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same expression at the 1-threshold value. However,
the sensitivity of R0 to perturbations in parameters
depends on the exact formula. Drug treatment aims
to reduce the parameter k so that R0 is below 1. The
parameters and effects of drugs can be estimated from
data on individuals who are HIV positive.

5 Model Extensions

Some infectious diseases have features that may neces-
sitate models with compartments additional to those
described above. For example, some diseases are trans-
mitted to humans by vectors, as is the case for
malaria and West Nile virus, which are transmitted by
mosquitos. For such diseases, vector compartments are
needed. Waterborne diseases such as cholera can be
transmitted directly from person to person or indi-
rectly via contaminated water; thus some cholera mod-
els include a pathogen compartment. Other infectious
diseases, for example HIV/AIDS and hepatitis B, can
be transmitted vertically from mother to offspring.
In the case of hepatitis B, the mother may even be
asymptomatic. This alternative route of transmission
can be modeled by adding an input term into the
infectious class that represents infectious newborns,
and this modifies the basic reproduction number. For
Ebola, recently dead bodies are an important source of
infection that needs to be included in a model. From
the recent outbreak in West Africa, it appears that
health-care workers have an increased risk of infec-
tion, and there may be a significant number of asymp-
tomatic cases; these compartments should therefore be
explicitly included in an Ebola model.

The simplest compartmental models assume homo-
geneous mixing of individuals, but it is possible to
extend the structure to include heterogeneity of mix-
ing, as briefly described above in the model for HIV/
AIDS in a male heterosexual population. Network mod-
els take this still further by concentrating on the fre-
quencies of contacts between individuals. Agent-based
models separate the population into individuals, lead-
ing to very large systems that can be analyzed only by
numerical simulations. A particularly important het-
erogeneity in disease transmission is age structure,
since in many diseases, especially childhood diseases
such as measles, most transmission of infection occurs
between individuals of similar ages. Spatial heterogene-
ity appears in two quite different forms: namely, local
motion such as diffusion and long-distance travel such
as by airlines between distant locations. The former

is usually modeled by partial differential equations,
whereas the latter is usually modeled by a large sys-
tem of ODEs, giving a metapopulation model. With the
availability of good travel data, metapopulation models
are especially important for public health planning for
mass gatherings such as the Olympic Games. New or
newly emerging infectious diseases often call for new
modeling ideas; for example, metapopulation models
were further developed for SARS, and coinfection mod-
els have been developed for HIV and tuberculosis.
In addition, social behavior and the way that people
change their behavior during an epidemic are factors
that should be integrated into models, especially those
designed for planning vaccination and other control
strategies.

For interested readers the literature listed in the fur-
ther reading section below, as well as current jour-
nal articles and online resources, will provide more
information about these and other models.

Further Reading

Anderson, R. M., and R. M. May. 1991. Infectious Diseases of
Humans. Oxford: Oxford Science Publications.

Brauer, F., and C. Castillo-Chavez. 2012. Mathematical Mod-
els in Population Biology and Epidemiology. New York:
Springer.

Brauer, F., P. van den Driessche, and J. Wu, eds. 2008.
Mathematical Epidemiology. Lecture Notes in Mathemat-
ics, Mathematical Biosciences Subseries 1945. New York:
Springer.

Daley, D. J., and J. Gani. 1999. Epidemic Modelling: An
Introduction. Cambridge: Cambridge University Press.

Diekmann, O., and J. A. P. Heesterbeek. 2000. Mathemat-
ical Epidemiology of Infectious Diseases: Model Building,
Analysis and Interpretation. New York: John Wiley.

Greenwood, P. E., and L. F. Gordillo. 2009. Stochastic epi-
demic modeling. In Mathematical and Statistical Estima-
tion Approaches in Epidemiology, edited by G. Chowell,
J. M. Hyman, L. M. A. Bettencourt, and C. Castillo-Chavez,
pp. 31–52. New York: Springer.

Hethcote, H. W. 2000. The mathematics of infectious dis-
eases, SIAM Review 42:599–653.

Nowak, M. A., and R. M. May. 2000. Virus Dynamics: Math-
ematical Principles of Immunology and Virology. Oxford:
Oxford University Press.

V.17 The Mathematics of Sea Ice
Kenneth M. Golden

1 Introduction

Among the large-scale transformations of the Earth’s
surface that are apparently due to global warming, the
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sharp decline of the summer Arctic sea ice pack is prob-
ably the most dramatic. For example, the area of the
Arctic Ocean covered by sea ice in September of 2012
was less than half of its average over the 1980s and
1990s. While global climate models generally predict
declines in the polar sea ice packs over the twenty-first
century, these precipitous losses have significantly out-
paced most projections. Here we will show how math-
ematics is being used to better understand the role
of sea ice in the climate system and improve projec-
tions of climate change. In particular, we will focus on
how mathematical models of composite materials and
statistical physics are being used to study key sea ice
structures and processes, as well as represent sea ice
more rigorously in global climate models. Also, we will
briefly discuss these climate models as systems of par-
tial differential equations (PDEs) solved using computer
programs with millions of lines of code, on some of
the world’s most powerful computers, with particular
focus on their sea ice components.

1.1 Sea Ice and the Climate System

Sea ice is frozen ocean water, which freezes at a tem-
perature of about −1.8 ◦C, or 28.8 ◦F. As a material,
sea ice is quite different from the glacial ice in the
world’s great ice sheets covering Antarctica and Green-
land. When salt water freezes, the result is a composite
of pure ice with inclusions of liquid brine, air pockets,
and solid salts. As the temperature of sea ice increases,
the porosity or volume fraction of brine increases. The
brine inclusions in sea ice host extensive algal and bac-
terial communities that are essential for supporting life
in the polar oceans. For example, krill feed on the algae,
and in turn they support fishes, penguins, seals, and
Minke whales, and on up the food chain to the top
predators: killer whales, leopard seals, and polar bears.
The brine microstructure also facilitates the flow of salt
water through sea ice, which mediates a broad range of
processes, such as the growth and decay of seasonal
ice, the evolution of ice pack reflectance, and biomass
buildup.

