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ARBITRARILY SLOW APPROACH TO LIMITING BEHAVIOR

K. GOLDEN AND S. GOLDSTEIN

(Communicated by R. Daniel Mauldin)

ABSTRACT. Let f(k, ¢): RY x [0, c0) — R be jointly continuous in k and ¢,
with lim,_,  f(k, ¢) = F(k) discontinuous for a dense set of k’s. It is proven
that there exists a dense set I' of k’s such that, for k € I', |f(k, t) — F(k)|
approaches 0 arbitrarily slowly, i.e., roughly speaking, more slowly than any ex-
pressible function g(¢) — 0. This result is applied to diffusion and conduction
in quasiperiodic media and yields arbitrarily slow approaches to limiting be-
havior as time or volume becomes infinite. Such a slow approach is in marked
contrast to the power laws widely found for random media, and, in fact, implies
that there is no law whatsoever governing the asymptotics.

1. INTRODUCTION

Many systems exhibit a well-defined limiting behavior as time or volume
becomes infinite. It is often difficult, however, to obtain rigorous information
on the rate of approach to the limiting behavior, which is of much physical
interest. Here we prove a very general (superficially paradoxical) result which
yields situations under which this approach is arbitrarily slow, i.e., so slow that
it cannot be described by any law, be it algebraic, logarithmic, or any other. The
key ingredient for such behavior is that the infinite time or volume limit depends
discontinuously on some parameter k& which characterizes the microstructure
of the system and that the discontinuities are dense. We then produce a dense
set of k’s for which the approach is arbitrarily slow.

The result described above is applied to diffusion and conduction in quasiperi-
odic media, which exhibit well-defined limiting behavior. For example, diffu-
sion X, in a quasiperiodic potential V(x), x € R? , behaves on a macroscopic
scale (lim, ,eX, y .2) like Brownian motion with some effective diffusion ten-

sor D*(V) [1-3]. We analyze Z(t) = E[X ,2]/t and associated functions as
t — oo, where E denotes averaging over diffusion paths and the phase in the
potential (see §3) with lim,__ Z(f) = D* = tr(D"). In the case of conduc-
tion, the conductivity tensor a*(L) of a cubic sample of size L of a medium
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110 K. GOLDEN AND S. GOLDSTEIN

with quasiperiodic local conductivity g(x) converges as L — oo to some ef-
fective conductivity tensor ¢* [4], and we analyze ¢"(L) as L — oco. The
required discontinuity in the infinite time or volume limit is provided by the
discontinuous dependence of D* or ¢* on the wavelengths of V' or ¢, which
was observed in [5]. For example, with V' (x) = cosx + coskx in d = 1,
D" (k) has the same value D for all irrational k, but differs from D and de-
pends on k for k rational, where it is thus discontinuous. (In fact, D"(k)
is continuous at irrational k.) Applying our general result about approach to
limiting behavior, we prove, for example, that when V' (x) = cosx + coskx,
there is a dense set I such that for each k € ', |Z(k, t) — D" (k)|, roughly
speaking, approaches zero as ¢ — oo more slowly than any positive function
g(t) — 0 which can be explicitly written down (is expressible). For example,
for k e, |9(k,t) - D*(k)] - 0 more slowly than 1/log---log?, for any
fixed number of iterations of the logarithm. (Note that the k’s in I" are not ex-
pressible.) As a consequence, the associated “velocity” autocorrelation function
(VAF) c(t) = E[VV(X,) - VV(X,)] decays to 0 as ¢ — oo more slowly than
any positive, expressible function integrable on [0, oco], such as 1 /t1+e , for
any ¢ > 0. The Laplace transform of the VAF corresponds to the frequency-
(w-) dependent effective diffusivity D(w) of the medium, with static value
D* = D(0). For k € ', |D(k, w) — D*(k)| approaches 0 as w — 0 more
slowly than any positive expressible function of @ with limit 0 as w — 0. For
the L-dependent conductivity 6¢*(L) of a quasiperiodic medium, we obtain a
similar result about |6¢"(L, k) —a6* (k)| as L — oo.

The arbitrarily slow approach that we obtain greatly contrasts with the rates
of approach that have been previously obtained. It has been observed for parti-
cle motion in a variety of random systems [6-11] that the relevant VAF exhibits
a power-law long time tail. For example [9], it is believed that the VAF for diffu-
sion in stationary random media in RY decays in time like 1D a5t o ,
while D(w) approaches its static value D" like @?’? . Our results demonstrate
that, for diffusion in quasiperiodic media, the decay of these functions obeys
no such universal law, indeed, no law whatsoever.

