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The critical behavior of the effective conductivity d* of the random resistor net- 
work in Zd, near its percolation threshold, is considered. The network has bonds 
assigned the conductivities 1 and E 2 0 in the volume fractions p and 1 -p. Moti- 
vated by the statistical mechanics of an Ising ferromagnet at temperature T in a 
field H, we introduce a partition function and free-energy for the resistor network, 
which establishes a direct correspondence between the two problems. In particular, 
we show that the free energies for the resistor network and the Ising model both 
have the same type of integral representation, which has the interpretation of the 
complex potential due to a charge distribution on [0, l] in the s = l/( 1 -e) plane for 
the resistor network, and on the unit circle in the z=exp(-2/3H) plane for the 
ferromagnet. Based on this correspondence, we develop a Yang-Lee picture of the 
onset of nonanalytic behavior of the effective conductivity o*, so that the percola- 
tion threshold p=pc is characterized as an accumulation point of zeros of the 
partition function in the complex p-plane as E -+ 0. A scheme is developed to find 
the locations of a certain sequence of zeros in the p-plane, which is based on Pad& 
approximation of a perturbation expansion of dr(p,e) around a homogeneous me- 
dium (E= 1). Furthermore, for E > 0, we construct a domain sc containing [0, l] in 
the p-plane in which ti(p,e) is analytic, and which collapses as E + 0. The explicit 
construction of this domain allows us to obtain a lower bound on the size of the gap 
in zeros of the partition function around the percolation threshold p =pc , which 
leads to the gap exponent inequality Asl. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Systems which exhibit phase transitions have occupied a central place in statistical physics for 
a long while. One large class of such systems appearing in a wide variety of applications are 
conducting random media near the percolation threshold. The transport properties of these systems 
exhibit critical behavior near the threshold, and the medium undergoes an insulating/conducting 
phase transition there. Examples of such media include doped semiconductors, thermistors, com- 
posite conductors, brine-filled rocks, and sea ice. Perhaps the oldest model used to study transport 
in these types of percolating systems is the random resistor network in Zd, whose bonds have 
conductivity 1 with probability p or E L 0 with probability 1 -p.lm4 When e=O, the effective 
conductivity (I*@+) exhibits an insulating/conducting phase transition at the percolation threshold 
p,(=f in d=2), with ti(p,O)=O for pSpc, and a*(p,O)-(p-p,)’ as p+pc+. Straley5’6 first 
proposed that the critical behavior exhibited by the effective conductivity 6*(p,e) at pc was 
analogous to that exhibited by a ferromagnet at its Curie point. In particular, the magnetization 
M(T,H) of an Ising ferromagnet at temperature T in a magnetic field H vanishes when H=O for 
TZT,, yet obeys LV(T,O)-(T,-T)~ as T+T,-. Connections between the scaling theories of 
these two models was further investigated in Ref. 7. 

While many general techniques of statistical physics have been brought to bear on the random 
resistor network and related models, the very basic question of the development of singular 
behavior in the infinite volume limit, or as E -+ 0, is not well understood for conducting random I 
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media. For Ising ferromagnets, the Yang-Lee theory*-” provides a beautiful picture of the onset 
of nonanalytic behavior in terms of the zeros of the partition function. Regions in the complex H- 
or T-planes (containing a real segment) which remain free of zeros in the infinite volume limit 
cannot contain phase transition points. Typically, these transition points on the real H- or T-axes 
are characterized as accumulation points of zeros in an appropriate limit. In the H-plane, the 
Lee-Yang theorem’ states that the zeros must lie on the imaginary axis Re (H) =O, so that a phase 
transition can occur only at H =O. In the T-plane, the situation is somewhat more complex, as was 
pointed out independently by Fisher” and Jones.12 For the two-dimensional Ising model in zero 
magnetic field, Fisher” has shown that these zeros must lie on two circles in the complex 
u =tanh(2pJ) plane, where J is the inte{action. In Ref. 13 the locations of some of these so-called 
“Fisher’s zeros” were calculated numerically. Zeros of the partition function in the T-plane have 
also been investigated for other models, including random energy and hierarchical models.14-‘9 

For conducting random media, it has been established20-22 that dr(p,~) is analytic in E off the 
negative real axis, which is similar to the above Lee-Yang theorem in the H-plane. Analogous 
questions in the p-plane have been addressed23 and appear to be more complex than in the 
e-plane. In these previous works, however, it was not clear how the similarities between the 
conductivity and Ising problems could shed light on the development of singular behavior of 
&((P,E) near percolation. In this work, we show that the statistical mechanical framework of the 
partition function and free energy can be set up directly for conductivity, so that a Yang-Lee 
picture for the onset of nonanalytic behavior can be developed for these types of problems. Our 
definitions of the partition function and free energy for conductivity, where there is no Hamil- 
tonian, are based only on the Herglotz property of ti(p,e), established in Refs. 20-22. Conse- 
quently, our framework for critical behavior holds also for other transport problems lacking a 
Hamiltonian, such as porous media, heat conduction, electrical permittivity, and advection/ 
diffusion in a turbulent fluid,24,25 where the effective parameters are Herglotz functions of appro- 
priate variables. 