As the boundary between the ocean and the atmo-
sphere in the polar regions of the Earth, sea ice plays
a critical role as both a leading indicator of climate
change and as a key player in the global climate sys-
tem. Roughly speaking, most of the solar radiation that
is incident on snow-covered sea ice is reflected, while
most of the solar radiation that is incident on darker
sea water is absorbed. The sea ice packs serve as part

of Earth’s polar refrigerator, cooling it and protecting
it from absorbing too much heat from sunlight. The
ratio of reflected sunlight to incident sunlight is called
albedo. While the albedo of snow-covered ice is usually
larger than 0.7, the albedo of sea water is an order of
magnitude smaller, around 0.06.

1.1.1 Ice–Albedo Feedback

As warming temperatures melt more sea ice over time,
fewer bright surfaces are available to reflect sunlight,
more heat escapes from the ocean to warm the atmo-
sphere, and the ice melts further. As more ice is
melted, the albedo of the polar oceans is lowered, lead-
ing to more solar absorption and warming, which in
turn leads to more melting, creating a positive feed-
back loop. It is believed that this so-called ice–albedo
feedback has played an important role in the recent
dramatic declines in summer Arctic sea ice extent.

Thus even a small increase in temperature can lead
to greater warming over time, making the polar regions
the most sensitive areas to climate change on Earth.
Global warming is amplified in the polar regions.
Indeed, global climate models consistently show ampli-
fied warming in the high-latitude Arctic, although the
magnitude varies considerably across different mod-
els. For example, the average surface air temperature
at the North Pole by the end of the twenty-first cen-
tury is predicted to rise by a factor of about 1.5 to 4
times the predicted increase in global average surface
air temperature.

While global climate models generally predict de-
clines in sea ice area and thickness, they have sig-
nificantly underestimated the recent losses observed
in summer Arctic sea ice. Improving projections of
the fate of Earth’s sea ice cover and its ecosystems
depends on a better understanding of important pro-
cesses and feedback mechanisms. For example, dur-
ing the melt season the Arctic sea ice cover becomes
a complex, evolving mosaic of ice, melt ponds, and
open water. The albedo of sea ice floes is determined
by melt pond evolution. Drainage of the ponds, with
a resulting increase in albedo, is largely controlled by
the fluid permeability of the porous sea ice underly-
ing the ponds. As ponds develop, ice–albedo feedback
enhances the melting process. Moreover, this feedback
loop is the driving mechanism in mathematical models
developed to address the question of whether we have
passed a so-called tipping point or critical threshold in
the decline of summer Arctic sea ice. Such studies often
focus on the existence of saddle–node bifurcations in
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(a) (b)

(c) (d)

Figure 1 Sea ice exhibits composite structure on length
scales over many orders of magnitude: (a) the submillime-
ter scale brine inclusions in sea ice (credit: CRREL (U.S.
Army Cold Regions Research and Engineering Lab) report);
(b) pancake ice in the Southern Ocean, with microstructural
scale on the order of tens of centimeters; (c) melt ponds on
the surface of Arctic sea ice with meter-scale microstructure
(courtesy of Donald Perovich); and (d) ice floes in the Arctic
Ocean on the kilometer scale (courtesy of Donald Perovich).

dynamical system models of sea ice coverage of the
Arctic Ocean. In general, sea ice albedo represents a
significant source of uncertainty in climate projections
and a fundamental problem in climate modeling.

1.1.2 Multiscale Structure of Sea Ice

One of the fascinating, yet challenging, aspects of mod-
eling sea ice and its role in global climate is the sheer
range of relevant length scales of structure, over ten
orders of magnitude, from the submillimeter scale to
hundreds of kilometers. In figure 1 we show exam-
ples of sea ice structure illustrating such a range of
scales. Modeling sea ice on a large scale depends on
some understanding of the physical properties of sea
ice at the scale of individual floes, and even on the
submillimeter scale since the brine phase in sea ice
is such a key determinant of its bulk physical proper-
ties. Today’s climate models challenge the most pow-
erful supercomputers to their fullest capacity. How-
ever, even the largest computers still limit the hor-
izontal resolution to tens of kilometers and require
clever approximations and parametrizations to model
the basic physics of sea ice. One of the central themes of
this article is how to use information on smaller scales
to predict behavior on larger scales. We observe that

this central problem of climate science shares common-
ality with, for example, the key challenges in theoretical
computations of the effective properties of composites.

Here we will explore some of the mathematics used
in studying sea ice and its role in the climate system,
particularly through the lens of sea ice albedo and
processes related to its evolution.

2 Global Climate Models and Sea Ice

Global climate models, also known as general circu-
lation models, are systems of PDEs derived from the
basic laws of physics, chemistry, and fluid motion. They
describe the state of the ocean, ice, atmosphere, and
land, as well as the interactions between them. The
equations are solved on very powerful computers using
three-dimensional grids of the air–ice–ocean–land sys-
tem, with horizontal grid sizes on the order of tens
of kilometers. Consideration of general climate models
will take us too far off course, but here we will briefly
consider the sea ice components of these large-scale
models.

The polar sea ice packs consist primarily of open
water, thin first-year ice, thicker multiyear ice, and pres-
sure ridges created by ice floes colliding with each
other. The dynamic and thermodynamic characteris-
tics of the ice pack depend largely on how much ice
is in each thickness range. One of the most basic prob-
lems in sea ice modeling is thus to describe the evolu-
tion of the ice thickness distribution in space and time.
The ice thickness distribution g(x, t, h)dh is defined
(informally) as the fractional area covered by ice in the
thickness range (h,h+ dh) at a given time t and loca-
tion x. The fundamental equation controlling the evo-
lution of the ice thickness distribution, which is solved
numerically in sea ice models, is

∂g
∂t

= −∇ · (gu)− ∂
∂h
(βg)+ Ψ,

where u is the horizontal ice velocity, β is the rate of
thermodynamic ice growth, and Ψ is a ridging redis-
tribution function that accounts for changes in ice
thickness due to ridging and mechanical processes, as
illustrated in figure 2.