In addition to the classical transport phenomena considered here, there has
been much recent interest in quantum transport in quasiperiodic potentials [12,
13]. It is found there that the nature of the wave functions satisfying the time
dependent Schrodinger equation with a potential g(x) = cosx + acos(kx + 6)
depends very sensitively on the rationality of k. Presumably, an appropriately
defined quantum ballistic coefficient displays a discontinuous behavior similar
to what we have found in the classical case. Due to the generality of the results
proven here, similar arbitrarily slow decay results concerning an appropriately
defined, time-dependent quantum ballistic coefficient would then follow.

The main ingredient in our analysis is the observation that any (real-valued)
function f(k, t) jointly continuous in k and ¢ with lim,___ f(k, t) densely
discontinuous in k has arbitrarily slow decay for a dense set of k’s.
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2. GENERAL RESULTS ON APPROACH TO LIMITS
Let f(k, t): RY x [0, 0c0) — R satisfy the following conditions:
(2.1) (1) f(k, ¢) is continuous in k € RY and r € [0, o0),
(2.2) (1) lim,_, _ f(k, t) = F(k) exists for all k € R", and
(2.3) (iii) the set 4 C RY of K’s at which F is discontinuous is dense
in R".
We begin our analysis with the basic observation that given k € A, there exists
a k' € 4 such that F(k') differs from F(k) by a substantial amount with k'

arbitrarily close to k, so that f(k’, ¢) can be made as close as we like to f(k, ¢)
for as long as we like. More precisely,

Lemma 2.1. Let f(k, t) satisfy (2.1)-(2.3), and let
If&, - flk, ) <e, Vt<t
and |F(K') — F(k)| > A } '
If 0<A<limy_ |F(K') - F(k)| =d(k), then
(2.5) keGk,t,e,A)NA.
Proof. Clearly there exists k' € G arbitrarily close to k. If k' is not also in

A, then k' is a point of continuity of F, and, because of the density of A,
there is a k" € GN A arbitrarily close to k'.

Lemma 2.2. Let f(k,t) satisfy (2.1)-(2.3), and let £,(t) be any sequence of

24)  Gk,1,6,4)= {k’

functions with £,(t) 1 0, t = oo, forall n=0,1,2,.... Then the set T of
k’s for which there exists a sequence t, — oo such that
(2.6) |f(k,t,) - F(k)| > &,(z,)

is dense in RY .

Proof. Fix any k, € 4 and ¢ > 0. We will show that there exists k such that

(2.6) is satisfied for some sequence ¢, — co and |k —ky| < ¢’.
Let

(2.7) T(k, &) = sup{t > 0| | f(k, £) - F(K)| > &}

(if the set on the right is empty, set T(k, ¢) = 0). Let ¢, = d(k,)/9, with
d(k,) asin Lemma 2.1, let

(2.8) 5o =T(ky, &) +inf{z > 0[8,(z) < g} + 1,

and choose k, € G(k,, s;, &, d(k;) — &) N 4 satisfying |k, — k| < /2.
Suppose now that kg, k,, ..., k, have been chosen, using &, ..., &,_;-

Let

(2.9) e, =inf(gy, ..., ¢, ,,d(k,)/9),

(2.10) s, =s,_,+T(k,,¢,) +inf{t >0|8,(¢) <e¢,} +1 (Zn+1),
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and choose k, ., € G(k,, s,, 2“"8,, ,0(k,) —¢,)N A satisfying [k, , —k,| <
81/2n+l

Let k=1im, Kk, . Then |k -k <é',and
(2.11)

If(k,s,) - F(k,)| Z (K5 8,) = f Ky, 51 + 1 (K, 8,) — FK,)|

< 28n+8n =3e,,
so that
(2.12)
f(K, 5,) = £k, 5,,,)]
> |F(k,,)) = Fk,)| = |/, s,) = F(&,)| = fI(K, 5,,,) = F(K,,,)|
> (o(k,) —¢,) -3, -3¢, >2dKk,)-7Te,
and

(2.13) |f(k,t,) - F(k)|>

either for ¢, =5, orfor ¢, =5, "

S(k,) - Te
2

2 Z 8n > gn(tn)’

To state the main theorem, we require the following:

Definition. Let ~(¢) and g(¢) be real-valued functions on [0, o). We say that
h(t) is greater than g(¢) infinitely often and write A(f) > g(¢) if there exists
1.0.

a sequence f, — oo such that A(z,) > g(¢,) forall n.

