) dA (11) 0.300 0.405 0.702 0.298 0.293

With respect to distance
B: Along outer perimeter ‘out 5

1

Lout

ð

g out

‘(s)ds (6) 0.300 0.317 0.670 0.310 0.276

C: Along inner perimeter ‘in 5
1

Lin

ð

g in

‘(s) ds (7) 0.300 0.280 0.623 0.272 0.303

D: Average of ‘out and ‘in ‘avg 5
1

2
(‘out 1 ‘in) (8) 0.300 0.299 0.646 0.291 0.289

E: Weighted average of ‘out and ‘in ‘per 5
Lout‘out 1Lin‘in

Lout 1Lin
(9) 0.300 0.302 0.657 0.300 0.300

F: Along level set of u ‘f* 5
1

Lf*

ð

gf*

‘(s)ds (10) 0.300 0.300 0.650 N/A N/A
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volume presented in application of the streamline defi-
nition in medical imaging (Jones et al. 2000).

c. Response to eccentricity

In this section, we examine how eccentricity affects
results from the six candidate formulations for MIZ
spatial average width. Our baseline case is the concen-
tric annulus (Fig. 5a) whose average width
(‘5 r2 2 r1 5 0:3) is consistent across all six candidate
definitions (Table 2, column Fig. 5a).
Beginning with averages with respect to distance

along the MIZ boundaries, we find that ‘out and ‘in re-
spond oppositely to changes in eccentricity (Fig. 6a). For
example, an eccentricity increase from h5 0 to h5 0:25
(see Figs. 5a,b) resulted in a 6% increase in ‘out (from
0.300 to 0.317; Table 2, definition B) and a 7% decrease
in ‘in (from 0.300 to 0.280; Table 2, definition C). To

illustrate why ‘out and ‘in respond oppositely to eccen-
tricity, Fig. 7a shows ‘ as a function of angle b 2 [0, 2p)
around the annulus’s outer circle [denoted ‘out(b)] and
inner circle [denoted ‘in(b)]. The functions ‘out(b) and
‘in(b) have the same range, intersecting at their maxi-
mum value [‘(p)5 r2 2 r1 1 h] and minimum value
[‘(0)5 ‘(2p)5 r2 2 r1 2 h], and we observe that
‘out $ ‘in for b 2 [0, 2p). The functions ‘out(b) and ‘in(b)
resemble

‘
cos
(b)5 (r

2
2 r

1
)2 h cos(b) , (12)

which has average r2 2 r1 (Fig. 7a). Figure 7b shows how
‘out and ‘in differ from ‘ cos, illustrating that ‘out $ ‘ cos and
‘in # ‘ cos for b 2 [0, 2p).
The average of the width results from the outer and

inner perimeters ‘avg is far less sensitive to eccentricity

FIG. 6. For various definitions of MIZ spatial average width, dependence on (a) eccentricity, (b) inner circle
radius, (c) waviness on the outer edge quantified by d in Eq. (14), and (d) waviness on the inner edge quantified by
d in Eq. (14).
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(Fig. 6a), but it does decrease slightly with eccentricity
because ‘in decreases faster than ‘out increases (‘avg is
0.300 and 0.299 for Figs. 5a,b, respectively; Table 2, D).
This result encourages us to seek a width averaged with
respect to arc length that is invariant with respect to
eccentricity, meaning the average width takes the value
r2 2 r1 over the full range of h. The average with respect
to distance along the inner and outer boundaries (‘per)
increases slightly with eccentricity (Fig. 6a). To un-
derstand this result, note that for the special case of the
annulus, Eq. (9) becomes

‘per 5
r
2
‘
out

1 r
1
‘
in

r
2
1 r

1

(13)

because the perimeters are circles (Fig. 4a). The weight
on ‘out is larger than the weight on ‘in by a factor of r2/r1,
and ‘per has values 0.300 and 0.302 for Figs. 5a,b, re-
spectively (Table 2, definition E).
Probing further for a definition of average width that

is invariant with respect to eccentricity, we consider

averages with respect to distance along level sets of f on
the interior of the annulus [Eq. (10)]. The width aver-
aged with respect to distance along circular level sets of
f is continuous and monotonic over the range
0:15#f# 0:80 (appendix B). Hence, there exists a
unique level set of f (denoted f*) along which we can
average ‘(b) to yield the width r2 2 r1 for the given radii
and eccentricity fr1, r2, hg. To find f*, we use a simplex
search method (Lagarias et al. 1998) to minimize
j‘2 (r2 2 r1)j, and we use ‘f*

to denote the average
width along the level set f5f*. For the example in
Fig. 5b we have fr1 5 1, r2 5 0:7, h5 0:25, f*5 0:43g
and ‘f*