Through the introduction of our partition function and free energy for conductivity, we are 
able to establish a direct connection between Ising and conductivity models. The Lee-Yang 
theorem for Ising ferromagnets enables one to represent the finite volume partition function Z,(z) 
with “activity” z =exp( -2PH) in terms of a product of factors (z - z,), where the zeros z, lie on 
the unit circle in the z-plane. The thermodynamic limit f of the corresponding free energies f,v has 
an integral representation in the z-plane involving a positive measure Y on the unit circle. This 
representation gives f the interesting interpretation’ as the complex potential in two dimensions 
due to charges distributed according to V. The magnetization M( T,H) is related to f via M = - df! 
dH. In this framework, zeros of ZN(z) correspond to poles of the magnetization. For conductivity 
we now have a similar picture. For finite samples of the resistor network, the effective conduc- 
tivity has a finite number of poles s, lying on [0, l] in the s = I/( 1 - 6) plane.20-22 Analogous to the 
Ising model, we introduce a finite volume partition function .zN(s) as a product of the factors 
(s - sn) . The infinite volume limit Cp of the corresponding free energies @, then has in the s-plane 
the same type of integral representation as f for the Ising model in the z-plane, except v is 
replaced by a positive measure p on the interval [0, I]. The conductivity cr* = 1 -F is related to Q, 
via F= d@lds. 

Our framework then allows us to pursue a Yang-Lee analysis for conduction problems. In the 
s-plane the zeros are of course restricted to the unit interval [0, 11. However, in the p-plane the 
situation is more complicated, as with the Ising model in T. For conduction, the positions of the 
zeros s, in [0, 11 depend on p, which correspond to singularities of the effective conductivity in 
the p-plane, located at the roots of the equations s-s,(p)=O. For E > 0, these roots, which are 
the zeros of &i?&(p), must lie off of [0, l] in the complex p-plane. As one takes the infinite volume 
and E --+ 0 limits, the percolation threshold p =pc is characterized as an accumulation point of 
zeros of ,EN(p,e) in the p-plane, which form analogs of Fisher’s zeros for conductivity. Analo- 
gously, E = 0 is characterized as an accumulation point of the zeros of a,,,(~, E) in the E -plane. 
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While the direct calculation of the zeros of 5&(p) in the p-plane as formulated above is a 
difficult problem, we will briefly look at numerically characterizing the onset of nonanalytic 
behavior in an alternate way. Since singular behavior on the real p-axis is attained only in the 
infinite volume and E -+ 0 limits, there are various ways of constructing sequences of functions 
which converge to ti(p,e = 0). Different sequences of approximants may have different locations 
of zeros in the p-plane, but we are only interested in those for which the zeros accumulate around 
p =pc . Here we look at Pade approximants to a perturbation series expansion of dr(p,e) around 
a homogeneous medium. This sequence of rational functions in (1 -e) has coefficients which are 
polynomials in p. The zeros of the denominators correspond to the zeros of the corresponding 
sequence of partition functions EN(p, E) . Here, we only consider the perturbation expansion up to 
fourth order in d=2, which yields two zeros in the p-plane. Nevertheless, we are able to see these 
zeros move in the direction of p =pC = i as E -+ 0. Further numerical work on this approach is 
required. In this same spirit, we examine the simple but illustrative d = 1 case, which can be solved 
exactly, so that the behavior of the zero can be examined directly. 

As transition points on the real axis are “pinched” by the zeros, a natural question is how fast 
do the zeros approach the real axis in a particular singular limit. For models in statistical mechan- 
ics, this question has been examined in detail, for example, in Ref. 26. The approach of the zeros 
is measured by the decay of a “gap” centered around a critical point on the real axis. This gap 
measures the distance from the critical point to the nearest zero. For conducting random media, we 
study the behavior of the gap in the p-plane as E + 0 (where the infinite volume limit has already 
been taken). In particular, we find a domain .9< in the p-plane on which dF(p,e) is analytic in p 
for E > 0 (or more generally, for IE- I]< 1 with complex 6). As E + 0, .L?&+[O, l] so that analy- 
ticity in p is lost. Any nonanalytic behavior of ti(p,e) in the p-plane for E > 0 [which corre- 
sponds to the limiting configuration of zeros of ZN(p,e) as N--+cc~] must occur outside of this 
domain, so that L& around p =pc provides a “lower bound” on the gap around p =pc extending 
in the Im (p) direction. More precisely, if we assume that the gap can be measured by a parameter 
0, which decays to 0 as E + 0 like t9-E *, then a consequence of the explicit construction of SE 
is the inequality Asl. Furthermore, the result establishes rigorously that no phase transition can 
occur when E > 0. The proof relies on establishing uniform convergence of the perturbation 
expansion of ~(P,E) around a homogeneous medium E= 1. Weaker forms of this result were 
proven in Refs. 27 and 28. 

