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Abstract

Geophysical materials such as sea ice, rocks, soils, snow, and glacial ice are composite media with complex, random

microstructures. The effective fluid, gas, thermal, and electromagnetic transport properties of these materials play an

important role in the large-scale dynamics and behavior of many geophysical systems. A striking feature of such media

is that subtle changes in microstructural characteristics can induce changes over many orders of magnitude in the

transport properties of the materials, which in turn can have significant large-scale geophysical effects. For example, sea

ice, which mediates energy transfer between the ocean and atmosphere, plays a key role in global climate, and serves as

an indicator of climatic change, is a porous composite of ice, brine and gases. Relevant length scales range from microns

and millimeters for individual brine structures, to centimeters and meters for connected brine channels across floes, to

hundreds of kilometers across an ice pack. Sea ice is distinguished from many other porous composites, such as

sandstones or bone, in that its microstructure and bulk material properties can vary dramatically over a relatively small

temperature range. The fluid permeability of sea ice ranges over six orders of magnitude for temperatures between 0�C

and �25�C. Moreover, small changes in brine volume fraction around a threshold value of about 5%, corresponding to
variations in temperature around a critical point of about �5�C, control an important transition between low and high
fluid permeability regimes. Below this critical temperature, the sea ice is effectively impermeable, while for higher

temperatures the brine phase becomes connected over macroscopic scales, allowing fluid transport through the ice. This

transition has been observed to impact a wide range of phenomena such as surface flooding and snow–ice formation,

enhancement of heat transfer due to fluid motion, mixing in the upper ocean, melt pool persistence, surface albedo

(ratio of reflected to incident radiation) and other optical properties, growth and nutrient replenishment of algal and

bacterial communities living in sea ice, and remote sensing of the sea ice pack from space. Recently, we have shown how

continuum percolation theory can be used to understand the critical behavior of fluid transport in sea ice. Here we

review this application of percolation theory to sea ice, and briefly discuss electromagnetic transport in sea ice, in

particular how the geometry and connectivity of the brine microstructure determine its effective complex permittivity.

r 2003 Elsevier B.V. All rights reserved.

PACS: 81.05.Rm; 47.55.Mh; 05.70.Jk; 93.30.Sq

Keywords: Sea ice; Percolation; Fluid permeability; Complex permittivity
801-581-4148.

ddress: golden@math.utah.edu (K.M. Golden).

- see front matter r 2003 Elsevier B.V. All rights reserve

/j.physb.2003.08.007
1. Introduction

Composite materials made from two or more
constituent media arise throughout the geophysi-
cal sciences. Rocks, soils, snow, sea ice and glacial
ice are all examples of materials which display a
d.
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wide range of composite, random microstructures.
How they interact with, and mediate interactions
between, other components of geophysical systems
is determined by their effective properties: fluid
and gas permeability, thermal and electrical
conductivity, optical and other electromagnetic
transport properties, as well as mechanical proper-
ties. For example, sea ice is a composite of pure ice
with brine and air inclusions, which mediates the
exchange of heat, moisture, gases, momentum, and
solar radiation between the ocean and atmosphere
in the polar regions. As such, the polar sea ice
covers play a key role in global climate and as an
indicator of global climatic change [1,2]. They also
play host to algal and other microbiological
communities at the core of the polar oceanic food
web [3,4]. Another example is the movement of
fluids through rocks [5]. Fluid flow in the Earth’s
crust is especially important along active plate
boundaries, where it can exert controlling effects
on crustal rheology, deformation, seismicity and
heat and mass transport. Much of this fluid flow
has its origins in the inaccessible regions of the
Earth’s crust below the brittle–ductile transition,
where metamorphism takes place, releasing large
volumes of C–O–H-rich fluids. These fluids
migrate through the rocks in response to buoyancy
and deformation, transporting heat and mass, and
producing chemical, isotopic, and mineralogical
changes, including ore deposition. A third example
is bubble trapping and the movement of air and
gases through porous, glacial firn [6]. Below a
critical depth zone, the air phase in ice from
glaciers and the polar ice caps, is contained
primarily in isolated bubbles disconnected from
the atmosphere, which can be used in the analysis
of past climate. In each example, the composite
microstructure of the geophysical material con-
trols the transport and other physical properties
which can significantly impact geophysical dy-
namics and behavior on much larger scales.
Among geological, biological, and even engi-