The momentum equation, or Newton’s second law for
sea ice, can be deduced by considering the forces on a
single floe, including interactions with other floes:

m
Du
Dt

= ∇ ·σ+ τa + τw −mαn× u−mg∇H,

where each term has units of force per unit area of the
sea ice cover,m is the combined mass of ice and snow
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Figure 2 Different factors contributing to the evolution of
the ice thickness distribution g(x, t, h). (Adapted, courtesy
of Christian Haas.)

per unit area, τa and τw are wind and ocean stresses,
and D/Dt = (∂/∂t)+u ·∇ is the material or convective
derivative. This is a two-dimensional equation obtained
by integrating the three-dimensional equation through
the thickness of the ice in the vertical direction.

The strength of the ice is represented by the internal
stress tensorσij . The other two terms on the right-hand
side are, in order, stresses due to Coriolis effects and
the sea surface slope, where n is a unit normal vector
in the vertical direction, α is the Coriolis parameter, H
describes the sea surface, and in this equation g is the
acceleration due to gravity.

The temperature field T(x, t) inside the sea ice (and
snow layer), which couples to the ocean below and
the atmosphere above through appropriate boundary
conditions, satisfies an advection–diffusion equation

∂T
∂t

= ∇ · (D(T)∇T)− v · ∇T ,
where D = K/ρC is the thermal diffusivity of sea ice,
K is its thermal conductivity, ρ is its bulk density, C
is the specific heat, and v is an averaged brine velocity
field in the sea ice.

The bulk properties of low-Reynolds-number flow of
brine of viscosity η through sea ice can be related to the
geometrical properties of the porous brine microstruc-
ture using homogenization theory [II.17]. The vol-
ume fractions of brine and ice are φ and 1 − φ. The
local velocity and pressure fields in the brine satisfy the
Stokes equations for incompressible fluids, where the
length scale of the microstructure (e.g., the period in
periodic media) is ε. Under appropriate assumptions, in
the homogenization limit as ε → 0, the averaged veloc-
ity v(x) and pressure p(x) satisfy Darcy’s law and the
incompressibility condition

v = −1
η
k∇p, ∇ · v = 0. (1)

Here, k is the permeability tensor, with vertical compo-
nent kzz = k in units of m2. The permeability k is an
example of an effective or homogenized parameter. The
existence of the homogenized limits v, k, and p in (1)
can be proven under broad assumptions, such as for
media with inhomogeneities that are periodic or have
translation-invariant statistics.

Obtaining quantitative information on k or other
effective transport coefficients—such as electrical or
thermal conductivity and how they depend on, say, the
statistical properties of the microstructure—is a cen-
tral problem in the theory of composites. A broad range
of techniques have been developed to obtain rigorous
bounds, approximate formulas, and general theories
of effective properties of composite and inhomogen-
eous media in terms of partial information about the
microstructure. This problem is, of course, quite sim-
ilar in nature to the fundamental questions of calcu-
lating bulk properties of matter from information on
molecular interactions, which is central to statistical
mechanics.

We note that it is also the case that one of the fun-
damental challenges of climate modeling is how to rig-
orously account for sub-grid scale processes and struc-
tures. That is, how do we incorporate important effects
into climate models when the scale of the relevant
phenomena being incorporated is far smaller than the
grid size of the numerical model, which may be tens
of kilometers. For example, it is obviously unrealis-
tic to account for every detail of the submillimeter-
scale brine microstructure in sea ice in a general cir-
culation model! However, the volume fraction and
connectedness properties of the brine phase control
whether or not fluid can flow through the ice. The
on–off switch for fluid flow in sea ice, known as the
rule of fives (see below), in turn controls such critical
processes as melt pond drainage, snow-ice formation
(where sea water percolates upward, floods the snow
layer on the sea ice surface, and subsequently freezes),
the evolution of salinity profiles, and nutrient replen-
ishment. It is the homogenized transport coefficient
(the effective fluid permeability) that is incorporated
into sea ice and climate models to account for these
and related physical and biogeochemical processes.
This effective coefficient is a well-defined parameter
(under appropriate assumptions about the microstruc-
ture) that captures the relevant microstructural tran-
sitions and determines how a number of sea ice pro-
cesses evolve. In this example we will see that rigor-
ous mathematical methods can be employed to analyze
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effective sea ice behavior on length scales much greater
than the submillimeter scale of the brine inclusions.

3 Mathematics of Composites

Here we give a brief overview of some of the mathemati-
cal models and techniques that are used in studying the
effective properties of sea ice.

3.1 Percolation Theory

Percolation theory was initiated in 1957 with the intro-
duction of a simple lattice model to study the flow
of air through permeable sandstones used in miner’s
gas masks. In subsequent decades this theory has
been used to successfully model a broad array of dis-
ordered materials and processes, including flow in
porous media like rocks and soils; doped semicon-
ductors; and various types of disordered conductors
like piezoresistors, thermistors, radar-absorbing com-
posites, carbon nanotube composites, and polar firn.
The original percolation model and its generalizations
have been the subject of intensive theoretical investi-
gations, particularly in the physics and mathematics
communities. One reason for the broad interest in the
percolation model is that it is perhaps the simplest
purely probabilistic model that exhibits a type of phase
transition.

The simplest form of the lattice percolation model
is defined as follows. Consider the d-dimensional inte-
ger lattice Zd, and the square or cubic network of bonds
joining nearest-neighbor lattice sites. We assign to each
bond a conductivity σ0 > 0 (not to be confused with
the stress tensor above) with probability p, meaning
it is open, and a conductivity 0 with probability 1 − p,
meaning it is closed. Two examples of lattice configura-
tions are shown in figure 3, with p = 1

3 in (a) and p = 2
3

in (b). Groups of connected open bonds are called open
clusters. In this model there is a critical probability pc,
0 < pc < 1, called the percolation threshold, at which
the average cluster size diverges and an infinite cluster
appears. For the two-dimensional bond lattice, pc = 1

2 .
For p < pc, the density of the infinite cluster P∞(p) is
0, while for p > pc, P∞(p) > 0 and near the threshold,

P∞(p) ∼ (p − pc)β, p → p+
c ,

where β is a universal critical exponent, that is, it
depends only on dimension and not on the details of
the lattice. Let x,y ∈ Zd and let τ(x,y) be the prob-
ability that x and y belong to the same open clus-
ter. The correlation length ξ(p) is the mean distance

between points on an open cluster, and it is a mea-
sure of the linear size of finite clusters. For p < pc,
τ(x,y) ∼ e−|x−y|/ξ(p), and ξ(p) ∼ (pc −p)−ν diverges
with a universal critical exponent ν as p → p−

c , as
shown in figure 3(c).