5 0:300 at h 2 f0, 0:25g (Table 2, definition F).
From visual inspection of the resultant graph in Fig. 6a,
‘f*

appears invariant with respect to h, yet it has order
1026 departures from r2 2 r1 over the range 0, h, 0:25
(Fig. B1)—a discrepancy too large to attribute to nu-
merical error. More importantly, f* depends strongly
on the radii themselves. For example, Fig. 5c differs
from Fig. 5b by a halving of r1, resulting in a reduction of
f* from 0.43 to 0.30. There is thus not a single f* that is

FIG. 7. (a) MIZ width as a function of ‘out and ‘in. Term ‘ cos is Eq. (12) shown for reference. (b) Curves show how ‘out, ‘in, and ‘*
differ from ‘ cos.
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applicable to all ice configurations, even in the eccentric
annulus case, so it is unclear how the f* concept could
be applied to satellite data without arbitrariness.
Finally, we consider the average with respect to area

‘area [Eq. (11)], finding it to be strikingly sensitive to
eccentricity. To illustrate, increasing the eccentricity
from h5 0 to h5 0:25 (Fig. 5b), we see that ‘area re-
sponds strongly because, as the inner circle shifts off
center, the portions of the annulus that are becoming
wider are also occupying a larger area (cf. Figs. 5a,b,
where ‘area 5 0:300 for Fig. 5a, while ‘area 5 0:405 for
Fig. 5b). Numerical results for a particular choice of
parameters of the annulus, demonstrating the de-
pendence of ‘area on eccentricity, are shown in Table 2A.
This rapid increase of ‘area with eccentricity is shown in
Fig. 6a, where the endpoints of the ‘area curve corre-
spond to the change from Fig. 5a (eccentricity h5 0) to
Fig. 5b (eccentricity h5 0:25).

d. Response to size of inner pack ice and total ice

Here we examine for zero and nonzero eccentricity
how results from the candidate formulations for MIZ
spatial average width respond to changes to the inner
radius length relative to the outer radius length. A
smaller inner radius will result in a larger average width
for any reasonable definition. With zero eccentricity, all
definitions yield ‘5 r2 2 r1 (Table 2, definitions A–F,
column Fig. 5a), indicating a linear and consistent re-
sponse to changes in r1. Eccentricity h. 0 alters this
consistent result across the six definitions. To illustrate,
the annuli in Figs. 5b,c have the same nonzero eccentricity
(h5 0:25) and the inner radius in Fig. 5c has been halved
to r1 5 0:35. All six definitions explored here yield a larger
average width for Fig. 5c than for Fig. 5b (Table 2, defi-
nitions A–F), but the values in column Fig. 5c vary among
the formulations. The dependence ofMIZ spatial average
width on the inner radius is approximately linear except
for ‘area (Fig. 6b).

e. Response to sinusoidal modulation of the
boundaries

The inner and outer boundaries of the observed MIZ
depart significantly from circularity (e.g., Figs. 1a,b).
Here we examine how results from the six MIZ spatial
average width definitions respond to this kind of en-
hanced edge curvature, here referred to as waviness. To
begin, we perturb the outer boundary in Fig. 5a with a
sinusoidal fluctuation written in polar coordinates as

r
2
5 11 d cos( fb) , (14)

where 0#b, 2p is the angular coordinate, d5 0:1 is the
amplitude of the perturbation, and f 5 10 is the frequency