neered composite materials, sea ice is quite unique
in that it naturally displays such a wide range of
microstructures and transport properties over a
relatively small range of temperatures and compo-
sitions. In particular, the geometry and statistical
characteristics of the brine phase in sea ice depend
strongly on temperature, bulk salinity, and growth
conditions. The connectivity of the brine phase
over various length scales plays a key role in
determining the effective fluid, thermal, and
electromagnetic transport properties of sea ice.
An interesting feature of sea ice, known to the
earliest polar explorers, is its tendency to desali-
nate with time. Efforts to understand this funda-
mental process have led to many important
discoveries about the microstructure and the
dynamics of the brine phase. The dominant
desalination mechanism has been found to be
gravity drainage [7]. As an ice sheet grows, its
surface rises higher above sea level, producing a
pressure head in the interconnected brine system,
driving the underlying brine out of the ice. In the
presence of a temperature profile which increases
with depth, an unstable density distribution exists
within the brine, producing convective overturn-
ing, as well as an exchange between denser brine
within the ice and the underlying seawater [7]. The
input of brine into the upper ocean is important in
ice–ocean interactions, through modification of
the density of the surface layer, induction of
thermohaline convection, and contributing to the
formation of bottom water [8]. The drainage
channels which facilitate brine transport consist
of large, vertical tubular drainage structures
attended by smaller tributaries, like a vertically
oriented, radially symmetric river system [7].
One of the key findings which has resulted from

the study of the desalination process is that for
brine volume fractions p below a critical value
pcE5%; columnar sea ice is effectively imperme-
able to fluid transport, whereas for p above pc;
brine or sea water can move through the ice. The
relation of brine volume to temperature T and
salinity S [9] implies pc corresponds to a critical
temperature TcE� 5�C for S ¼ 5 ppt (parts per
thousand); we refer to this critical behavior as the
‘‘law of fives’’. Perhaps its clearest demonstration
in early works appears in Refs. [7,10], where the
rate of change of salinity dS=dt due to gravity
drainage is plotted against brine volume. For brine
volumes below roughly 5%, dS=dt vanishes.
Indeed, Ono and Kasai [11] have found that the
downward permeability of thin sea ice decreases
by over two orders of magnitude as the surface
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temperature is lowered, in a small neighborhood of
�5�C.
Brine transport is fundamental to such processes

as sea ice production through freezing of flooded
ice surfaces [12], the enhancement of thermal fluxes
through sea ice [13], nutrient replenishment for sea
ice algal communities [4], and to remote sensing
[14–16]. However, until recently the basic transi-
tion controlling brine transport has received little
attention. Percolation theory [17,18] has been
developed to analyze the properties of materials
where connectedness of a given component deter-
mines the bulk behavior. Recently we have shown
[19] that it provides a natural framework to
understand the critical behavior of sea ice. In
particular, we applied a compressed powder
percolation model to sea ice microstructure that
explains the law of fives, the observed behavior
[11] of the fluid permeability in the critical
temperature regime (qualitatively), as well as data
on surface flooding collected on sea ice in the
Weddell Sea and East Antarctic regions.
Other examples of brine percolation and trans-

port include the observation in the Arctic [20] that
a snow storm and its resultant loading can induce
a complete upward flushing of the brine network.
The freezing of a surface slush layer, with resultant
brine drainage, was observed in the Antarctic to
induce convection within the ice, whereby rejected
dense brine is replaced by nutrient-rich sea water
from the upper ocean [13], fueling autumn blooms
of algae in second year ice [4]. During the autumn
freeze-up, this process provided about 70% of the
salt flux into the upper ocean and increased the
total heat flux through the overlying ice and snow
cover. Moreover, the proliferation and growth of
sea ice organisms is favored in general by perme-
able ice which allows nutrient replenishment [21]
for remote sensing, surface flooding and subse-
quent freezing can affect microwave backscatter
from sea ice [14,15], and this surface flooding is
often controlled by percolation processes. More-
over, the connectedness of the brine inclusions, as
well as their volume fraction and geometry, affects
the complex permittivity e� of sea ice, which
determines how electromagnetic waves are scat-
tered from and propagate through the ice. We
briefly discuss a series of rigorous bounds on the
effective complex permittivity e� of sea ice
[16,22,23], and how this theory can help in
understanding the effective fluid and thermal
transport properties of sea ice.
2. The percolation transition in sea ice

