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Critical Behavior of Transport in Lattice and Continuum Percolation Models
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It has been observed that the critical exponents of transport in the continuum, such as in the S
cheese and random checkerboard models, can exhibit nonuniversal behavior, with values diff
than the lattice case. Nevertheless, it is shown here that the transport exponents for both lattic
continuum percolation models satisfy the standard scaling relations for phase transitions in stati
mechanics. The results are established through a direct, analytic correspondence between tra
coefficients for two component random media and the magnetization of the Ising model, wh
is based on the observation we made previously that both problems share the Lee-Yang pro
[S0031-9007(97)03093-7]
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A broad range of problems in the physics of mate
als involve highly disordered media whose effective b
havior is dominated by the connectedness, or percola
properties, of a particular component. Examples inclu
porous media, doped semiconductors, smart materials
as piezoresistors and thermistors, radar absorbing c
posites, thin metal films, snow, and sea ice. In mod
ing transport in such materials, one often considers a
component random medium with component conduct
ties s1 and s2, in the volume fractions1 2 p and p.
The medium may be discrete, like the random resistor n
work [1–3], or continuous, like the random checkerboa
[4,5] and Swiss cheese models [1,3,6]. In these syste
as h ­ s1ys2 ! 0, the effective conductivityspsp, hd
exhibits critical behavior near the percolation thresh
pc, spsp, 0d , sp 2 pcdt asp ! p1

c (with s1 ­ 0 and
s2 ­ 1), and atp ­ pc, spspc, hd , h1yd, h ! 01.

In the lattice case of the random resistor network, it h
been widely proposed [2,3,7–11] that the scaling beha
of sp as a function of bothp and h around p ­ pc

andh ­ 0 (including crossover between the above law
is similar to a phase transition in statistical mechani
like that exhibited by the magnetizationMsT , Hd of an
Ising ferromagnet around its Curie point at temperat
T ­ Tc and applied fieldH ­ 0. However, this behavior
of spsp, hd has been explicitly obtained only in mea
field theory around the critical dimensiondc ­ 6 [12],
and in the effective medium approximation [3], althou
renormalization arguments in two and three dimensi
have supported its validity [13,14]. This situation shou
be contrasted with that for the underlying percolati
model, where its Kasteleyn-Fortuin [15] representation
the q ! 1 limit of the q-state Potts model makes cle
the connection to phase transitions. Indeed, the crit
exponents of percolation have been shown to obey
standard scaling relations of statistical mechanics [16,
Similar efforts to use the connection between the rand
resistor network and theq ! 0 Potts model to analyzesp

when h . 0 have apparently been unsuccessful [12,1
Nevertheless, forh ­ 0, a number of scaling laws relatin
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t to percolation exponents have been proposed, suc
the Alexander-Orbach conjecture, although none of th
seems to be exactly true [1,2].

In the continuum, such as for the Swiss cheese mo
while the percolation exponents remain the same as
the lattice [19], the transport exponents, such ast in
three dimensions, can be different from their lattice valu
[6]. For the random checkerboard in two dimensions
was argued in [5] that the exponentd is different from
its lattice value, while the percolation exponents (a
t) remain the same. These examples of nonunive
behavior raise a fundamental question as to what featu
of the lattice problem remain true in the continuum.

In this Letter, we show that although the critical exp
nents of transport in the continuum may be different fro
their lattice values, they still satisfy the standard scal
relations of statistical mechanics, as do their lattice co
terparts. This is accomplished through an analytic cor
spondence between effective transport coefficients for
component random media and the magnetizationM of an
Ising ferromagnet. The correspondence is based on the
servation that both problems share the Lee-Yang prope
which was originally found in [20], but is developed fu
ther here and applied to critical behavior. In particular, w
obtain a new Stieltjes integral representation forsp which
is the direct analog of Baker’s formula forM [21], making
the connection to statistical mechanics almost transpar
Then, methods which have been used to analyze the cri
behavior of the Ising model [21–23] can be appropriate
modified for transport in lattice and continuum percol
tion models. We also further investigate the zeros of
conductivity partition function in the complexp plane in-
troduced in [20].