The effective conductivity σ∗(p) of the lattice, now
viewed as a random resistor (or conductor) network,
defined via Kirchhoff’s laws, vanishes for p < pc as
does P∞(p) since there are no infinite pathways, as
shown in figure 3(e). For p > pc, σ∗(p) > 0, and near
pc,

σ∗(p) ∼ σ0(p − pc)t, p → p+
c ,

where t is the conductivity critical exponent, with 1 �
t � 2 if d = 2,3 (for an idealized model), and numerical
values t ≈ 1.3 if d = 2 and t ≈ 2.0 if d = 3. Consider a
random pipe network with effective fluid permeability
k∗(p) exhibiting similar behavior k∗(p) ∼ k0(p−pc)e,
where e is the permeability critical exponent, with e = t
for lattices. Both t and e are believed to be universal;
that is, they depend only on dimension and not on the
type of lattice. Continuum models, like the so-called
Swiss cheese model, can exhibit nonuniversal behavior
with exponents different from the lattice case and e ≠ t.

3.2 Analytic Continuation and Spectral Measures

Homogenization is where one seeks to find a homoge-
neous medium that behaves the same macroscopically
as a given inhomogeneous medium. The methods are
focused on finding the effective properties of inhomo-
geneous media such as composites. We will see that the
spectral measure in a Stieltjes integral representation
for the effective parameter provides a powerful tool for
upscaling geometrical information about a composite
into calculations of effective properties.

We now briefly describe the analytic continuation
method for studying the effective transport properties
of composite materials. This method has been used
to obtain rigorous bounds on effective transport coef-
ficients of two-component and multicomponent com-
posite materials. The bounds follow from the special
analytic structure of the representations for the effec-
tive parameters and from partial knowledge of the
microstructure, such as the relative volume fractions of
the phases in the case of composite media. The analytic
continuation method was later adapted to treating the
effective diffusivity of passive tracers in incompressible
fluid velocity fields.

We consider the effective complex permittivity ten-
sor ε∗ of a two-phase random medium, although the
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Figure 3 The two-dimensional square lattice percolation model (a) below its percolation threshold of pc = 1
2 and (b) above it

(courtesy of Salvatore Torquato). (c) Divergence of the correlation length as p approaches pc. (d) The infinite cluster density
of the percolation model, and (e) the effective conductivity.

method applies to any classical transport coefficient.
Here, ε(x,ω) is a (spatially) stationary random field in
x ∈ Rd and ω ∈ Ω, where Ω is the set of all geomet-
ric realizations of the medium, which is indexed by the
parameter ω representing one particular realization,
and the underlying probability measure P is compatible
with stationarity.

As in sea ice, we assume we are dealing with a
two-phase locally isotropic medium, so that the com-
ponents εjk of the local permittivity tensor ε satisfy
εjk(x,ω) = ε(x,ω)δjk, where δjk is the Kronecker
delta and

ε(x,ω) = ε1χ1(x,ω)+ ε2χ2(x,ω). (2)

Here, εj is the complex permittivity for medium j =
1,2, and χj(x,ω) is its characteristic function, equal-
ing 1 for ω ∈ Ω with medium j at x, and 0 otherwise,
with χ2 = 1 − χ1.

When the wavelength is much larger than the scale of
the composite microstructure, the propagation prop-
erties of an electromagnetic wave in a given compos-
ite medium are determined by the quasistatic limit of
Maxwell’s equations:

∇× E = 0, ∇ ·D = 0, (3)

where E(x,ω) and D(x,ω) are stationary electric and
displacement fields, respectively, related by the local
constitutive equation D(x) = ε(x)E(x), and ek is a
standard basis vector in the kth direction. The elec-
tric field is assumed to have unit strength on average,
with 〈E〉 = ek, where 〈·〉 denotes ensemble averaging
overΩ or spatial averaging over all of Rd. The effective
complex permittivity tensor ε∗ is defined by

〈D〉 = ε∗〈E〉, (4)

which is a homogenized version of the local constitu-
tive relation D = εE.

For simplicity, we focus on one diagonal coefficient
ε∗ = ε∗kk, with ε∗ = 〈εE · ek〉. By the homogeneity of

ε(x,ω) in (2), ε∗ depends on the contrast parameter

h = ε1/ε2, and we definem(h) = ε∗/ε2, which is a Her-

glotz function that maps the upper half h-plane to the

upper half-plane and is analytic in the entire complex

h-plane except for the negative real axis (−∞,0].
The key step in the method is obtaining a Stieltjes

integral representation for ε∗. This integral representa-

tion arises from a resolvent representation of the elec-

tric field E = s(sI−Γ χ1)−1ek, where Γ = ∇(Δ−1)∇· acts

as a projection from L2(Ω, P) onto the Hilbert space of

curl-free random fields, and Δ−1 is based on convolu-

tion with the free-space Green function for the Lapla-

cian Δ = ∇2. Consider the function F(s) = 1 −m(h),
s = 1/(1−h), which is analytic off [0,1] in the s-plane.

Then, writing F(s) = 〈χ1[(sI − Γ χ1)−1ek] · ek〉 yields

F(s) =
∫ 1

0

dμ(λ)
s − λ , (5)

where μ(dλ) = 〈χ1Q(dλ)ek · ek〉 is a positive spec-

tral measure on [0,1], and Q(dλ) is the (unique) pro-

jection valued measure associated with the bounded,

self-adjoint operator Γ χ1.