Percolation theory [17,18,24,25] was initiated
with the introduction of a simple lattice model to
study the flow of air through permeable sand-
stones used in miner’s gas masks. In subsequent
decades, this theory has been used to successfully
model a broad array of disordered materials and
processes, including flow in porous media like
rocks and soils [26] various types of disordered
conductors like piezoresistors, thermistors [27],
radar absorbing composites [28], and polar firn
[29]. The original percolation model and its
generalizations have been the subject of intensive
theoretical investigations, particularly in the phy-
sics [18,25] and mathematics [24] communities.
One reason for the broad interest in the percola-
tion model is that it is perhaps the simplest, purely
probabilistic model which exhibits a type of phase
transition.
The simplest form of the lattice percolation

model [18] is defined as follows. Consider the d-
dimensional integer lattice Zd ; and the square (or
cubic) network of bonds joining nearest neighbor
lattice sites. To each bond, with probability p;
0ppp1; we assign a 1, meaning it is open, and
with probability 1� p we assign a 0, meaning it is
closed. Groups of connected open bonds are called
open clusters, and the size of a cluster is just the
number of open bonds it contains. In the percola-
tion model there is a critical probability pc;
0opco1; called the percolation threshold, at
which the average cluster size diverges and an
infinite cluster appears, so that the open bonds
percolate. In two dimensions pc ¼ 0:5; and in three
pcE0:25: Typical open-cluster configurations in
d ¼ 2 for p ¼ 1

3
and p ¼ 2

3
are shown in Fig. 1. For

pXpc; the infinite cluster density PNðpÞ; defined as
the probability that the origin (or any point, by
translation invariance) is contained in the infinite
cluster, or PNðpÞ ¼ limL-NMNðL; pÞ=Ld ; where
MNðL; pÞ is the mass of the infinite cluster



ARTICLE IN PRESS

1

1

0 ppc

σ  (p)∗

8P  (p)

p = 1/3 p = 2/3

Fig. 1. Typical configurations of the two-dimensional lattice in bond percolation, below (p ¼ 1
3
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3
) the percolation

threshold pc ¼ 1
2
; and graphs of the infinite cluster density PNðpÞ and effective conductivity s�ðpÞ:
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contained in a box of side L: At the percolation
threshold, the infinite cluster has a self-similar,
fractal structure, with MNðL; pcÞBLdf as L-N;
where dfpd is the fractal dimension. In two
dimensions df ¼ 91

48
E1:9 is a conjectured exact

result, and dfE2:5 in three dimensions [18,25].
The graph of PNðpÞ for d ¼ 2 is shown in Fig. 1.
In the neighborhood of pc; with pXpc; PNðpÞ is
believed to exhibit the scaling behavior

PNðpÞBðp � pcÞ
b; p-pþ

c ; ð1Þ

where b is the percolation critical exponent, which
satisfies bp1 [30], and in d ¼ 2 it is conjectured
that b ¼ 5=36 [25].
The percolation model deals only with the

geometrical aspects of connectedness in disordered
media, yet we are interested in the transport
properties as well. Then we consider a random
resistor network, where the bonds are assigned the
conductivities s ¼ 1 and hX0 with probabilities p

and 1� p: With h ¼ 0; the effective conductivity
s�ðpÞ; obtained via solving Kirchoff’s laws,
vanishes for popc; s�ðpÞ ¼ 0: s�ðpÞ > 0 is believed
to exhibit the power law behavior

s�ðpÞBðp � pcÞ
t; p-pþ

c ; ð2Þ

where t is the conductivity critical exponent, with
1ptp2 in d ¼ 2; 3 [31,32] and numerical values
tE1:3 in d ¼ 2 and tE2:0 in d ¼ 3 [18]. The
effective conductivity s�ðpÞ in the d ¼ 2 lattice
case is shown in Fig. 1. Analogously we may
consider a random pipe network with effective
fluid permeability k�ðpÞ exhibiting similar beha-
vior k�ðpÞBðp � pcÞ

e; where e is the permeability
critical exponent, with e ¼ t [26,32,33]. Such
critical exponents, like t and e; are generally
believed to exhibit universality, meaning that they
depend only on dimension and not on the type of
lattice, although continuum models can exhibit
nonuniversal behavior, with exponent values
different from the lattice case. For example,
consider the Swiss cheese model in d ¼ 2; where
circular discs (or spheres in d ¼ 3) are removed at
random from a uniform medium of unit (electrical
or fluid) conductivity [18,34]. Near the percolation
threshold, the transport properties are dominated
by flow through the narrow necks between
nonoverlapping discs (or spheres). Since the widths
of such necks can vary throughout the system,
there is a distribution of bond conductivities s in
an equivalent Voronoi network model. Moreover,
this distribution is singular near s ¼ 0; which can
lead to violations of universality with values of the
transport critical exponents in d ¼ 3 higher than
for the lattice case, and eat [18,34].
If the above classical lattice percolation model is