of the perturbation (Fig. 5d). These values for d and f are
chosen to capture scales of variation salient in the ob-
served examples (cf. Figs. 1a,b, 5d,e). The introduction of
this waviness caused the area to increase by pd2/2, which
is approximately 1%. Waviness resulted in width de-
creases along the majority of the inner boundary (blue
shading, Fig. 5d) and a 9% decrease in ‘in to 0.272
(Table 2, definition C; cf. columns Figs. 5a,d). Absolute
changes in ‘area, ‘out, ‘avg, and ‘per were no larger than 3%
(Table 2, definitions A, B, D, E; cf. columns Figs. 5a,d).
The very small change in ‘area in response to boundary
waviness is especially notable in contrast to this formula-
tion’s sensitivity to eccentricity highlighted in section 2c.
Next we construct Fig. 5e by perturbing the radius of

the inner circle as in Eq. (14) but with f 5 7, chosen so
that the wavelength of the perturbation is the same in
Figs. 5d,e (i.e., 2p/105 2p0:7/7). This waviness caused
the area to decrease by pd2/2, which is approximately
1%, and it produced average width results essentially
opposite to results associated with waviness on the outer
circle. Specifically, widths decreased along the majority
of the outer boundary (blue shading, Fig. 5e) and ‘out
decreased by 8% to 0.276 (Table 2, definition C; cf.
columns Figs. 5a,e). Absolute changes in ‘area, ‘out, ‘avg,
and ‘per were no larger than 4% (Table 2, definitions A,
C, D, E; cf. columns Figs. 5a,e).
The abovementioned analysis indicates that length-

ening of one edge by waviness tends to modestly in-
crease the average width measured along the wavy edge
and more substantially decrease the average width
measured along the nonwavy edge for all formulations.
This effect is reduced by averaging the inner and outer
boundary results (i.e., using ‘per or ‘avg) as further illus-
trated in Figs. 6c,d, respectively, where waviness is
progressively increased in amplitude. As noted above,
we chose the wavelengths for the examples in Figs. 5d,e
to represent variations salient in observations. Explor-
ing the effects over the ranges 0# d# 0:2 and 2# f # 12,
the decrease in width on the nonwavy edge appears ro-
bust, but the width measured from the wavy edge can
decrease monotonically for more extreme values of f
(not shown).

f. Summary of sensitivity to MIZ shape

This subsection is a summary of findings in the pre-
ceding three subsections. As eccentricity increases,
width averaged with respect to distance increases for the
outer boundary and decreases for the inner boundary
(section 3c). This sensitivity is considered undesirable
and is largely eliminated by combining the inner and
outer boundary results either as an arithmetic mean
(‘avg) or weighted average (‘per) as in Strong (2012) and
Strong andRigor (2013). For changes in the inner radius,
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all formulations had an approximately linear response as
we would desire, with ‘area having the largest departure
from linearity (section 3d). Introducing waviness on one
boundary, width averaged with respect to distance along
the wavy boundary increased whereas width averaged
with respect to distance along the smooth boundary
decreased (section 3e). This sensitivity is considered
undesirable and is substantially lessened by combining
the inner and outer boundary results either as ‘avg or ‘per.
Considering the findings summarized here collectively,
we recommend the weighted average ‘per as used in
Strong (2012) and Strong and Rigor (2013).

4. Application to satellite data

The preceding sections 2 and 3 motivate use of the
streamline definition of MIZ width, with a spatial aver-
age width defined by averaging with respect to distance
along both MIZ boundaries (‘per). In section 4a below,
we apply the ‘per formulation to daily warm-season
(July–September) sea ice concentrations from the Cli-
mateData Record (CDR) of PassiveMicrowave Sea Ice

Concentration, which is a blending of different algo-
rithms intended to produce a consistent record over time
(Meier et al. 2012). This CDR analysis, presented in
section 4a, replicates and extends a subset of the results
from Strong and Rigor (2013), who used the CDR cov-
ering 1988–2012 and bootstrap algorithm concentrations
covering 1979–2012. We focus on the Arctic warm sea-
son because it features a large range of widths and a
widening trend that illustrate the extent to which ‘per can
be approximated by computationally efficient alterna-
tives (section 4b) that either lack desirable mathemati-
cal properties or do not provide local width information.