Equation (5) is based on the spectral theorem for the

resolvent of the operator Γ χ1. It provides a Stieltjes

integral representation for the effective complex per-

mittivity ε∗ that separates the component parameters

in s from the complicated geometrical information con-

tained in the measure μ. (Extensions of (5) to multicom-

ponent media with ε = ε1χ1 + ε2χ2 + ε3χ3 +· · ·+ εnχn
involve several complex variables.) Information about

the geometry enters through the moments

μn =
∫ 1

0
λn dμ(λ) = 〈χ1[(Γ χ1)nek] · ek〉,

n = 0,1,2, . . . .

For example, the mass μ0 is given by μ0 = 〈χ1ek ·ek〉 =
〈χ1〉 = φ, where φ is the volume or area fraction of

material of phase 1, and μ1 = φ(1−φ)/d if the material
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Figure 4 Realizations of the two-dimensional lattice perco-
lation model are shown in (a) and (b), and the correspond-
ing spectral functions (averaged over 5000 random realiza-
tions) are shown in (c) and (d). In (c), there is a spectral gap
around λ = 1, indicating the lack of long-range order or con-
nectedness. The gap collapses in (d) when the percolation
threshold of p = pc = 0.5 has been reached, and the sys-
tem exhibits long-range connectedness. Note the difference
in vertical scale in the graphs in (c) and (d).

is statistically isotropic. In general, μn depends on the

(n+ 1)-point correlation function of the medium.

Computing the spectral measure μ for a given com-

posite microstructure involves first discretizing a two-

phase image of the composite into a square lattice

filled with 1s and 0s corresponding to the two phases.

The key operator Γ χ1, which depends on the geom-

etry via χ1, then becomes a self-adjoint matrix. The

spectral measure may be calculated directly from the

eigenvalues and eigenvectors of this matrix. Examples

of these spectral measures for the percolation model

on the two-dimensional square lattice are shown in

figure 4.

4 Applications to Sea Ice

4.1 Percolation Theory

Given a sample of sea ice at temperature T in degrees

Celsius and bulk salinity S in parts per thousand (ppt),

the brine volume fractionφ is given (approximately) by

the equation of Frankenstein and Garner:

φ = S
1000

(
49.185
|T | + 0.532

)
. (6)

As temperature increases for fixed salinity, the volume
fraction φ of liquid brine in the ice also increases. The
inclusions become larger and more connected, as illus-
trated in parts (a)–(c) of plate 6, which show images of
the brine phase in sea ice (in gold) obtained from X-ray
tomography scans of sea ice single crystals.

As the connectedness of the brine phase increases
with rising temperature, the ease with which fluid can
flow through sea ice—its fluid permeability—should
increase as well. In fact, sea ice exhibits a percolation
threshold, or critical brine volume fraction φc, or crit-
ical temperature Tc, below which columnar sea ice is
effectively impermeable to vertical fluid flow and above
which the ice is permeable, and increasingly so as tem-
perature rises. This critical behavior of fluid transport
in sea ice is illustrated in plate 6(d). The data on the
vertical fluid permeability k(φ) display a rapid rise
just above a threshold value of about φc ≈ 0.05 or
5%, similar to the conductivity (or permeability) in fig-
ure 3(e). This type of behavior is also displayed by data
on brine drainage, with the effects of drainage shut-
ting down for brine volume fractions below about 5%.
Roughly speaking, we can refer to this phenomenon as
the on–off switch for fluid flow in sea ice. Through the
Frankenstein–Garner relation in (6), the critical brine
volume fraction φc ≈ 0.05 corresponds to a criti-
cal temperature Tc ≈ −5 ◦C, for a typical salinity of
5 ppt. This important threshold behavior has therefore
become known as the rule of fives.

In view of this type of critical behavior, it is reason-
able to try to find a theoretical percolation explanation.
However, with pc ≈ 0.25 for the d = 3 cubic bond
lattice, it was apparent that key features of the geom-
etry of the brine microstructure in sea ice were being
missed by lattices. The threshold φc ≈ 0.05 was iden-
tified with the critical probability in a continuum per-
colation model for compressed powders that exhibit
microstructural characteristics similar to sea ice. The
identification explained the rule of fives, as well as data
on algal growth and snow-ice production. The com-
pressed powders shown in figure 5 were used in the
development of so-called stealthy or radar-absorbing
composites.

When we applied the compressed powder model
to sea ice, we had no direct evidence that the brine
microstructure undergoes a transition in connected-
ness at a critical brine volume fraction. This lack of
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Plate 6 (V.17). An X-ray computed tomography volume rendering of brine layers within a lab-grown sea ice
single crystal with S = 9.3 ppt. The (noncollocated) 8 mm × 8 mm × 2 mm subvolumes (a)–(c) illustrate a
pronounced change in the microscale morphology and connectivity of the brine inclusions during warming
((a) T = −15 ◦C, φ = 0.033; (b) T = −6 ◦C, φ = 0.075; (c) T = −3 ◦C, φ = 0.143). (d) Data for the vertical fluid
permeability k taken in situ on Arctic sea ice, displayed on a linear scale. (e) Divergence of the brine correlation
length in the vertical direction as the percolation threshold is approached from below. (f) Comparison of Arctic
permeability data in the critical regime (twenty-five data points) with percolation theory in (7). In logarithmic
variables, the predicted line has the equation y = 2x−7.5, while a best fit of the data yields y = 2.07x−7.45,
assuming φc = 0.05. (Parts (a)–(d) are adapted from Golden, K. M., H. Eicken, A. L. Heaton, J. Miner, D. Pringle,
and J. Zhu. 2007. Thermal evolution of permeability and microstructure in sea ice. Geophysical Research
Letters 34:L16501. Copyright 2005 American Geophysical Union. Reprinted by permission of John Wiley &
Sons, Inc.)
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Rm

Rp

(a) (b) (c)

Figure 5 (a) A powder of large polymer spheres mixed with smaller metal spheres. (b) When the powder is compressed, its
microstructure is similar to that of the sea ice in (c). (Parts (a) and (b) are adapted from Golden, K. M., S. F. Ackley, and V. I.
Lytle. Science 18 December 1998:282 (5397), 2238–2241. Part (c) is adapted from CRREL report 87-20 (October 1987).)

evidence was partly due to the difficulty of imaging

and quantitatively characterizing the brine inclusions

in three dimensions, particularly the thermal evolution

of their connectivity. Through X-ray computed tomog-

raphy and pore structure analysis we have now ana-

lyzed the critical behavior of the thermal evolution of

brine connectedness in sea ice single crystals over a

temperature range from −18 ◦C to −3 ◦C. We have

mapped three-dimensional images of the pores and

throats in the brine phase onto graphs of nodes and

edges, and analyzed their connectivities as functions of

temperature and sample size. Realistic network mod-

els of brine inclusions can be derived from porous

media analysis of three-dimensional microtomography

images. Using finite-size scaling techniques largely con-

firms the rule of fives, as well as confirming that sea ice

is a natural material that exhibits a strong anisotropy

in percolation thresholds.