We remark that Bruno29 has proven a type of “gap” theorem in the E -plane, which holds for 
separated inclusions of zero conductivity, away from the percolation threshold. In the E -plane, the 
singularities of dc on the negative real axis correspond to the spectrum of a self-adjoint operator 
determined by the microstructural geometry. For certain types of inclusions, the collapse of the 
gap (to the left of zero on the negative real axis) as they begin to touch can be studied. Bruno used 
the spectral gap to derive bounds on dh in the real case, and Sawicz and Golden3’ have used it to 
obtain bounds on the complex permittivity of sea ice. 

It is also interesting to remark that if one views recent results on the random checkerboard in 
two dimensions3’.32 in terms of the ferromagnetic analogy, then we see for continuum problems 
that the phase transition point can be “smeared out” over an interval on the real p-axis. In 
particular, the quantity which corresponds to the magnetic susceptibility x= dM/dH diverges for p 
throughout an interval, not just at a particular p( =p,) as in the case of the lattice. 

Finally, we note that for any finite graph, the generating function for spanning trees33 has been 
observed34 to play a role similar to that of the partition function in statistical mechanics. There the 
effective resistance of the network can be written as a logarithmic derivative of the generating 
function, where the variable of differentiation is the conductivity of a specially designated “bat- 
tery bond,” which plays the role of the applied field for the Ising model. In our formulation the 
variable is the conductivity of the nearly insulating phase in the random medium. Our 22&p, E) 
appear to be different from the tree generating functions. 
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II. ANALYTIC PROPERTIES OF EFFECTIVE CONDUCTIVITY AND MAGNETIZATION 

We first formulate the effective conductivity problem for a general stationary random medium 
in the continuum, and then point out the modifications for the random resistor network.22828 
Subsequently, we briefly review Ising ferromagnets. 

Let (C&P) be a probability space and u (x,w) be a stationary stochastic process in x E Rd and 
PER. The space fl represents the set of all realizations of our random medium, and P is a 
probability measure on fi which is compatible with the stationarity, i.e., it is invariant under the 
translation group rY: Q-AT! defined by T,,w(x)=o(x+~), Vx,y=Rd, WIZ~. We consider two- 
component media, so that CT(X,O) takes two values (+t and CT*, and can be written as 

a(x,o)=a,Xl(x,o)+~*X*(X,~), (1) 

where the characteristic function xj(x, w) equals 1 for all realizations w which have medium j at 
x, j= 1,2, and equals 0 otherwise. Let E(x,w) and J(x,o) be stationary random electric and 
current fields satisfying 

4&~)=4x,o)E(x,w), (2) 

V*J(x,o)=O, (3) 

VXE(x,o)=O, (4) 

(E(w)) = j-/Yd4E(x.w) = ek, (5) 

where ek is a unit vector in the kth direction. In (2) and (4) the differential operators dlaxi are 
replaced by the infinitesimal generators Di of the unitary group T, acting on L*(fl,P) via 
(TX f )(~)=f(~p)=f(x,~), for any f eL*(R,P), which is a stationary process on Rd and Sz. 
By stationarity, we may focus attention at x=0, and subsequently drop the x-notation. 

In view of (2), the effective conductivity tensor u* may now be defined as 

(J(~))=~(E(~)), 

so that the coefficients aTk can be written as 

(6) 

(7) 

where E;(w) is the jth component of Ek satisfying (2)-(5). We shall restrict our attention to 
isotropic media, where @Tk = u*6jk, and pick out a diagonal coefficient 

u*="&= nP(dw)[a,x,(w)+azx,(o)lE:(w). J 63) 

Since 6* is homogeneous of degree 1, i.e., 

u*(Xa~,Xu*)=Xu*(u~,u*), 

it suffices to let 

and consider the function 

UI=E, a*= 1, 

(9) 

(10) 
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m(d=g*= nP(dw)[~xl(w)+x~(0)IE:(w). I 