a. MIZ spatial average width from streamline
definition

The bold curve in Fig. 8a is the recommended ‘per
formulation and is an extension of the results presented
in Strong and Rigor (2013). A widening trend amount-
ing to approximately 40% is seen for 1979–2015, slightly
larger than the 37% widening trend previously found
applying the same method to the shorter period 1979–
2012 (Strong and Rigor 2013). The extension of the

FIG. 8. (a) MIZ average width for July–September based on analysis of satellite data. For the streamline defi-
nition, ‘per is the averagewith respect to distance along the inner and outer boundaries of theMIZ.Other curves are
methods that yield mean widths with less computational expense than the streamline method. (b) Terms ~rT and ~rP,
shown as anomalies relative to their values in 1979.
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analysis here reveals a return to widths representative of
the 1980s during the 2-yr period 2013–14, with wider
widths once again during the final year of the record.
The two sequential years of narrower MIZ (2013 and
2014) are consistent with observed 25%–33% increases
in sea ice volume in autumn 2013 and 2014 relative to
2010–12 (Tilling et al. 2015).
The widening trend is consistent with the decline in

the inner pack ice area outpacing the decline in total ice
area. To visualize this, we plot the effective radius of the
total ice area (~rT) and the effective radius of the inner
pack ice area (~rP) together in Fig. 8b (the effective radius
is the radius of a circle with the same area as the ice). The
~rP decline outpaced the ~rT decline with both trending
downward (289kmdecade21 for ~rP vs 263kmdecade21

for ~rT).

b. MIZ spatial average width from alternative
definitions

We now consider three alternative definitions of MIZ
spatial average width that are less computationally ex-
pensive than ‘per while still emphasizing that ‘per remains
our recommended definition and formulation because
these alternatives either lack desirable mathematical
properties or do not provide local width values.
For a rectangle, width is area divided by length.

Extending that concept to the present context, the av-
erage width of the MIZ could be defined using a ratio of
area to boundary length,

‘ratio 5
AV

L
, (15)

where L is the average of the MIZ outer boundary and
inner boundary lengths, and AV is the area of the MIZ.
While ‘ratio does not provide local values for MIZ
width, it yields results very similar to ‘per as seen in
Fig. 8a (r2 5 0:92; bias 3.2 km), and it can be used as a
computationally efficient alternative to the streamline
method for 25-km-resolution satellite data if only the
spatial average is needed. If substantially finer-
resolution satellite data are used for ‘ratio, then the
boundary may need to be coarsened to a resolution
close to 25 km if its length increases substantially when
resolved at finer resolutions (note that boundary arc
length appears in the denominator of ‘ratio). In addition
to being computationally efficient and conceptually
simple, ‘ratio features invariance with respect to trans-
lation and rotation, and is applicable to convex and
nonconvex MIZ shapes.
We can also consider a definition of MIZ spatial av-

erage width using the effective radii defined at the end of
section 4a, written as

‘radii 5 ~r
T
2 ~r

P
. (16)

This formulation, based on the difference in effective
radii, produced widths approximately 39% larger than
‘per (Fig. 8a). To understand this result, we use the close
agreement of ‘per and ‘ratio noted above to write

‘radii
‘
per

’
‘radii
‘
ratio

5
~r
T
2 ~r

P

A
T
2A

P

L

! "5
L

p(~r
T
1 ~r

P
)
, (17)

whereAT is the total ice area andAP is the inner pack ice
area. The right side of Eq. (17) is unity when the average
of the inner and outer MIZ boundary lengths (L) is
equal to the effective circumference p(~rT 1 ~rP), which is
the average of the circumferences associated with the
effective radii ~rT and ~rP. Casting the ice areas as
equivalent-area circles in the ‘radii formulation mini-
mizes their perimeters per the isoperimetric inequality,
so p(~rT 1 ~rP) is a lower bound for L. We find in satellite
data that the observed L is approximately 1.3 times
larger than p(~rT 1 ~rP), explaining the finding
‘radii/‘ratio ’ ‘radii/‘per ’ 1:3. Thus, while the quantity ‘radii
is computationally efficient, invariant with respect to
translation and rotation, and applicable to convex and
nonconvex shapes, casting the ice areas as equivalent
circles tends to inflate ‘radii relative to ‘per (in this case by
39%).
For the third and final computationally efficient al-