Now we consider the application of percolation

theory to understanding the fluid permeability of sea

ice. In the continuum, the permeability and conduc-

tivity exponents e and t can take nonuniversal values

and need not be equal, as in the case of the three-

dimensional Swiss cheese model. Continuum models

have been studied by mapping to a lattice with a prob-

ability density ψ(g) of bond conductances g. Nonuni-

versal behavior can be obtained when ψ(g) is singu-

lar as g → 0+. However, for a lognormal conductance

distribution arising from intersections of lognormally

distributed inclusions, as in sea ice, the behavior is

universal. Thus e ≈ 2 for sea ice.

The permeability scaling factor k0 for sea ice is esti-

mated using critical path analysis. For media with g in

a wide range, the overall behavior is dominated by a

critical bottleneck conductance gc, the smallest conduc-

tance such that the critical path {g : g � gc} spans the

sample. With most brine channel diameters between
1.0 mm and 1.0 cm, spanning fluid paths have a small-
est characteristic radius rc ≈ 0.5 mm, and we estimate
k0 by the pipe-flow result r2

c /8. Thus,

k(φ) ∼ 3(φ−φc)2 × 10−8 m2, φ→ φ+
c . (7)

In plate 6(f), field data with φ in [0.055,0.15], just
aboveφc ≈ 0.05, are compared with (7) and show close
agreement. The striking result that, for sea ice, e ≈ 2,
the universal lattice value in three dimensions, is due to
the general lognormal structure of the brine inclusion
distribution function. The general nature of our results
suggests that similar types of porous media, such as
saline ice on extraterrestrial bodies, may also exhibit
universal critical behavior.

4.2 Analytic Continuation

4.2.1 Bounds on the Effective Complex Permittivity

Bounds on ε∗, or F(s), are obtained by fixing s in
(5), varying over admissible measures μ (or admissible
geometries), such as those that satisfy only

μ0 = φ, (8)

and finding the corresponding range of values of F(s)
in the complex plane. Two types of bounds on ε∗ are
obtained. The first bound R1 assumes only that the rel-
ative volume fractions p1 = φ and p2 = 1 − p1 of
the brine and ice are known, so that (8) is satisfied. In
this case, the admissible set of measures forms a com-
pact, convex set. Since (5) is a linear functional of μ,
the extreme values of F are attained by extreme points
of the set of admissible measures, which are the Dirac
point measures of the form p1δz . The values of F must
lie inside the circle p1/(s − z), −∞ � z � ∞, and the
region R1 is bounded by circular arcs, one of which is
parametrized in the F -plane by

C1(z) = p1

s − z , 0 � z � p2. (9)
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To display the other arc, it is convenient to use the
auxiliary function

E(s) = 1 − ε1

ε∗
= 1 − sF(s)
s(1 − F(s)) , (10)

which is a Herglotz function like F(s), analytic off [0,1].
Then, in the E-plane, we can parametrize the other
circular boundary of R1 by

Ĉ1(z) = p2

s − z , 0 � z � p1. (11)

In the ε∗-plane, R1 has vertices V1 = ε1/(1 − Ĉ1(0)) =
(p1/ε1+p2/ε2)−1 andW1 = ε2(1−C1(0)) = p1ε1+p2ε2,
and collapses to the interval

(p1/ε1 + p2/ε2)−1 � ε∗ � p1ε1 + p2ε2 (12)

when ε1 and ε2 are real, which are the classical arith-
metic (upper) and harmonic (lower) mean bounds, also
called the elementary bounds. The complex elementary
bounds (9) and (11) are optimal and can be attained by a
composite of uniformly aligned spheroids of material 1
in all sizes coated with confocal shells of material 2, and
vice versa. These arcs are traced out as the aspect ratio
varies.

If the material is further assumed to be statistically
isotropic, i.e., if ε∗ik = ε∗δik, then μ1 = φ(1−φ)/dmust
be satisfied as well. A convenient way of including this
information is to use the transformation

F1(s) = 1
p1

− 1
sF(s)

. (13)

The function F1(s) is, again, a Herglotz function, which
has the representation

F1(s) =
∫ 1

0

dμ1(z)
s − z .

The constraint μ1 = φ(1 −φ)/d on F(s) is then trans-
formed to a restriction of only the mass, or zeroth
moment μ1

0, of μ1, with

μ1
0 = p2/p1d.

Applying the same procedure as for R1 yields a region
R2 whose boundaries are again circular arcs. When
ε1 and ε2 are real with ε1 � ε2, the region col-
lapses to a real interval, whose endpoints are known as
the Hashin–Shtrikman bounds. We remark that higher-
order correlation information can be conveniently
incorporated by iterating (13).

4.2.2 Inverse Homogenization

It has been shown that the spectral measure μ, which
contains all geometrical information about a compos-
ite, can be uniquely reconstructed if measurements of

the effective permittivity ε∗ are available on an arc
in the complex s-plane. If the component parameters
depend on frequency ω (not to be confused with real-
izations of the random medium above), variation of
ω in an interval (ω1,ω2) gives the required data.
The reconstruction of μ can be reduced to an inverse
potential problem. Indeed, F(s) admits a representa-
tion through a logarithmic potential Φ of the measure
μ,

F(s) = ∂Φ
∂s
, Φ(s) =

∫ 1

0
ln |s − z|dμ(z), (14)

where ∂/∂s = ∂/∂x − i∂/∂y . The potential Φ satisfies
the Poisson equation ΔΦ = −ρ, where ρ(z) is a density
on [0,1]. A solution to the forward problem is given
by the Newtonian potential with μ(dz) = ρ(z)dz. The
inverse problem is to find ρ(z) (or μ) given values of
Φ, ∂Φ/∂n, or ∇Φ. The inverse problem is ill-posed and
requires regularization [IV.4 §7] to develop a stable
numerical algorithm.