Theorem 2.1. Let f(k, t) satisfy (2.1)-(2.3) and let {g,(t)} be any sequence of
functions on [0, co) with g,(t) =0, t = oo, forall n. Then the set T of k’s
for which

(2.14 Ok, )= F0)| > g,(1),  Vn,

is dense in R" .

Proof. Without loss of generality we may assume that the 2,’s are bounded,
and, by replacing g, (¢) by sup,, gn(t') , that g (¢) | 0, ¢ — oco. Then we let
&, =sup(g,, &, ---, &, and apply Lemma 2.2.

In order to state a striking consequence of Theorem 2.1, we utilize the no-
tion of an expressible function, i.e., one which can be defined, either explicitly
or implicitly, using standard mathematical symbols. An example of such an
implicitly defined function is one that satisfies, say, an explicit differential or
integral equation which has a unique solution. Since any expressible function
is determined by a finite string of symbols from a finite alphabet, there are only
countably many such functions. For example, the reader should note well that
most of the functions f (x) = ax, a € R, are not expressible — there are only
a countable number of expressible reals. (This notion of expressibility depends,
of course, upon a fixed choice of “standard mathematical symbols,” i.e., upon
a choice of formal language.) From Theorem 2.1 we immediately obtain the
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following:
Theorem 2.2. Let f(k, t) satisfy (2.1)-(2.3). Then the set T of k’s for which
(2.15) fk, )= F®)] > g(0),

for every expressible function g(t) with g(t) — 0 as t — oo is dense in R" .

Remark. To appreciate how slowly |f(k, ¢)—F (k)| decays when k € I", observe

that for k € I", |f(k, ¢) - F(k)| > (logmlogt)_1 , for any fixed number of
1.0

iterations of the logarithm. Indeed, no law, be it algebraic, logarithmic, or any
other, can express such slow decay.

Remark. Theorem 2.2 remains true if ¢ is allowed to approach an endpoint
of any interval (a, b) for which the conditions (2.1)—(2.3) are satisfied in the
obvious sense.

It is natural to ask about the size of the set I of k’s for which f(k, ¢) ap-
proaches its limit “arbitrarily slowly” as ¢ — oo, whose existence and density
follow from the above theorems. In all situations where we have been able to
check conditions (2.1)-(2.3) for a concretely realized f(k, t), such as for diffu-
sion in one dimension, I" is presumably of Lebesgue measure zero. However,
in these situations, a further condition, stated below, is also satisfied, which
implies that I" is nonetheless (topologically) generic.

Theorem 2.3. Suppose f(k, t) satisfies, in addition to (2.1)-(2.3),
(2.16) (iv) A° is dense, and there exists a continuous function ¢ (k) on
RY such that F(k) = (k) & k € 4.
Then for any sequence of functions g,(t) L 0, t — oo, the set T of k’s for which

@17) e, 0= F®)| > g,(),  vn,

contains a dense 7 .
Proof. Let G(k, 7,¢e,A) be asin Lemma 2.1 and for g(¢) | 0, ¢ — oo, let

(2.18) G(g) = |J G(k, 1(g, k), e(k), 8(k) — e(k)),
ke4
where
(2.19) 3(k) = E,i‘@F(k’) - F(k)|,
k'e4’
(2.20) e(k) = 0(k)/4,
and
(2.21) t(g, k) =T(k, ek)) +inf{t > 0|g(¢) < e(k)} + 1,
where T'(k, ¢) is defined in (2.7). By virtue of (2.16),
(2.22) k € Int(G(k, 7, ¢, 1)),

provided 0 < A < d(k). Therefore G(g) contains a dense open set.
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Given a sequence g,(f) | 0, define

(2.23) 8, =sup(g, ..., &,)-

We may assume without loss of generality that lim,_, £, (¢) = co forall £>0.
Let

(2.24) G=[)G(&,)

Then, by the Baire category theorem, G contains a dense &, and by construc-
tion GCT.

Remark. With condition (2.16), the set I" in Theorem 2.2 also contains a dense
g;.

3. DIFFUSION IN QUASIPERIODIC POTENTIALS

a. Formulation. Let V' (x), x € R? , be uniformly bounded and smooth, i.e.,
let it have uniformly bounded derivates to the third order. Given V(x), we
consider the R%-valued process X, governed by

(3.1) dX,=-VV(X)dt+dW,,

where X, =0 and W, is standard Brownian motion with mean 0 and covari-
ance matrlx tI, where I isthe identity. The transition density u(x, ¢) satisfies
the (forward) equation

ou

(3.2) 5 =Lw ltllrg)lu(x, 1) =06(x),
where
(3.3) L' = %A + V- (VV).