5631 

00 

It has been established20-22 that 

m(e) is analytic everywhere in the E -plane except (-co, 01, the negative real axis. 
(12) 

Furthermore, from the symmetric, or variational formulation of dr, 

m(e)= 
s 

P(do)[qI+x2]Ek.2, 
n 

where the overbar denotes complex conjugation, we see that m maps the upper half-plane to the 
upper half-plane, i.e., 

Im( e)>O*Im(m(g))>O. (14) 

The two key properties (12) and (14) of m(e) allow it to be classified as a Herglotz function. 
A most useful consequence of the Herglotz property is that such functions have a convenient 
integral representation. To exhibit the formula, it is simpler to consider the function 

1 
F(s)= 1 -m(h), s= l--E, 

which is analytic off [O, 11 in the s-plane. It has been proven*’ that F(s) has the integral repre- 
sentation 

F(s)= S$[O, 11, 

where p is a positive Bore1 measure on [0, 11. This representation can be proved either as a 
consequence of the Herglotz theorem in analytic function theory3’ or by applying the spectral 
theorem to the resolvent representation 

F(s)= 
I nP(dw)Xl[(s+rX1)-lekl'ek. 

In (17), T=V(-A)-‘V., with the differential operators again replaced by the generators of trans- 
lations on Cl. In the Hilbert space L*(fi, P) with xi in the inner product, Ix1 is a bounded 
self-adjoint operator with norm less than or equal to 1. Then (16) is the spectral representation of 
the resolvent (S +lYxt)-‘, where p is the spectral measure of the family of projections associated 
with rxr. It is important to note that in (16), the parameter information s = l/( 1 -e) is separated 
from the geometry information (,yr), which is all contained in the measure p. 

In the investigation of analyticity of dF, it will be necessary to consider a perturbation 
expansion of dr around a homogeneous medium e= 1 or s =w. By expanding the integrand of (16) 
for Is] > 1 in powers of l/s, we obtain 

F(s)= $+ $+ F+*** , (18) 

where the pj are the moments of the measure CL, 
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Pj= 
I 

bzj dp(z)aO. (19) 

By equating (18) to the same expansion of (17) around s=m, one obtains 

pj=(-1)’ 
I n 

P(do)[X,(rXl)‘ekl.ek. 

Clearly, for any medium, we have 

ruo”P1, 

the relative volume fraction of ar=e. When the medium is isotropic, ,~i can be calculated as 
we11,22,28 with 

In general, ,x~ depends on the (n + 1)-point correlation function of the medium under consider- 
ation. 

In the case of the random resistor network in Zd, where the bonds are independently assigned 
the conductivities 1 with probability p and e 2 0 with probability 1 -p, then the above formula- 
tion holds with minor but important differences. The key feature of the resistor network which 
distinguishes it from general random media in the continuum is that once p is fixed, the measure 
,u in (16) (as well as all of its moments) is completely determined. There is no further geometry 
to specify, as in the general continuum case. This exclusive dependence on p is true also for cell 
materials in the continuum, such as the random checkerboard in d=2, where all space is divided 
up into unit squares, which are then assigned conductivities in the same way as the bonds for the 
random resistor network. In general, once the geometry of the cell is fixed, ti depends only on p. 

The setup for the resistor network problem is the same except the unitary translation group is 
generated by composition of the operators T,? = Tfei and T; = T-,., where ei is a unit vector 
in the ith direction. Then the differential operators in (3) and (4) are replaced by forward and 
backward difference operators, 

D+=T,%, (23) 

D;=T;-I, (24) 

where I is the identity operator and i= 1 , . . . ,d. Equations (3) and (4) become Kirchhoff’s laws: 

(25) 

D+Ej(w)-DfE;(w)=O. (26) 

In the resolvent representation (17) and the moment formulas (20), the operator l? is replaced by 

r=v+(-A)-Iv-., (27) 

where the difference operators in (23) and (24) replace the differential operators in V. The inverse 
Laplacian (-A)-' can be expressed as convolution with the lattice Green’s function. For the d =2 
square lattice, the first four moments of p have been calculated explicitly,28 
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PC1 -PI 
#4)=1-p, p1=- 

PC1 -P) P(l-P)cl+P(l-P)l 
2 9 I=*- 4 --3 p3= 8 , (28) 

where p =p2 and the probability of a2= 1. 
In order to motivate our analysis of the development of singular behavior of a*(p,e), we 

formulate the problem of finding the magnetization M(T, H) of an Ising ferromagnet at tempera- 
ture T in a field H. We consider a finite box hCZd containing N sites. At each site there is a spin 
variable si which can take the value + 1 or - 1. We consider a Hamiltonian with ferromagnetic 
pair interaction J>O between nearest-neighbor pairs, 