When frequency ω varies across (ω1,ω2), the com-
plex parameter s traces an arc C in the s-plane. Let A
be the integral operator in (14),

Aμ = ∂
∂s

∫ 1

0
ln |s − λ|dμ(λ),

mapping the set of measures M[0,1] on the unit inter-
val onto the set of derivatives of complex potentials
defined on a curve C. To construct the solution we con-
sider the problem of minimizing ‖Aμ−F‖2 over μ ∈ M,
where ‖·‖ is the L2(C)-norm, F(s) is the measured data,
and s ∈ C. The solution does not depend continuously
on the data, and regularization based on constrained
minimization is needed. Instead of ‖Aμ − F‖2 being
minimized over all functions in M, it is minimized over
a convex subset satisfying J(μ) � β for a stabilizing
functional J(μ) and some β > 0. The advantage of
using quadratic J(μ) = ‖Lμ‖2 is the linearity of the
corresponding Euler equation, resulting in efficiency
of the numerical schemes. However, the reconstructed
solution necessarily possesses a certain smoothness.
Nonquadratic stabilization imposes constraints on the
variation of the solution. The total variation penaliza-
tion, as well as a nonnegativity constraint, does not
imply smoothness, permitting more general recovery,
including the important Dirac measures.

We have also solved a reduced inverse spectral
problem exactly by bounding the volume fraction of
the constituents, an inclusion separation parameter q,
and the spectral gap of Γ χ1. We developed an algo-
rithm based on the Möbius transformation structure
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of the forward bounds whose output is a set of alge-
braic curves in parameter space bounding regions of
admissible parameter values. These results advance
the development of techniques for characterizing the
microstructure of composite materials, and they have
been applied to sea ice to demonstrate electromagneti-
cally that the brine inclusion separations vanish as the
percolation threshold is approached.

5 Geometry of the Marginal Ice Zone

Dense pack ice transitions to open ocean over a
region of broken ice termed the marginal ice zone
(MIZ), a highly dynamic region in which the ice cover
lies close to an open ocean boundary and where
intense atmosphere–ice–ocean interactions take place.
The width of the MIZ is a fundamental length scale for
polar dynamics, in part because it represents the dis-
tance over which ocean waves and swell penetrate into
the sea ice cover. Wave penetration can break a smooth
ice layer into floes, meaning that the MIZ acts as a buffer
zone that protects the stable morphology of the inner
ice. Waves also promote the formation of pancake ice,
as shown in plate 7. Moreover, the width of the MIZ
is an important spatial dimension of the marine polar
habitat and impacts human accessibility to high lati-
tudes. Using a conformal mapping method to quan-
tify MIZ width (see below), a dramatic 39% widening
of the summer Arctic MIZ, based on three decades of
satellite-derived data (1979–2012), has been reported.

Challenges associated with objective measurement
of the MIZ width include the MIZ’s shape, which is in
general not geodesically convex, as illustrated by the
shaded example in plate 8(a). Sea ice concentration (c)
is used here to define the MIZ as a body of marginal ice
(0.15 � c � 0.80) adjoining both pack ice (c > 0.80) and
sparse ice (c < 0.15). To define an objective MIZ width
applicable to such shapes, an idealized sea ice concen-
tration field ψ(x,y) satisfying laplace’s equation

[III.18] within the MIZ,

∇2ψ = 0, (15)

was introduced. We use (x,y) to denote a point in two-
dimensional space, and it is understood that we are
working on the spherical Earth. Boundary conditions
for (15) are ψ = 0.15 where MIZ borders a sparse ice
region and ψ = 0.80 where the MIZ borders a pack
ice region. The solutions to (15) for the examples in
parts (a) and (b) of plate 8 are illustrated by colored
shading. Any curve γ orthogonal to the level curves
of ψ and connecting two points on the MIZ perimeter
(a black field line through the gradient field ∇ψ, as in

plate 8(b)) is contained in the MIZ, and its length pro-
vides an objective measure of MIZ width (-). Defined
in this way, - is a function of distance along the MIZ
perimeter (s) from an arbitrary starting point, and this
dependence is denoted by - = -(s). Analogous appli-
cations of Laplace’s equation have been introduced in
medical imaging to measure the width or thickness of
human organs.

Derivatives in (15) were numerically approximated
using second-order finite differences, and solutions
were obtained in the data’s native stereographic projec-
tion since solutions of Laplace’s equation are invariant
under conformal mapping. For a given day and MIZ,
a summary measure of MIZ width (w) can be defined
by averaging - with respect to distance along the MIZ
perimeter:

w = 1
LM

∫
M
-(s)ds, (16)

where M is the closed curve defining the MIZ perime-
ter and LM is the length of M . Averaging w over July–
September of each available year reveals the dramatic
widening of the summer MIZ, as illustrated in plate 8(c).

6 Geometry of Arctic Melt Ponds

From the first appearance of visible pools of water,
often in early June, the area fraction φ of sea ice cov-
ered by melt ponds can increase rapidly to over 70% in
just a few days. Moreover, the accumulation of water
at the surface dramatically lowers the albedo where
the ponds form. There is a corresponding critical drop-
off in average albedo. The resulting increase in solar
absorption in the ice and upper ocean accelerates melt-
ing, possibly triggering ice–albedo feedback. Similarly,
an increase in open-water fraction lowers albedo, thus
increasing solar absorption and subsequent melting.
The spatial coverage and distribution of melt ponds
on the surface of ice floes and the open water between
the floes thus exerts primary control of ice pack albedo
and the partitioning of solar energy in the ice–ocean
system. Given the critical role of ice–albedo feedback
in the recent losses of Arctic sea ice, ice pack albedo
and the formation and evolution of melt ponds are of
significant interest in climate modeling.