applied to sea ice, where the open bonds represent
brine and the closed bonds represent ice, then pc
would be about 25% in d ¼ 3; which is much
larger than the observed 5%. Even continuum
models, such as ellipsoidal brine inclusions ran-
domly distributed in an ice host, a commonly used
model for sea ice, exhibit critical volume fractions
in the 20–40% range [35]. Instead consider the
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critical behavior of composites made up of
conducting particles suspended in an insulating
matrix [27], and the problem of finding micro-
structures that reduce pc: For some flexible
polymer composites designed to be highly con-
ducting, it was found that by compacting powders
of large polymer particles with much smaller metal
particles, microsctructures exhibiting very low
values of pc could be obtained. Thus the amount
of the more expensive metal particles required to
significantly lower the resistance of the composite
can be significantly lowered [36,37]. The resulting
microstructure of such compressed powders is
strikingly similar to the cellular microstructure of
columnar sea ice, as shown in Fig. 2.
The key parameter in predicting the conduction

threshold for compressed powders is the ratio x ¼
Rp=Rm of the radii of the large polymer particles
to the smaller metal particles [37,39]. An approx-
imate, theoretical formula for the critical volume
fraction for percolation of the small metal spheres
in a compressed powder is given by

pc ¼ 1þ
xf
4xc

� ��1

; ð3Þ
Fig. 2. Comparison of the microstructures of (a) compressed powder

of radius Rm [37], and (b) sea ice [38].
where f is a reciprocal planar packing factor, and
xc is a critical surface area fraction of the larger
particles which must be covered for percolation by
the smaller particles [39]. Values based on micro-
structural analysis giving good agreement with
conductivity experiments are xc ¼ 0:42 and f ¼
1:27 (which we use also as a reasonable approx-
imation for sea ice). An alternative approach to
approximating pc which yields similar quantitative
results can be found in Ref. [40]. For large x; pc is
not very sensitive to the exact value of x: For
example, a range of 44 – 17 in x gives only a range
of 3–7% in pc: Using photomicrographs of sea ice
microstructure and typical brine inclusion sizes [7],
we measured the corresponding parameter for sea
ice, obtaining an average of xE24: Applying the
compressed powder percolation model [39] yields a
critical brine volume for columnar sea ice of about
5%. This result will vary with ice crystal struc-
ture. For example, the slightly higher values of pc
(lower x) observed in Ref. [11] are caused by the
more random distributions of brine inclusions
in granular ice as compared to columnar ice.
The compressed powder model explains why sea
ice exhibits such low values for pc; as compared to
of large polymer particles of radius Rp and small metal particles
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the 20% to 40% range one might expect, and
provides reasonable estimates for pc; which de-
pends only on the geometry of the two phases.
Compressed powders with low pc exhibit large,

nonuniversal values of t ranging between 2 and 7 [27].
A rough estimate for the fluid permeability critical
exponent e for sea ice based on the data in Ref.
[11] is about 2.5, although there is significant
uncertainty in this estimate (but e is probably
between 2 and 4). Given that for lattice models we
have shown in d ¼ 3 that e ¼ tp2 [31], it is likely
that sea ice exhibits nonuniversal behavior, per-
haps indicating the importance of the very small
necks through which brine must flow near the
percolation threshold. Much more experimental
work needs to be done to determine the actual
range of e; how it depends on the type of sea ice
and other factors, and if indeed the behavior is
nonuniversal.
Data collected on Antarctic sea ice directly

demonstrate the significance of the percolation
threshold. During the winter ANZFLUX experi-
ment [41] in the Eastern Weddell Sea we encoun-
tered a thin ice pack, typically 20–60 cm thick.
Unusually large vertical oceanic heat fluxes
resulted in ice basal melt rates of up to 3 cm/day
(average was 1 cm/day) which could have melted
the ice in a short period. The persistence of the ice
depended on flooding of the surface and the
subsequent freezing of this slushy snow/brine
mixture to form snow ice, which replaced the ice
melting on the bottom [12]. The surface flooding
was controlled by upward brine percolation.
Temperature profiles measured hourly during a
5-day drift camp over Maud Rise at about 4� E
and 65� S indicated that while most of the sea ice
layer remained above the critical temperature for
percolation, the top 5 cm or so of the sea ice was
impermeable, except during the typically warm
storms. Sufficient loading led to surface flooding,
which subsequently froze. This cyclic process
occurred twice during the 5-day drift. The
impermeable layer, defined by temperatures below
a critical temperature of about �5:3�C, disap-
peared with the onset of the first storm during day
of year 216 (4 August 1994). For about a day the
entire ice sheet was permeable, and by noon of the
next day, we observed a thick layer of slushy snow
consisting of 30–50% liquid brine. Subsequently, a
cold period set in, the slush froze, and the
impermeable cap returned as the frozen slush.
Then another storm moved in, with resultant
warming, flooding, and freezing. Late in the
evening of day 219 during a warm storm, we
observed large ‘‘boils’’ on the snow surface, which
was apparently brine percolating up through the
ice.
Finally, consider the algae bloom observed in a