Bm=-J,IIj SiSj-Hx Si, 
1. i 

(29) 

for any configuration WE a={- l,l}‘v of the spin variables. The canonical partition function 2, is 
given by 

ZN( T, HI = uTa exp( - P%a) = exp( - PNf N), (30) 

where p= MT, k is Boltzmann’s constant, and fN is the free energy per site, 

-1 
fiv(T, HI= PN log Z,(T,H). (3 1) 

We are interested in the infinite volume limit f(T, H) of (31), 

f(T, H)= limfiv(T,H). (32) 
N-m 

Then the average magnetization in the infinite volume limit 

kf(T, H)= limMN(T, H)= lim L , 
N-tm w 

(33) 

where (s), denotes average over o E fi with Gibbs’ weights, can be expressed in terms of the free 
energy as 

M(T, H)=--$. 

The magnetic susceptibility x(T, H) is given by 

2 

x(T, H)=g=--$O. 

(34) 

(35) 

Now, to present the Lee-Yang theorem for ferromagnets,” we consider the slightly modified 
Hamiltonian 

e%L=-J(Tj SiSj-HC (Si-1). 
1, i 

(36) 
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It is easy to see that the partition function Z,,, in (30) for this Hamiltonian can be written as an 
Nth-order polynomial 

in the “activity” 

z=exp( -2PH). (38) 

This polynomial has the following remarkable property, which is the analog of (12) for Ising 
ferromagnets. 

Theorem 1 (Lee-Yang): If 0-0, then Z,=O implies z lies on the unit circle ]z] =I or, 
equivalently, H lies on the imaginary axis Re (H)=O (with real /3). Then (37) can be written as 

N 
zN(z)=uNnUl (z-z,), 1z,1=1, (39) 

where aN=exp(cNPJ) and cN is the number of nearest neighbor pairs in A. 
The product representation (39) can be used to derive a useful integral representation for the 

free energy f( T, H). Inserting (39) into the definition of the finite volume free energy fN( T, H) 
in (31), we obtain 

N 1 
fN(T, H)=-I C -log (z-z,)mL 

p n=l N PN 
log UN. 

In the thermodynamic limit, the zeros z, get “smeared out” according to some positive measure 
u. Using the fact that cN -2dN as N-W for nearest neighbors, the free energy in the thermody- 
namic limit can be expressed as 

f(T, H)= + i,=l lo&z-t)dv(t)-2d/3J. (41) 

The integral in (41) has the interpretation’ of the complex electrostatic potential in two dimensions 
due to charges distributed according to the measure v on the circle. [The constant in (41) is 
different than in Refs. 9 and 26 since we have a slightly modified Hamiltonian.] In fact, we have 
via (34) the following 

(42) 

which shows how zeros of the partition function are connected to poles of the magnetization. 
It is interesting to note that, based on the above considerations, a Herglotz representation for 

the magnetization has been found and exploited by Bake?’ [for the Hamiltonian in (29)], 

G( 4 = loA p+“i’l, , 

where A PO, I+ is a positive measure on [0, A], 

(43) 

M--7 
G(d= 7(1-72)r (44 
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and 

r= canh( /?H). (45) 

The integral representation in (43) immediately leads to the inequalities 

GaO, (46) 

(48) 

where u =p. IC is interesting to compare (46)-(48) with analogous inequalities derived from (16) 
for s>l or O<E< 1, 

FaO, (49) 

(51) 

In the magnetic case, (48) is just the GHS inequality.36 In the conducting case, (51) is a macro- 
scopic version of the fact that the effective resistance of a finite network is a concave downward 
function of the resistances of the individual network elements.37 It is interesting to note that this 
theorem was discovered after many unsuccessful attempts at obtaining a rheostat having resistance 
that was a concave upward function of the shaft angle, which was needed in the development of 
the computer. 

As a final note in this section, we observe that some recent results on continuum percolation 
models, namely the random checkerboard in d=2, suggest that in the continuum, a “phase tran- 
sition” can be smeared out, rather than occur at a single point. In the random checkerboard model, 
the plane is divided into unit squares, each of which is assigned the conductivities 1 with prob- 
ability p and E with probability 1 -p. Recent work32 has shown that there is a surprising exact 
result for the leading-order term of the effective conductivity dr(p,e) as E -+ 0, when 
p E (1 -pCs,pCs), where pCs= 0.59 is the site percolation probability. Namely, we have found that 
cr*(p, E) = &+0(e) as E -+ 0 for all p in this interval. Now, for ferromagnets, the susceptibility 
is x=dMIt?H, and the corresponding quantity for conduction is xc=&?/&. For the Ising ferro- 
magnet on the lattice, and the random resistor network in d =2, the susceptibilities diverge only at 
the critical point. For the bond lattice resistor network in d=2, this occurs only at p =pC = f, 
where ti(p =$,E)= $ E, so that ,yC--+m as E --+ 0. However, for the random checkerboard in d =2, in 
view of the above result, we see that ,yC--+~ as E -+ 0 for all p E ( 1 -p,“,p,“). 