ternative, we consider here the MIZ spatial average
width calculation that was applied to the Antarctic sat-
ellite record in Stroeve et al. (2016). This is the meridian
definition discussed in section 2 implemented with a
time-averaging operation. For this definition of theMIZ
average width (‘merid), the latitudes of the inner and
outer MIZ edges were recorded on each meridian and
then averaged over a month, the distance between the
monthly average latitudes was calculated for each me-
ridian, and then those results were averaged across all
meridians (note that the distance between the average
latitudes of the boundaries on a meridian is equivalent
to the average distance between the boundaries on that
meridian because differencing is linear). This definition
is computationally efficient to implement and makes
sense given the tendency for sea ice to expand out away
from the poles, especially in the Antarctic, where the
ice field is more radially symmetric than the Arctic. Our
Arctic ‘lati analysis yielded results similar to ‘radii
(Fig. 8a), which is consistent with the conceptual simi-
larity of the definitions (i.e., we might expect the ef-
fective radius to be similar to the distance from the pole
to the averageMIZ edge). Also, the effect illustrated by
the idealized example in Fig. 2 tends to increase ‘merid
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relative to ‘per. Thus, ‘merid is computationally efficient
and yields results similar to ‘radii (r5 0:85; mean abso-
lute difference of 20 km), but the use ofmeridiansmeans
that ‘merid can be altered by translation or rotation as
noted in section 2, and ‘merid tends to be larger than ‘per.
To complement the seasonal mean results presented

above, we present a daily comparison of ‘per to the three
alternative definitions (‘radii, ‘ratio, and ‘merid). We chose
2010 as an example to correspond to the season in which
Fig. 1b occurred. On a daily basis, the relationships be-
tween the results of the different definitions (Fig. 9) are
similar to the seasonal mean relationships (Fig. 8a) in
terms of the relative size of the MIZ width (i.e.,
‘radii ’ ‘merid . ‘per ’ ‘ratio).

5. Summary and discussion

Thewidth of theMIZ is a fundamental length scale for
polar physical and biological dynamics, and a variety of
width definitions have emerged in the literature over the
past three decades. The streamline definition recom-
mended here defines width as the arc length of stream-
lines through the solution of Laplace’s equation within
the MIZ, and it features invariance with respect to
translation and rotation, uniqueness at every point on

the MIZ, and generality to nonconvex shapes. Our
recommended definition for MIZ spatial average width,
tested by sensitivity analyses using an annulus as an
analytically tractable idealized MIZ geometry, is the
average taken with respect to distance along the MIZ
boundaries. We applied the recommended definitions to
the warm-season (July–September) Arctic satellite re-
cord (1979–2015), extending the previously reported
widening trend analysis by 3 yr and updating the total
widening to 40%. The three most recent years in the
record featured notable MIZ narrowing during two se-
quential years (2013–14), consistent with observed
25%–33% increases in sea ice volume in autumn 2013
and 2014 relative to the 2010–12 mean (Tilling
et al. 2015).
Three computationally efficient alternatives to the

streamline-based MIZ spatial average width were pre-
sented for comparison over the satellite record. While
some approximations such as the difference in effective
radii (‘radii) exceeded the streamline-based results by up
to 39%, MIZ area divided by the average of the inner
and outer boundary lengths (‘ratio) yielded results that
were very similar to the streamline method (r5 0:92;
bias 3 km) and might thus provide a computationally
efficient alternative to the streamline method if only the

FIG. 9. As in Fig. 8a, but shown daily for July–September 2010.
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spatial average statistic is needed. In addition to being
computationally efficient and conceptually simple, ‘ratio
features invariance with respect to translation and ro-
tation, and is applicable to convex and nonconvex MIZ
shapes. However, if substantially finer-resolution satel-
lite data are used for ‘ratio, then the boundary may need
to be coarsened to a resolution close to the nominally
25-km resolution used here in order to achieve results
comparable to the streamline method. We speculate
that ‘ratio ’ ‘per would hold if applied to the Antarctic
satellite record as well, but the agreement ‘ratio ’ ‘per
could weaken as theMIZ evolves during future decades.
All three computationally efficient alternatives in-