To present our results, we briefly review the releva
theory for the nearest neighbor Ising model of a ferr
magnet in a fieldH and at temperatureT . When H ­
0, the magnetizationMsTd ­ 2≠fy≠H , sTc 2 T db as
T ! T2

c , wheref is the free energy per site, and the ma
netic susceptibilityx ­ ≠My≠H ­ 2≠2fy≠H2 , sT 2

Tcd2g as T ! T1
c . Along the critical isothermT ­ Tc,
© 1997 The American Physical Society 3935
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MsHd , H1yd asH ! 01 (whered and the other expo-
nents have different numerical values from their analo
in transport). Now, in 1952 Lee and Yang [24] found th
the zeros of the partition function of the Ising ferromag
net (or lattice gas) lie on the unit circle in thez plane,
wherez ­ exps22bHd is the “activity,” b ­ 1ykT , and
k is Boltzmann’s constant. Equivalently they lie on th
imaginary axis in theH plane. ForT . Tc, there is a
gap uH in these zeros aroundH ­ 0, which collapses
as T ! T 1

c , with uH , sT 2 TcdD. In the T plane the
situation is more complicated, although ind ­ 2 for
H ­ 0, “Fisher’s zeros” lie on two circles in the com
plex y ­ tanhs2bJd plane [25], whereJ is the interaction
strength. In 1968, Baker [21] used the Lee-Yang prope
to show that the magnetization has the following spec
analytic structure in the variablet ­ tanhsbHd:

Mstd ­ t 1 ts1 2 t2dGst2d,

Gst2d ­
Z `

0

dcsyd
1 1 t2y

,
(1)

whereG is a Stieltjes (or Herglotz) function oft2, and
c is a positive measure which forT . Tc is supported
only in f0, SsT dg, whereSsT d , sT 2 Tcd22D, T ! T 1

c .
Note thatM is analytic throughout thet2 plane except
s2`, 0g. This integral representation was used to obta
the scaling relationsb ­ D 2 g and d ­ DysD 2 gd
[22,23] (which are satisfied by the mean field exponen
b ­

1
2 , g ­ 1, d ­ 3, D ­

3
2 , and the exact exponents

for d ­ 2, b ­
1
8 , g ­ 1 3

4 , d ­ 15, D ­ 1 7
8 ), as well as

Baker’s inequalitiesgn11 2 2gn 1 gn21 $ 0 for the
critical exponentsgn of the higher field derivatives of
the free energyf, or equivalently, of the momentscn of
c , cn , sT 2 Tcd2gn , T ! T 1

c , with g0 ­ g [21]. The
sequencegn is actually linear inn, gn ­ g 1 2Dn, n $

0, with constant gapgi 2 gi21 ­ 2D [21,26].
It is observed here that the Lee-Yang-Baker critic

theory outlined above applies to transport problems, a
in particular, we rigorously establish direct analogs of (
and the associated scaling relations and inequalities
lattice and continuum percolation models of conduction
two component random media. Our results apply as w
to electrical permittivity, magnetic permeability, therma
diffusivity, fluid permeability for Darcy flow in a porous
medium, and effective diffusivity for turbulent transpor
[27], which all share the Lee-Yang property.

We now formulate the effective conductivity prob
lem in general for two component random med
in the continuum Rd, which includes the lattice
Zd as a special case [20,28]. Let the local co
ductivity ssx, vd ­ s1x1sx, vd 1 s2x2sx, vd be
a two-valued stationary random field inx [ Rd

and v [ V, where V is the set of reali-
zations of the random medium,x1sx, vd ­ 1 if x is
in medium 1, and 0 otherwise, andx2 ­ 1 2 x1. Let
Esx, vd and Jsx, vd be stationary random electric an
current fields which are related byJ ­ sE and satisfy
= ? J ­ 0 and = 3 E ­ 0, with kEsx, vdl ­ ek, where
3936
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ek is a unit vector, andk?l denotes ensemble averag
over V, or an appropriate infinite volume limit. Fo
the random resistor network the differential equatio
become difference equations (Kirchoff’s laws). Fo
isotropic media, the effective conductivitysp is defined
by kJl ­ spkEl, or sp ­ kss1x1 1 s2x2dEkl. Since
sp is homogeneousspsls1, ls2d ­ lspss1, s2d, we
considermshd ­ spys2, h ­ s1ys2.

The following analytic properties ofmshd have been
established [29–31]: (i)mshd is analytic everywhere in
the h plane excepts2`, 0g, and (ii) Imsmd . 0 when
Imshd . 0. These properties ofm were used to prove
[31] the following representation formula forFssd ­
1 2 mshd, s ­ 1ys1 2 hd (based on earlier conjectures i
[29,30]),

Fssd ­
Z 1

0

dmsud
s 2 u

, (2)

where m is a positive measure on [0,1] depending on
on the geometry of the medium. Representation (2) w
also proven by applying the spectral theorem to the
solvent representationFssd ­ kx1fss 1 Gx1d21ekg ? ekl,
where G ­ =s2Dd21=?, and m is the spectral measure
of Gx1. This formula has been used quite successfu
to obtain bounds on effective transport coefficients u
der microstructural constraints [29–33]. It was show
in [20] how (2) could be derived from a free energ
Fssd ­