While melt ponds form a key component of the Arc-
tic marine environment, comprehensive observations
or theories of their formation, coverage, and evolution
remain relatively sparse. Available observations of melt
ponds show that their areal coverage is highly vari-
able, particularly for first-year ice early in the melt sea-
son, with rates of change as high as 35% per day. Such



Plate 7 (V.17). Ocean swells propagating through a vast
field of pancake ice in the Southern Ocean off the coast of
East Antarctica (photo by K. M. Golden). These long waves
do not “see” the individual floes, whose diameters are on
the order of tens of centimeters. The bulk wave propaga-
tion characteristics are largely determined by the homog-
enized or effective rheological properties of the pancake/
frazil conglomerate on the surface.
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Plate 8 (V.17). (a) Shading shows the solution to Laplace’s equation within the Antarctic MIZ (ψ) on August 26,
2010, and the black curves show MIZ width measurements following the gradient ofψ (only a subset is shown
for the sake of clarity) (courtesy of Courtenay Strong). (b) Same as (a) but for the Arctic MIZ on August 29, 2010.
(c) Width of the July–September MIZ for 1979–2011 (red curve). Percentiles of daily MIZ widths are shaded
dark gray (25th to 75th) and light gray (10th to 90th). Results are based on analysis of satellite-derived sea
ice concentrations from the National Snow and Ice Data Center. (Parts (b) and (c) are adapted from Strong, C.,
and I. G. Rigor. 2013. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical
Research Letters 40(18):4864–68.)
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Figure 6 (a) Area–perimeter data for 5269 Arctic melt
ponds, plotted on logarithmic scales. (b) Melt pond frac-
tal dimension D as a function of area A, computed from
the data in (a). Ponds corresponding to the three black
stars in (a), from left to right, are denoted by (c), (d),
and (e), respectively, in the bottom diagram. The transi-
tional pond in (d) has a horizontal scale of about 30 m.
(Adapted from Hohenegger, C., B. Alali, K. R. Steffen, D. K.
Perovich, and K. M. Golden. 2012. Transition in the fractal
geometry of Arctic melt ponds. The Cryosphere 6:1157-–62
(doi:10.5194/tc-6-1157-2012).)

variability, as well as the influence of many competing
factors controlling the evolution of melt ponds and ice
floes, makes the incorporation of realistic treatments
of albedo into climate models quite challenging. Small-
and medium-scale models of melt ponds that include
some of these mechanisms have been developed, and
melt pond parametrizations are being incorporated
into global climate models.

The surface of an ice floe is viewed here as a two-
phase composite of dark melt ponds and white snow or
ice. The onset of ponding and the rapid increase in cov-
erage beyond the initial threshold is similar to critical
phenomena in statistical physics and composite mate-
rials. It is natural, therefore, to ask if the evolution of
melt pond geometry exhibits universal characteristics
that do not necessarily depend on the details of the
driving mechanisms in numerical melt pond models.
Fundamentally, the melting of Arctic sea ice is a phase-
transition phenomenon, where a solid turns to liquid,
albeit on large regional scales and over a period of time
that depends on environmental forcing and other fac-
tors. We thus look for features of melt pond evolu-
tion that are mathematically analogous to related phe-
nomena in the theories of phase transitions and com-
posite materials. As a first step in this direction, we
consider the evolution of the geometric complexity of
Arctic melt ponds.

By analyzing area–perimeter data from hundreds of
thousands of melt ponds, we have discovered an unex-
pected separation of scales, where the pond fractal
dimension D exhibits a transition from 1 to 2 around a
critical length scale of 100 m2 in area, as shown in fig-
ure 6. Small ponds with simple boundaries coalesce or
percolate to form larger connected regions. Pond com-
plexity increases rapidly through the transition region
and reaches a maximum for ponds larger than 1000 m2,
whose boundaries resemble space-filling curves with
D ≈ 2. These configurations affect the complex radi-
ation fields under melting sea ice, the heat balance of
sea ice and the upper ocean, under-ice phytoplankton
blooms, biological productivity, and biogeochemical
processes.

Melt pond evolution also appears to exhibit a per-
colation threshold, where one phase in a composite
becomes connected on macroscopic scales as some
parameter exceeds a critical value. An important exam-
ple of this phenomenon in the microphysics of sea ice
(discussed above), which is fundamental to the pro-
cess of melt pond drainage, is the percolation tran-
sition exhibited by the brine phase in sea ice, or the
rule of fives discussed on page 697. When the brine
volume fraction of columnar sea ice exceeds approx-
imately 5%, the brine phase becomes macroscopically
connected so that fluid pathways allow flow through
the porous microstructure of the ice. Similarly, even
casual inspection of the aerial photos in plate 9 shows
that the melt pond phase of sea ice undergoes a perco-
lation transition where disconnected ponds evolve into
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much larger-scale connected structures with complex
boundaries. Connectivity of melt ponds promotes fur-
ther melting and the breakup of floes, as well as hor-
izontal transport of meltwater and drainage through
cracks, leads, and seal holes.
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V.18 Numerical Weather Prediction
Peter Lynch

1 Introduction

The development of computer models for numeri-
cal simulation and prediction of the atmosphere and
oceans is one of the great scientific triumphs of the
past fifty years. Today, numerical weather prediction
(NWP) plays a central and essential role in operational
weather forecasting, with forecasts now having accu-
racy at ranges beyond a week. There are several rea-
sons for this: enhancements in model resolution, better
numerical schemes, more realistic parametrizations of
physical processes, new observational data from satel-
lites, and more sophisticated methods of determining
the initial conditions. In this article we focus on the fun-
damental equations, the formulation of the numerical
algorithms, and the variational approach to data assim-
ilation. We present the mathematical principles of NWP
and illustrate the process by considering some specific
models and their application to practical forecasting.

2 The Basic Equations

The atmosphere is governed by the fundamental laws
of physics, expressed in terms of mathematical equa-
tions. They form a system of coupled nonlinear partial