porous sea ice layer at depth 10–30 cm during the
autumn of 1992 in the Western Weddell Sea [4].
From day of year 60 (29 February) to 81 standing
stocks of pigments in the ice were increasing at the
rate of 0:8 mg=m=day; yet after day 81 the algal
growth rate was reduced to one tenth the earlier
value. Day 81 is when the downward advancing
critical isotherm of TcE� 4�C passed through the
bottom of the algal layer, effectively cutting off the
community from significant nutrient replenish-
ment, as ice above this isotherm was impermeable.
The critical temperature higher than �5�C is
understood by noting that the ice surrounding
the algal layer was granular, and has a higher pc;
yet a salinity of only about 5 ppt.
3. Brine geometry and bounds on the complex

permittivity of sea ice

In many cases of interest when considering the
interaction of electromagnetic waves with sea ice,
such as in remote-sensing applications, the wave-
length is much longer than the millimeter scale of
the brine inclusions. Then the quasistatic approx-
imation is valid, and one considers the effective
complex permittivity tensor e� of the sea ice, or a
diagonal coefficient within the horizontal plane for
example, denoted by e�: Due to the wide variety of
possible microstructures and the high dielectric
contrast of the components of brine and ice, it is in
general quite difficult to accurately predict the
effective complex permittivity e� for sea ice,
although many ‘‘mixing formulas’’ for e� have
been proposed and compared with experimental
data, e.g. Refs. [42–44], where typically the sea ice
is assumed to consist of a host of pure ice
containing ellipsoidal brine and air inclusions.
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While mixing formulas are certainly useful, their
applicability to the full range of microstructures
presented by sea ice is limited, and the assump-
tions under which they are derived are not always
satisfied, such as when the brine inclusions
percolate. Consequently, we have developed
[16,22] a comprehensive series of rigorous bounds
on e� for sea ice, valid in the quasistatic regime,
which we briefly describe. The sea ice is assumed to
be a two-component, stationary random, compo-
site medium of brine with complex permittivity e1
depending on frequency and temperature, and ice
of permittivity e2; depending weakly on frequency
and temperature (e2 is slightly adjusted via the
Maxwell–Garnett formula to account for the
presence of air [16,45]). Our approach is based
on a general, analytic continuation method for
obtaining bounds on the effective properties of
composites [46–48], where e� is treated as an
analytic function of h ¼ e1=e2; and its properties
are exploited to obtain the bounds, which apply to
any two component medium, such as snow or
slush, which are also of interest for sea ice remote
sensing. A full treatment of composites with three
or more components is more involved mathema-
tically, requiring analysis of holomorphic func-
tions of several complex variables [49,50].
The effective complex permittivity tensor e� is

defined via

/DS ¼ e�/ES; ð4Þ

where E and D are the stationary random electric
and displacement fields satisfying D ¼ eE; with
eðxÞ; xARd ; the local complex permittivity taking
values e1 and e2; r � D ¼ 0; and r	 E ¼ 0: The
notation / �S means ensemble average over
realizations of the random medium, or spatial
average over all of Rd :
The key step in the method is to obtain the

Stieltjes integral representation [46–48]

F ðsÞ ¼ 1� e�=e2 ¼
Z 1

0

dmðzÞ
s � z

; s ¼ ð1� e1=e2Þ
�1 ;