R1
0 lnss 2 uddmsud, with F ­ ≠Fy≠s. For the

Ising model fsT , Hd has a similar representation [24
For a finite resistor network withN resonancessn [
f0, 1g, Fssd is the infinite volume limit of finite vol-
ume free energiesFN ssd ­

1
N ln ZN ssd, whereZN ssd ­QN

n­1ss 2 snd is the partition function (whose zeros be
come distributed according tom), serving as the analog o
ZN szd ­ aN

QN
n­1sz 2 znd, jznj ­ 1, for an Ising model

with N sites. We remark that (2) leads to≠2my≠h2 # 0,
the analog of the G. H. S. inequality≠2My≠H2 # 0.

We now focus on applying (2) to conductivity
functions ssx, vd describing lattice and continuum
percolation models. We assume the existence
the critical exponentst and d, defined above, as
well as g, defined via a conductive susceptibilit
xspd ­ ≠my≠h , sp 2 pcd2g , p ! p1

c , h ­ 0 (which
is different from [34] and numerous subsequent work
Furthermore, forp . pc, we assume that there is a ga
uh , sp 2 pcdD in the support ofm aroundh ­ 0 or
s ­ 1, which is discussed further below. Now, one o
the key features of (1) is that the coefficients in the Tay
expansion ofG aroundt2 ­ 0 are the moments ofc,
which is not the case for (2), when expanded arou
h ­ 0 or s ­ 1. However, a simple change of variable
u ­ yysy 1 1d in (2) yields the direct analog of (1) for
conductivity

mshd ­ 1 1 sh 2 1dgshd, gshd ­
Z `

0

dfsyd
1 1 hy

,

(3)
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which is a general formula holding for two compo
nent stationary random media in lattice and continuu
settings. In (3),g is a Stieltjes function ofh, and
f is a positive measure which for our percolatio
models with p . pc is supported only inf0, Sspdg,
where Sspd , sp 2 pcd2D, p ! p1

c . The moments
fn ­

R`

0 yndfsyd satisfy the inequalitiesfnfm #

f0fn1m, and form the coefficients of the expansio
of g around h ­ 0, gshd ­ f0 2 f1h 1 f2h2 2 . . . ,
where s21dnn!fn ­ ≠ngy≠hns0d f, 2≠nmy≠hns0d as
p ! p1

c g. We assume thatfnspd , sp 2 pcd2gn , so
that g0 ­ 0 andg1 ­ g. The moment inequalities yield
Baker’s inequalitiesfor transport,

gn11 2 2gn 1 gn21 $ 0, n $ 1 . (4)

We now exploit (3) to show that the critical exponen
of transport above satisfy the same scaling relations
their counterparts in statistical mechanics. Instead
directly analyzingM as in [23], whereg0 ­ g, since
g0 ­ 0 for transport, we must consider the derivativ
≠my≠h , hs1ydd21, h ! 0, p ­ pc. For p near pc and
h near 0,2≠my≠h , ≠gy≠h ­

RSspd
0 fdlsydys1 1 hyd2g,

wheredlsyd ­ ydfsyd andl0spd , sp 2 pcd2g . Now,
under the assumption that the asymptotic behavior
≠gy≠h near criticality is determined primarily by the mas
l0spd of l and the rate of collapse of the spectral ga
with Sspd ­ Qsp 2 pcd2D, we let dL ­ sp 2 pcdgdl

andq ­ sp 2 pcdDy. Then
≠g
≠h

­ sp 2 pcd2g
Z Q

0

dLsqd
f1 1 hsp 2 pcd2Dqg2

, sp 2 pcd2gF sxd , (5)

where x ­ hsp 2 pcd2D. As x ! ` (or p ! pc), we
must haveF sxd , x2gyD, so that≠my≠h , h2gyD ,
hs1ydd21, yielding

d ­
D

D 2 g
. (6)

A generalization to higher derivatives of this argume
shows that, like the Ising model,gn for transport is
linear in n, gn ­ g 1 Dsn 2 1d, n $ 1, with con-
stant gap gi 2 gi21 ­ D, which is consistent with
the absence of multifractal behavior for the bulk co
ductivity [1]. To involve t in our relations, we must
analyze ≠my≠p , sp 2 pcdt21, p ! p1

c , h ­ 0. A
more involved calculation than that above yield
≠my≠p , hsp 2 pcd2g21F sxd. As x ! 0 (or h ! 0),
we must haveF sxd , 1yx, which yields

t ­ D 2 g . (7)