dicated statistically significant widening trends, sug-
gesting that a broad range of reasonable definitions will
agree on the presence or absence of trends, and in some
cases the associated percent change (widening amoun-
ted to 33% for ‘merid and 34% for ‘ratio). The analysis
here suggests that results from the streamline method
would agree with the ‘merid results in Stroeve et al. (2016)
with regard to dataset-dependent presence or absence
of trends in Antarctic MIZ width. The ‘radii time series,
in contrast, indicated a substantially larger—60%—
widening trend in part because the ‘radii formulation
minimizes the perimeters of the ice areas per the iso-
perimetric inequality as discussed in section 4b. The
variance of ‘radii is also larger than the variance of ‘per
by a factor of 2.2.
In summary, we recommend using the streamline

definition of MIZ width because of its mathematical
properties (invariance, uniqueness, and generality), and
we recommend defining MIZ spatial average as an av-
erage with respect to distance along theMIZ boundaries
based on results of our sensitivity analyses. The basis for
these recommendations is objective and mathematical.
The context for these recommendations spans bothMIZ
physical dynamics and climate science research. When
multidecadal time series are constructed, the focus is on
spatiotemporal changes, including trends indicating the
response of the ice field to natural variability and an-
thropogenic forcing. At the smaller spatial and temporal
scales ofMIZ physical dynamics, Laplace’s equation can
be thought of as a steady-state heat equation, in which
case its solution would define a smooth and monotonic
decrease in temperature from the outer to inner edge of
the MIZ that could in principle thermodynamically
force a concentration increase in the same direction.
Laplace’s equation is also the steady-state solution to
Fick’s second law and thus defines a concentration field
that would arise from a constant source (constant con-
centration) diffusing inward from the MIZ inner edge
with a constant melting rate at the MIZ outer edge. In
this way, while sea ice concentration does not formally

obey it, Laplace’s equation is linked to potentially rel-
evant thermodynamic and dynamic processes as a
steady-state solution in the context of heat and diffusion.
Advection is important in the actual MIZ, and this is not
explicitly considered in Laplace’s equation. Ultimately,
the goal of using Laplace’s equation is not to represent
the sea ice physics, but to provide an idealized sea ice
concentration field whose streamlines provide an ob-
jective definition of width satisfying invariance,
uniqueness, and generality.
We now offer some remarks on the fact that the

streamline definition uses the arc length of streamlines
to define MIZ width as opposed to, say, great circles or
straight lines on a stereographic projection. It is the use
of streamlines that enables the streamline definition to
simultaneously satisfy the properties of invariance,
uniqueness, and generality. For simple planar shapes
like rectangles, the width measurement path is a
straight-line orthogonal to the opposing edges, yet the
curvilinear streamline and planar straight-line defini-
tions of width are not entirely unrelated. First, observe
that the planar straight-line width for a rectangle is the
shortest distance side to side across the shape, meaning a
line orthogonal to two opposing edges. The streamlines
through the solution to Laplace’s equation are also (by
definition) orthogonal to the boundaries, and they thus
take on curvature where the MIZ departs from simple
rectangular (or spherical quadrangle) geometry (e.g.,
consider Fig. 3b). Second, we found that ‘per yielded a
value very close ‘ratio, where the latter yields the width
of a rectangle by the definition of a rectangle’s area.
There is one additional, more subtle connection be-
tween the rectangular and curvilinear definitions, and it
relates to the concept of width as a shortest distance. The
streamlines also represent a form of the shortest dis-
tance between the edges of the MIZ, not on the physical
surface of the spherical earth where kilometers of arc
length are measured during application of the definition,
but on the three-dimensional mathematical surface de-
fined by the concentration field that solves Laplace’s
equation (i.e., in a three-dimensional space where con-
centration is the third spatial dimension orthogonal to
the plane of the stereographic projection). Because a
streamline everywhere follows the gradient of the con-
centration (i.e., is everywhere orthogonal to the level
sets of concentration), each streamline is a so-called
minimal geodesic defining the shortest path between the
MIZ edges if distance were to be measured along the
three-dimensional concentration surface. This three-
dimensional mathematical concentration surface does
not exist in physical space, and we emphasize that MIZ
width is the arc length of the streamline along the sur-
face of the earth rather than along the mathematical
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surface, but it is worth noting that each streamline does
define a form of shortest distance. Recall also that
measuring width along the shortest distance on the
spherical earth is the shortest-path definition of width,
which lacks the uniqueness property featured by the
streamline definition as illustrated in section 2.
It should be recognized that other definitions of MIZ