Ill. DEVELOPMENT OF SINGULAR BEHAVIOR FOR THE EFFECTIVE CONDUCTIVITY 

To help understand the onset of nonanalytic behavior of dh near the percolation threshold 
P”Pc* E = 0, we now introduce a partition function and free energy for conductivity problems. 
For any finite resistor network, the effective conductivity has a finite number of poles s, E [0, l] in 
the s = l/( 1 - 6) plane.20-22 In view of (39), we define a partition function for conductivity as 
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N 

aN(s’=n~l (s-s,), S,E[O, 11, (52) 

so that these poles become the zeros of zN(S). In view of (3 l), we define the corresponding finite 
volume free energy as 

@N(S)=; log &-N(s). 

We then define Q(s) to be the thermodynamic limit of the @N(s), 

(53) 

Q(s)= lim @N(S), (54) 
N-r,= 

or 

N 1 
<P(s)= lim 2 - log(s-s,). 

N+m”=1 N 
(55) 

For the random resistor network the locations of the poles (or zeros) s, depend on p. As the 
thermodynamic limit is taken, the poles may become smeared out, according to some positive 
measure p, which of course depends on p, so that we now may write explicitly 

log(s-t)dp(t). (56) 

This representation for the free energy is the analog of (41) for conductivity and has the interpre- 
tation of the complex electrical potential in two dimensions due to charges on [0, I] distributed 
according to the measure p. As for the Ising model in (34), we can recover the effective conduc- 
tivity ti = 1 -F via the relation 

a@ 
F(PJ) = ds, 

so that 

(57) 

(58) 

We note that our definitions of the partition function and free energy can be defined for any 
Herglotz function with a representation like (58) 

It is important to remark that any conductivity function of the form (58) or any free energy of 
the form (56) can be obtained from a limit of sums of Dirac point measures of the form 

where the “residues” q, and support points s, satisfy 

li* %=1-P, ff,30, S,ECO, 1). 

(59) 

(60) 
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For a finite sample of the random resistor network, the a;, and s, are functions of p, and the 
sample size. [The condition that s, # 1 is a reflection of the physical condition that F( s = 1) G 1.1 
Mathematically, the measures in (59) are important because any positive Bore1 measure on [0, l] 
can be expressed as a weak*-limit of these measures. In particular, the measure ,u characterizing 
the infinite volume limit of the random resistor network is a limit of such finite volume approxi- 
mants. 

Now, in order to create a scheme which can illustrate the onset of nonanalytic behavior in the 
p-plane, we consider a sequence of approximants to F(p,s) based on the simple Dirac measures 
in (59). The sequence that we consider, however, is not based on increasing volume, but is a 
sequence of Padd approximants to the perturbation series in (18). Then the accumulation of zeros 

‘toward the percolation threshold should, in principle, take place as one incorporates higher and 
higher order correlation information about the medium, and as E 4 0. We note that in this ap- 
proach, we are already working in the infinite volume limit. This sequence of functions has been 
discussed in some detail in the context of bounds on effective parameters in a number of works, 
including Refs. 38 and 39. 

We construct a sequence FN(p,s) of approximants to F(p,s) as follows. Let 

N 

FN(PJ)="~~ s:;";;,. 
n 

(61) 

TO determine the masses a,(p) and pole locations s,(p), we equate F,(p,s) to the perturbation 
expansion 

cc*(P) /h(P) cL2(P) 
F(PJ) = - S +p+s,+-*, (62) 

assumed known to order 2N. Since the CL,(P) for the random resistor network are polynomials in 
p, the s,(p) are polynomials in p as well, and the roots of the equations 

s,Jp)=s, n= l,..., N, (63) 

form the poles of FN in the p-plane, or the corresponding zeros of Z;N . Since s,(p) E[O, I) when 
p E [0, 11, s> 1 implies that the poles must stay away from the interval [0, l] in the p-plane for 
finite N. 