We shall be interested in quasiperiodic V', with n frequencies, defined in
the following way. Let ¥ () be a smooth function on the unit n-torus 7" =
R"/2", 6 € T", which we identify with the obvious periodic function on R".
The local potential field V(x) =V, (x, 8), x € Rd, is obtained from ¥ via

(3.4) Vlx, 0) = P(0+kx) = P(140),

with translations on R” given by
d
(3.5) Q O+kx=0+ Z

where k is an n-by d-matrix k=[k1 s ,k_d], ki-k;=0,i#j,k; eR".

The flow on T" defined by (3.5) leaves invariant Lebesgue measure d@ on
T" . Itis also ergodic relative to df when the equations kij=0,...,k;j=0
have no simultaneous integral solutions j € z", J #0 [14]. We say that k is
“irrational” in this case, i.e., when r: is ergodic, and is “rational” otherwise.
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When n=2,d=1,and k =k = [k, kz]T, k is “irrational” when k,/k,
is irrational. When n > d + 1, k can have various degrees of rationality,
depending on the dimension of the ergodic components of ‘ck

For X, the process governed by (3.1) with V' =V, (x, 6), eX X, ;2 converges
[1-3] as ¢ — 0 to W, (D*(k)), with D*(k) = lim,_,__ D(k, 1), Dk, 1) =
ElX t’ X ,’ ]/t, where E denotes expectation over Brownian motion paths in (3.1)
as well as an average over T" with respect to the equilibrium measure

(3.6) ude) = e dg / [T ®as.

Let Z(k,t) = tr(D*(k, t)), and let D*(k) = tr(D*(k)). It follows easily from
(3.1 [1, 11]

(3.7) Dwm=1-/wqow,
0

where c(f) = E[VV(X,)-VV(X,)] >0, and that

(3.8) Z(k,t) 1/ ds/ c(u)d

b. Long time/low frequency asymptotics. In order to apply the results of §2 to
Z(k, t), we need only discuss the discontinuous behavior of D*(k), as the
continuity of Z'(k, ¢t) in k and ¢ is routine. In one dimension, there is an
exact formula (see, e.g., [5]) for D*,

(3.9) D'k = [ 1 )te ™), T i)

where (-), denotes averaging over a trajectory of the flow 0 = k, which is
ergodic only when k is irrational. In this case, (-), amounts to integration

over all of T". However, when k is rational, the trajectory degenerates to
a closed orbit, over which the integration is different from its value over all
of T". Thus [5] there is typically a dense set of rationals on which D" (k)
is discontinuous, in which case D*(k) in fact satisfies condition (2.16), with
¢(k) = D, the common value of D" (k) for irrational k.

While there is no such general argument in higher dimensions, where an ex-
plicit formula for D*(k) does not, to our knowledge, exist, the integrals involved
in representation formulas for D* involve averages over trajectories similar to
(), above, and similarly discontinuous. Thus we believe that, as in one dimen-
sion, there should typically be a dense set of k’s at which D*(Kk) is discontinuous
[5] (see also [15] for a concrete example). Accordingly, we shall state our results
for systems with this property and state the following definition:

Definition 3.1. A potential ¥ on T” is typical if D*(k) is discontinuous in k
on a dense set in RY
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Now as an immediate consequence of Theorem 2.2, we have the following:

Theorem 3.1. Let V on T" be typical. Then for diffusion X X, in R? satisfying

(3.1) with V(x, 6) = V(@ +kx), xR, and 6 € T", the set T of k’s for
which

(3.10) 2k, )= D'(W) > (1),

Jor every expressible function g(t) with lim,__ g(t) =0, is dense (in ]R"d).
Remark. In one dimension, and presumably in higher as well, the set I" in
Theorem 3.1 contains a dense % set.

As another immediate consequence of Theorem 2.2 (with ¢ = 1/w), we state
the corresponding results about the frequency dependent diffusivity

(3.11) Pk, o) = / e ' E[X1dt,
0
which can also be written in terms of the velocity autocorrelation function c(z),
(3.12) Pk, w)=1- / e~ e(1)dt.
0

We note that lim _, D(k, w) = D" (k).

w—0

Theorem 3.2. Let V on T" be typical with X . € RY as in Theorem 3.1. Then
the set of k’s for which

(3.13) |5(k,w)-—D*(k)|i>o g(w), w—0,

for every expressible function g(w) with lim _ , g(w) =0 is dense.
From Theorem 3.1 we can prove

Theorem 3.3. Let V on T" be typical with X . € RY, as in Theorem 3.1. Then
the set T of k’s for which

(3.14) o () > h(1), t— o0,
1.0.
Jfor every expressible function h(t), which is integrable on [0, oo), is dense.