width may be more useful in operational settings where
the context may be pragmatic rather than scientific. For
example, the captain of a vessel is not likely to follow a
streamline through the MIZ unless there is reason to
traverse along the gradient of the (idealized) concen-
tration field. The width in such an operational context
might instead be more usefully defined as the shortest
distance across the MIZ. In the absence of extreme
curvature, though, note that the shortest-distance and
streamline definitions are not markedly different (e.g.,
consider the streamlines in Figs. 2c,d). Local streamline-
based MIZ widths may thus provide a useful overlay for
operational resources such as the National Ice Center’s
MIZ product (NIC 2016), especially for reasonably be-
haved MIZ geometries.
The MIZ continues to be the focus of innovative

modeling and intensive field campaigns such as the
Marginal Ice Zone Program (Lee et al. 2012), and much
has been learned about, for example, the role of melt
ponds in the summer breakup of Arctic sea ice cover
(Arntsen et al. 2015), the role of lateral melting in the
seasonal evolution of sea ice floe size distribution
(Perovich and Jones 2014; Zhang et al. 2015), and the
potential for sea ice prediction on seasonal time scales
(Lindsay et al. 2012; Steele et al. 2015). Considering
directions for continued research onMIZwidth, Stroeve
et al. (2016) analyzedMIZ trends for the Antarctic in all
months except summer, when signal-to-noise ratios de-
cline, and Strong and Rigor (2013) found a 39% wid-
ening of the warm-seasonArcticMIZwithmuch smaller
narrowing of the cold-season Arctic MIZ. Compara-
tively little has been reported on long-term change and
variability in MIZ width during the Arctic transition
seasons. Also, the approximately 40% widening of the
Arctic warm-season MIZ may motivate modeling–
observational analyses to understand the roles of
thermodynamic versus dynamic, and oceanic versus at-
mospheric drivers of these changes.

Acknowledgments. We gratefully acknowledge the
support from the Division of Mathematical Sciences at
the U.S. National Science Foundation (NSF) through
Grants DMS-1413454 and DMS-0940249. We are also
grateful for the support from the Arctic and Global
Prediction Program at the Office of Naval Research
(ONR) through Grant N00014-13-10291, and we thank

the NSF Mathematics and Climate Research Network
(MCRN) for its support of this work. Finally, we thank
two anonymous reviewers for comments that helped to
improve an earlier draft of the manuscript.

APPENDIX A

Solution to Laplace’s Equation

We consider an annulus V (shown in white in Fig. 4)
on the z plane. Its outer circle centered at the origin is
scaled to have a unit radius r2 5 1. This represents the
outer boundary of the MIZ at the marginal ice–ocean
interface, where sea ice concentration f5 0:15. Its inner
circle with radius r1 is centered at x0 2 (r1 2 1, 12 r1)
and represents the inner boundary of the MIZ at the
marginal ice–inner pack ice interface, where f5 0:80.
Domain V is mapped to the area between concentric
circles in the w plane (Fig. A1) via the linear fractional
transformation (e.g., Brown and Churchill 2009)

w5
z2 a

az2 1
, (A1)

where a is given by

a5
11 x1x2 1 [(12 x21)(12 x22)]

1/2

x1 1 x2
. (A2)

The inner circle on the z plane is mapped to a circle on
the w plane with the center at the origin and radius

FIG. A1. Conformal mapping of the eccentric annulus from the z
plane in Fig. 4a to the w plane.
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R
0
5

12 x1x2 1 [(12 x21)(12 x22)]
1/2

x1 2 x2
. (A3)

On the w plane, Laplace’s equation =2F5 0 has a so-
lution given by the complex potential