Relations (6) and (7) hold for lattice and continuum
percolation models, and establish in general that t
two-parameter scaling exhibited by phase transitions
statistical mechanics holds for transport as well. A
mentioned above, this type of scaling behavior has be
proposed before for the lattice, e.g., [2,3,9], and the co
nection to these works is made through the identificatio
D ­ s 1 t, g ­ s, d ­ ss 1 tdyt, wheres is the super-
m
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conducting exponent. Our relations are satisfied direc
by the exponents in effective medium theory for the lattic
[35], t ­ 1, g ­ 1, d ­ 2, and D ­ 2. Unfortunately,
it appears as if not enough is known numerically at th
point about exponents other thant for the models of
interest to directly test their validity. For thed ­ 2
lattice, whered ­ 2, these relations implyt ­ g ­ Dy2,
so that with t ­ 1.3 [1], g ­ 1.3 and D ­ 2.6. The
inequalities1 # t # 2 for d ­ 2, 3 and 2 # t # 3 for
d $ 4 [28,36] imply inequalities for the other exponents
For the d ­ 2 checkerboard, where it is believed tha
d ­ 4, these relations implyt ­ gy3 ­ Dy4. The rela-
tion D ­ 2t for the d ­ 2 lattice was found in [35] with
a different argument. It should be remarked that whi
there has been much numerical and analytical work
the sequence of critical exponentsc̃sqd for the moments
of the current distribution in the resistor network, e.g
[1,37,38], this sequence exhibits nonlinear dependen
in q, or multifractal behavior, as opposed to ourgn, and
these results are not in a form suitable for comparis
with our findings. It is interesting, though, that thec̃sqd
satisfy the inequalities in (4) [37].

We now briefly discuss the gapuh for p . pc, which
has been investigated in [2] for the lattice. While th
spectrum actually extends all the way toh ­ 0, the
part close toh ­ 0 corresponds to very large, but very
rare connected regions of the insulating phase (Lifsh
phenomenon), and is believed to give exponentially sm
contributions tosp, and not affect power law behavior
In fact, it is predicted in [2] that in numerical simulations
there will appear to be a gap, which is supported in [35
For a modified Swiss cheese model where the holes
separated by a minimal distancee, Bruno [32] has proven
the existence of a spectral gap and studied how it vanis
ase ! 0 (like p ! p1

c ). For the actual model we expec
behavior similar to the lattice case.

Finally, let us consider the zeros of the conductivit
partition function in the complexp plane, which corre-
spond to the poles ofFsp, sd. In [20], we used Padé ap-
proximants to the perturbation expansion of (2) aroun
h ­ 1,

Fsp, sd ­
m0spd

s
1

m1spd
s2 1

m2spd
s3 1 · · · , (8)

where themjspd are the moments ofm, to obtain a
sequence of approximants to the partition function f
the d ­ 2 random resistor network. Using exact resul
for m0, m1, m2, and m3 [39], we calculated the zeros of
the partition function approximants to ordersk ­ 2 and
k ­ 4 in (8). Here we extend these calculations of th
zeros to orderk ­ 6 using the numerical results onm4

andm5 for the d ­ 2 lattice in [35,40], which are shown
in Fig. 1. These results provide further evidence that t
percolation thresholdpc ­

1
2 is an accumulation point of

the zeros of these approximants ask ! ` (with h ­ 0),
where the realp axis is “pinched” atpc ash ! 0. Even
further evidence is provided within the effective medium
3937
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FIG. 1. Zeros of the partition function approximants fork ­
2, 4, 6 in the complexp plane for thed ­ 2 random resistor
network, with h ­ 0.1, 0.05, 0, and the zero-free regionDh
for h ­ 0.3, 0.1.

approximation, where the zeros fork ­ 8 and k ­ 10
approachpc ­

1
2 much more closely (not shown).

We close by noting that the following theorem prov
in [20] rigorously establishes the existence of a gapup

in the zeros in thep plane aroundpc, for “infinitely
interchangeable media” (see, e.g., [39]), which include
lattice, and cell materials in the continuum such as
random checkerboard.

Theorem—For any jh 2 1j , 1, spsp, hd for an in-
finitely interchangeable medium in any dimension is a
alytic in a domainDh in the complexp plane, where
f0, 1g , Dh, and Dh is the image of the annulusj1 2

hj , jqj , 1 under the Joukowski conformal mappin
p ­

1
4 s2 1 q 1 1yqd.

Assumingup , sp 2 pcdDp , the explicit construction
of Dh establishes the general inequalityDp # 1 for
these media, which is satisfied in the effective medi
approximation, whereDp ­ 1

2 . In Fig. 1 we have plotted
Dh for h ­ 0.3 and 0.1.
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