Proof. Fix k, and let y(k, ) = [Z(k, 1) - D*(k)|. Suppose there is an ex-
pressible function A(z) integrable on [0, co) such that

(3.15) c(t) <h(t), Vt>T>0.

Then there is an expressible function 4(¢) integrable on [0, co) such that c(f) <
h(t) vt € [0, c0), so that

(3.16) /ds/ Wdu<t /a’s/ h(u

By (3.8),
(3.17) vk,t)<gl= / ds/ h(u vt >0.
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Since 4 is expressible and integrable, g(¢) is expressible with g(¢) — 0 as
t — o0, so that k is not in I', the dense set described in Theorem 3.1. Thus
rcr.

In order to state our results about the spectral measure, we introduce the
environment process 6, = ™ x2 6 (mod Z"), which determines the potential field

seen by the particle at tlme t. This process is reverS1ble with respect to the equi-
librium measure u(dd) and is generated by L = 5A -V, V-V,,where V_ is

gradient on T" arising from the flow ‘L' L is selfadjomt in L? (T", du) and
has negative spectrum in (—o0, 0] w1th a famlly of prOJectlon-valued measures
P, on (-o0, 0]. (L « is unitarily equ1valent to H, =3A, +4¢ on L? (T", df)

with ¢ = §(VkV V.V-4AV),via e He'V =L .) We consider the particular
spectral measure v of P, associated with V. V', v = (V, V- P,V, V), where
(-) here means integration over 7" with respect to u. Using the semigroup
exp(f,kt) one can write

(3.18) c(t) = / " ().

Now we can state

d

Theorem 3.4. Let V on T" be typical with X, € R® as in Theorem 3.1. Then

the set T" of k ’s for which
(3.19) w(d3) > (i),  A—0,

Jor every expressible measure n on (—co, 0) with f n(dAi)/|A| < oo, is dense.

(By v(dA) > n(di), 4 — 0~ , we mean that there is a sequence of intervals
(t,,5,) C ( oo 0), t, — 0, such that v(¢,,s,) > n(t,,s,),Vn.)

Proof. Fix k. Suppose there is an expressible measure #(dA) with
0
| n@nyi <o
such that

(3.20) v<n
on [A, 0) for some A < 0. Then

(3.21) c(t) = /_ :e"du(/t) < eMy(—00, Al + fA Oe“dn(,t).

Thus, since v(—o0, 0] < oo and ffoo -’L%’-Q < oo, there exists an expressible,

integrable function A(¢) such that ¢(z) < h(¢), V¢ > 0. Therefore k ¢ I (of
Theorem 3.3);i.e., T CT™.
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4. CONDUCTION IN QUASIPERIODIC MEDIA

a. Formulation. Let 6(8) be a smooth function on T". Analogous to ¥, , we
define o, (x, ) = 6(6 + kx). Given o, on R? , we take a finite cubic sample
C,={x: -L<x;<L,i=1,...,d} of side 2L centered at the origin. Let
u; be the solution of

(4.1) V(6,Vu,) =0, xeC,,

(4.2) %=Oonxi=L orx,=-L, i#1, -L<x <L,
(4.3) , uy,=-Lonx, =-L, -L<x;<L, I#1,

(4.4) u,=Lonx =1L, -L<x;<L, i#1.

Then define ¢*(k, L, 6) by

" 1
4.5 o k,L,Qg:—/a;,QVu dx.
(4.5) ( )e, ) Je, (X, O)Vu,

We shall be interested in averaging o*(k, L, ) over T" to obtain
(4.6) kD= [ o'k L o)de,
T’l
which is continuous in k, as well as L. It is easily obtained from [4, Appendix]
that
(4.7) Jim o'k, L)=0"(k),
where ¢ (k) is the effective conductivity of the medium o, (x, 6). (See [4] for
the precise definition of ¢*.)

b. Large sample size asymptotics. As in §3, we say that 6 on T" is “typical”
if ¢"(k) is discontinuous in k on a dense subset of RY . We have again as an
immediate consequence of Theorem 2.1 the following theorem:

Theorem4.1. Let 6 on T" be typical. Then for conduction satisfying (4.1)-(4.5)
in a cubic sample C, of a medium with local conductivity o,(x, 8) = 6(6+kx),
the set T of K’s for which

(4.8) lo*(k, L) — 0™ (k)] > g(L), L — o,

Jfor every expressible function g(L) with lim,_ _ g(L) =0, is dense.

Remark. In one dimension, and presumably in higher dimensions, the set I" in
Theorem 4.1 contains a dense & .
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