To illustrate the procedure, we calculate the zeros for N= 1 and N=2 for the d =2 random 
resistor network. For N = 1, we assume that the perturbation expansion (62) is known only to 
second order, 

1 -p + P( 1 -p)/2 
F(p,s) = - 

S2 
+ . . . ., 

S 
(64) 

For F, we obtain 

(65) 

which is just the [0, l] Padd approximant to the series in (64). (An [n, m] Padd approximant to a 
power series expansion is a rational function whose numerator is a polynomial of order n and 
whose denominator is a polynomial of order m.) In more standard Padd notation, in the variable 
u = 1 /s, (65) is the [ 1, l] Padd approximant to this series. Clearly the lone zero of the denominator 
is at p = 2s, so that even when e = 0 or s = 1, the closest this zero comes to the interval [0, l] is 
p=2. 
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FIG. 1. Three pairs of zeros of Z,(p,.z) in the complex p-plane for e = 0.1, 0.05, and 0. As e -+ 0, the zeros move in the 
direction of pC = 4. 

For N=2, we assume that the perturbation expansion is known to fourth order, 

l -p + PC 1 -pv2 + PC 1 -p)/4 + PC 1 -p)[ 1 +p( 1 -p)]/8 + 
F(P,s)= - 

S4 
. . . 

S S2 S3 
(66) 

NOW, to obtain F,(p,s), which is the [ 1, 21 Pad& approximant to the series in (M), we use Maple, 
resulting in 

F,(PJ) = 
2(1-pb-(l-p) 

2sz-( 1 -p)s+p?2 

so that 

* 
(68) 

Again, in more standard Padd notation, in the variable u = l/s, (67) is the [2, 21 Pade approximant 
to the series (66). Now, to obtain the zeros of Z2(p,s) in the p-plane, we view the denominator 
as a quadratic polynomial in p, and use Maple again to find its roots as functions of s (or E). In 
Fig. 1, we have plotted these zeros for E = 0.1, 0.05, and 0.0. Note that as E approaches 0, the 
zeros approach the interval [0, l] in the direction of p=& and the closest they come is l?i when 
E = 0. 

As a final example in this section, we consider the d= 1 random resistor network, which can 
solved exactly rather simply, and exhibits “trivial” critical behavior. Nevertheless, it is illustrative 
to analyze its behavior in light of the above picture. It is easy to see that the exact solution for the 
d= 1 case is 

or in terms of F, it is 

l--P 
F(PJ) = s-p. (70) 
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As E -+ 0, the limiting function of p is cr*(p) =0 if p E[O, 1) and 6*(p) = 1 if p = 1. The “perco- 
lation threshold” occurs at p = 1. In view of (70), the lone zero of the partition function [or pole of 
~(p,s)] is located at p=s. As s-1, or E + 0, the location approaches the critical point p = 1. 
However, the strength of this pole, or its residue, which from (70) is 1 -p, vanishes as p-1. This 
mechanism, we believe, should be characteristic of higher dimensions as well, whereby, for large 
AT, poles in the p-plane approach the threshold p =pc , yet their residues should vanish as N--+03 
and E+ 0. 

iv. LOWER BOUND ON THE DOMAIN 0F ANALYTICI~ 0~ THE EFFECTIVE 
CONDUCTIVITY IN THE COMPLEX VOLUME FRACTION PLANE 

The magnetization M( T, H) of an Ising ferromagnet displays a phase transition at a critical 
temperature T, only in the limit as the applied magnetic field H-to, and only in the infinite 
volume limit. If one first takes the infinite volume limit, with H>O, then the zeros of the partition 
function take on some limiting configuration, all points of which must avoid the real T-axis. As 
one then takes the subsequent limit of H--+0, then this “zero structure” converges from above and 
below the real T-axis to T= T,, i.e., T= T, is “pinched,” and M( T, H) loses analyticity in T at 
T= T, . In this and many similar problems of statistical physics, one is interested in how fast the 
critical point (T= T,) is pinched as some parameter goes to its critical value, such as H-+0. The 
typical situation is that there is a gap in the zero structure around the critical point which collapses 
in the appropriate limit. In this section we study this question for the (infinite volume) zero 
structure .Y, of the conductivity partition function as E -+ 0. This zero structure YE corresponds to 
the singular set for &Q,E) in the p-plane, i.e., any point in the p-plane where a*@,~) is not 
analytic, hence the notation. Our first goal is to establish a domain %c in the p-plane in which 
dc(p,e) is analytic or, equivalently, which has empty intersection with Yc. This will rigorously 
establish the absence of a phase transition for E > 0. Secondly, by the nature of our construction 
of the domain Be, we shall be able to obtain a “lower bound” on the gap in YE around the 
percolation threshold p =pc . 