ð5Þ

where m is a positive (spectral) measure on ½0; 1�
containing all the information about the geometry
of the composite, which is separated from the
parameter information contained in s ¼ 1=ð1� hÞ:
Statistical information about the geometry is input
through the moments mn of m; which are related to
the correlation functions of the brine phase. For
example, m0 ¼ p1; the volume fraction of brine.
Bounds on e�; or F ðsÞ; are obtained by fixing s

in (5), varying over admissible measures m (corre-
sponding to admissible geometries), such as those
that satisfy only m0 ¼ p1; and finding the corre-
sponding range of values of F ðsÞ in the complex
plane. If just p1 is known, we obtain a region R1 in
the complex e�-plane, in which the complex
permittivity of sea ice of that brine volume must
lie, regardless of geometry. If the sea ice micro-
structure is further assumed to be isotropic within
the horizontal plane, we obtain a smaller region
R2 [47].
If we further assume that the sea ice is a matrix–

particle composite, where the brine phase is
contained in separated inclusions, there is a
spectral gap — that is, the support of m in
Eq. (5) lies in an interval ½sm; sM�; 0osmosMo1;
as observed in fundamental work by Bruno [51].
The further the separation of the inclusions, the
smaller the support interval ½sm; sM�; or the larger
the spectral gap, and the tighter the bounds. We
obtain regions R

mp
1 and R

mp
2 which are significant

improvements over R1 and R2 [16]. To compare
the matrix-particle bounds with data in [38], we
assume that within the horizontal plane, the brine
is contained in separated, circular discs, which
allows us to utilize the explicit calculations in [51]
of sm and sM: In particular, we consider discs of
brine of radius rb which hold random positions in
a host of ice, in such a way that each disc of brine
is surrounded by a ‘‘corona’’ of ice, with outer
radius ri: Then the minimal separation of brine
inclusions is 2ðri � rbÞ: Such a medium is called a
q-material, where q ¼ rb=ri; 0oqo1: For such a
geometry, Bruno has calculated [51] sm ¼ 1

2
ð1� q2Þ

and sM ¼ 1
2
ð1þ q2Þ: Smaller q values indicate well-

separated brine (and presumably cold tempera-
tures), and q ¼ 1 corresponds to no restriction on
the separation, with sm ¼ 0; sM ¼ 1; so that R

mp
1

and R
mp
2 reduce to R1 and R2: Examination of

photomicrographs of the brine microstructure in
the sea ice samples of [36] indicates that even
when the ice is quite cold, the brine inclusions are
quite close, and it is very difficult to estimate
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Fig. 3. Comparison of 4.75 GHz data (circles) on the complex permittivity e� of sea ice at different temperatures [36] with the bounds
R1 (outer, dotted), R2 (inner, dotted), R

mp
1 (outer, solid), and R

mp
2 (inner, solid). R1 assumes knowledge of the brine volume and R2

assumes statistical isotropy as well. R
mp
1 and R

mp
2 further assume that the sea ice is a matrix–particle composite with the indicated q

values corresponding to the geometry in the diagram. For T ¼ �2:5�C the matrix-particle assumption is no longer valid, q ¼ 1; and
R
mp
1 and R

mp
2 reduce to R1 and R2:
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appropriate values of q: Instead, for a given data
set at a particular temperature, we choose a value
of q which best captures the data, and it is always
quite close to 1. Computationally we find that
because of the high contrast in the components,
the bounds R

mp
1 and R

mp
2 are extremely sensitive to

small changes in q for q near 1. This is a reflection
of a potential percolation threshold there, with a
corresponding large transition in the values of e�:
By carefully comparing our bounds to data over a
wide range of temperatures, we have found that as
the temperature increases, i.e., as the percolation
threshold Tc is approached and the brine inclu-
sions grow closer, the data sweep across from one
side of the region R2 to the other (while the regions
becomes larger as the brine volume increases), and
q increases as well. Once the temperature is above
Tc; the data require that q ¼ 1; and the matrix–
particle assumption is no longer valid. This
fascinating behavior is illustrated in Fig. 3, which
compares data from samples 84-3 and 84-4
(S=3.8 ppt) in Ref. [36] with the bounds as the
temperature is varied over a wide range.
In closely related work [23,45], enlarging upon

previous work of McPhedran and Milton [52], we
have developed a rigorous theory of inverse
homogenization, based on inversion of the bounds
R1 and R2; which has produced an accurate
algorithm for reconstructing the brine volume of
sea ice from measurements of the effective complex
permittivity. Moreover, through more sophisti-
cated mathematical techniques, with C. Orum and
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E. Cherkaev, we have inverted the matrix particle
bounds R

mp
1 and R

mp
2 as well to obtain inverse

bounds on the separation parameter q from
measurements of e�: Finally, in forthcoming works
we shall employ percolation theory and various
types of bounds to study the fluid permeability and
thermal conductivity of sea ice, and their relations.
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