F(w)5a lnw1k , (A4)

which has a real part f5a lnjwj1 k called the po-
tential and an imaginary part c5aargw called the
streamfunction. Boundary conditions f(jwj 5 R0) 5
0:80 and f(jwj5 1)5 0:15 yield k5 0:15 and a5
(0:802 0:15)/lnR0. Functions f and c on the z plane
are given by

f5a ln

####
z2 a

az2 1

####1 k , (A5)

c5a arg

!
z2 a

az2 1

"
, (A6)

respectively. The width ‘ of the annulus V at any point
can be defined as the arc length of the level set of
c through that point on the z plane. On the w plane, the
level set fw 2 C: c5ccg is the parametric line

w(t)5 t exp(ic
c
/a); 1# t#R

0
, (A7)

which is mapped to the z plane as

z(t)5
t exp(ic

c
/a)2 a

a t exp(ic
c
/a)2 1

; 1# t#R
0
. (A8)

The modulus of the derivative in Eq. (A8) is given by

jz0(t)j5 a2 2 1

a2t2 2 2at cos(c
c
/a)1 1

, (A9)

and so for the arc length

‘d
ðR0

1

jz0(t)j dt (A10)

we have Eq. (4) in the main text.

APPENDIX B

Existence and Uniqueness of f*

We consider function (4) and introduce a variable
t5cc/a in the same domain. Using the arctangent ad-
dition property, we rewrite ‘(t) as

‘(t)5

8
>>>><

>>>>:

a2 2 1

a sin(t)
tan21 a(R

0
2 1) sin(t)

11 a2R
0
2 a(11R

0
) cos(t)

if t;f0,pg

11 x2 if t5 0

12 x
1

if t5p

. (B1)

This function will be considered on the restricted do-
main t 2 [0, p], as the objects studied in this case are
symmetric with regard to the top and bottom halves of
the annular domain. To show that for a given specific
length the appropriate level set of c exists and is unique,
we will show that the function ‘(t) is continuous and
monotonic and hence possesses the intermediate value
property.

First, we notice that the function ‘(t) in Eq. (B1) is
continuous on the interval 0, t,p as a composition of
continuous functions. Therefore, the only points where
the continuity of ‘(t) comes into question is at the
endpoints, 0 and p. To check the behavior of the func-
tion at these points, we calculate the limits of ‘(t) when
t goes to zero and to p using L’Hôpital’s rule, as both
limits are indeterminate. Using expressions for a and R0

FIG. B1. Departure of ‘* from invariance [i.e., ‘*2 (r2 2 r1)] as
a function of eccentricity (h).
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[Eqs. (A2) and (A3), respectively] and with some
algebra we obtain

lim
t/01

‘(t)5
(a1 1)(R

0
2 1)

aR
0
2 1

5 11 x2 ,

lim
t/p2

‘(t)5
(a2 1)(R

0
2 1)

aR
0
1 1

5 12 x1 .

Because the limits match the definition of ‘(t) in Eq.
(B1), we conclude that this function is continuous.
Now we show that the function ‘(t) in Eq. (B1) is

monotonic. To show this, we make some observations.
First, note that we are specifically referring to the
monotonicity with respect to the variable t and only on
the domain mentioned earlier. Let us split this domain
into two halves. First, consider the behavior of the
function on the interval [0, p/2]. The denominator of
‘(t) is increasing while the argument of the arctangent is
decreasing. These effects combine to produce a net
monotonic decrease in the interval. On the second half,
from [p/2, p], the arctangent term tends to zero much
faster than the denominator as a result of the combined
effects of its interior composition. One can check that
the derivative at t5p/2 is f2a(a2 2 1)(R2

0 2 1)=
[(11 a2R0)

2 1 a2(R0 2 1)2]g. The function exhibits
monotonically decreasing behavior as it limits toward
12 x1.
From these analytic results, we glean several useful

pieces of information. First, since the function (B1) is
continuous, it has the intermediate value property. This
translates to the fact that every length between 11 x2 to
12 x1 exists and has a corresponding value of c. The fact
that Eq. (B1) is monotonic also means that the each
unique length has a unique value of c. There exists no
two streamfunctions, c, that have the same length on
(0, p). Finally, since the potential function (2) is har-
monic, ‘f*

inherits both of these properties. Continuity
is preserved by the integration, and monotonicity is
preserved by the positive nature of the function (B1).
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