We are now ready to construct a domain of analyticity for dr(p,~). 
Theorem 2: Let dh(p,~) be the effective conductivity of the random resistor network in da1 

dimensions, with conductivities 1 and E in the volume fractions p and 1 -p. For every E such that 
IE- I]< 1, there exists a domain 9e in the complex p-plane such that dr(p,~) is analytic in gc. In 
particular, [0, l]CBE, and ZG is the image in the p-plane of the annulus 

ll-++?l<l 

in the complex q-plane under the conformal mapping 

(71) 

(72) 

Proof Fix E such that IE- 1 I< 1, or Is I > 1, and consider the perturbation expansion in (16), 
which we write as 

al(P) U2(P) QdP) 
F(p,s)= - s +sl+s,+*- . (73) 

The idea of the proof is to construct a domain in the p-plane in which (73) converges uniformly. 
NOW, for p s[O, 11, the coefficients a,(p) are the moments of a positive measure of mass 
al(p)= 1 -p, with a,(p)3~,+~(p), so that 

la,(P)lsl, PE[O, 11. (74) 
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Clearly then for p E[O, 11, (73) converges uniformly, and we must stretch this convergence for p 
away from [0, l] as far as we can. So consider the slit plane W={p E C:p $ [0, l]}. Conformally 
map W onto the unit disk D={]ql<l} in the complex q-plane via the Joukowski transformation 
in (72). This mapping takes p =m to q =0, and the unit interval [0, l] gets mapped to the unit circle 
lql = 1. Now, the key fact about the random resistor network which the proof requires is that the 
moments a,(p) are polynomials in p. In general, u,(p) is a polynomial of order less than or equal 
to n. Then u,(q) has at worst an n&order pole at q=O. Thus q”u,(q) is analytic in D. Since 
lu,(q)jSl for ]ql=l, by the maximum modulus principle, 

/a,(~q$, qED, (75) 

or 

I$+=( j&o qeD. 
Then, for fixed IsI > 1, if we choose q so that 

14;151 -=l, 

(76) 

(77) 

by (75) we are assured of geometric (and therefore uniform) convergence of (73). Thus if q is 
chosen to lie in the annulus 

i 
<Iql<l, 

then dr(‘p,~) is analytic in the image L& of the annulus 78 under the mapping (72), which proves 
the theorem. 

Remurks: The above Theorem and its proof hold for a large class of continuum materials as 
well, namely infinitely interchangeable media, which were introduced by Bruno.40 This class is a 
generalization of Miller’s cell materials,41 where all space is divided up into cells, such as squares 
in the plane, which are then assigned conductivities, such as 1 and e, with probabilities p and 
1 -p. In Ref. 28 we proved that the moments of the measure ,LL for infinitely interchangeable 
media are polynomials in p, which as mentioned in the proof, is the key fact required to make the 
proof work. We also note that this Theorem provides a rigorous basis for many volume fraction 
expansions of d(p), which have been widely used since the time of Maxwell. 

In Fig. 2, we have plotted the domain LZ6 for E = 0.3 and E = 0.1. Note its collapse to the 
interval [0, l] as E + 0. Note also that the locations of the poles in Fig. 1 are outside of the 
corresponding se. We remark that the full domain of analyticity of ti(p,e) in the p-plane is 
certainly larger than BE, and in this sense, we say that G?$ forms a lower bound on the full domain 
of analyticity. 

Finally, we are now ready to obtain a lower bound on the size of the gap in the singularity set 
YE for d”(p,~) in the p-plane around the percolation threshold p=pc . Equivalently, we obtain a 
lower bound on the distance from the percolation threshold to the nearest points of the zero 
configuration of the conductivity partition function. Now, let 19 measure the size of the gap in & 
around the percolation threshold p =pc . More precisely, let 0 be twice the distance from p =pc to 
the nearest point of .Y<. Furthermore, let us assume that the decay of the gap obeys a power law 
as E + 0, 

e-E*, E --+ 0, (79) 
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FIG. 2. The domain ?@e in the complex p-plane for e = 0.3 (larger domain) and E = 0.1. The effective conductivity dc@,e) 
is analytic in p inside s<:,. which shrinks to [0, l] as e + 0. 

where A is called the “gap exponent.” Then we have the following: 
Corollary I: Let #*(P,E) be the effective conductivity of the random resistor network in da2 

dimensions, with conductivities 1 and E in the volume fractions p and l-p. Let A be the gap 
exponent measuring the distance from the nearest singularities of ti(p,~) to the percolation 
threshold p =pc , as defined in (79). Then 

Proof: We prove the Corollary in d=2, where pc= i, but the same idea holds in higher 
dimensions as well. We simply note that the points on the boundary of 9, near p = d are O(E) away 
from it. Since 5TE forms a lower bound on the domain of analyticity, possible singularities of 
dr(p,e) must be further away than O(E). For example, if q= ti( 1 -E) in (72), then 
p=$Tid2+O(e2). 
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