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Abstract

Arctic and Antarctic sea ice plays a critical role in the global ocean—climate system, as well as in polar biology. Sea ice is
a porous composite of pure ice with brine, air and salt inclusions whose microstructure varies significantly with temper-
ature. The fluid transport properties of sea ice control a broad range of geophysical and biological processes. Yet little
is known, for example, about bulk flow of brine or diffusive transport of dissolved substances such as nutrients or pollu-
tants through the porous microstructure, particularly from a theoretical standpoint. Here we give rigorous, mathematical
formulations of the two key problems of fluid dynamics in sea ice: estimating the effective fluid permeability tensor k(¢)
and its dependence on brine porosity ¢, and estimating the trapping constant y or mean survival time 7 for a diffusion
process in the pore microstructure which can react with the boundary. We bring together and review a variety of results
which lay the foundation for studying fluid transport processes in sea ice from a mathematical perspective, and focus on
rigorous bounds on k and y. Void bounds evaluated by Torquato and Pham [Torquato, S., Pham, D.C., 2004. Optimal
bounds on the trapping constant and permeability of porous media. Phys. Rev. Lett. 92, 255505:1-4] for classical coated
cylinder geometries yield pipe bounds for the permeability & of sea ice in the vertical direction. By incorporating informa-
tion about average brine inclusion sizes, the void bounds provide a useful benchmark that captures laboratory data taken

on k(¢).
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As the thin boundary layer separating the ocean
and atmosphere in the polar regions, sea ice plays a
key role in polar oceanography and meteorology,
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and is a sensitive indicator of global climatic change
(Untersteiner (Ed.), 1986; lJeffries (Ed.), 1998;
Untersteiner, 1990; Kattenberg et al., 1996; Serreze
et al., 2000; Sturm et al., October 2003; Perovich
et al., 1999). Moreover, polar sea ice serves as a crit-
ical habitat for robust algal and bacterial communi-
ties which form the base of the rich food web of the
sea ice environment (Thomas and Dieckmann
(Eds.), 2003; Fritsen et al., 1994; Lizotte and Arrigo
(Eds.), 1998; Eicken, 1992). As a material, sea ice is
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a porous composite of pure ice with brine, air and
salt inclusions (Weeks and Ackley, 1986; Eicken,
2003), whose microstructure and transport proper-
ties change significantly with temperature. Fluid
transport in sea ice plays an important role in heat
transfer between the ocean and atmosphere (Lytle
and Ackley, 1996; Trodahl et al., 2000), ice produc-
tion through the flooding and subsequent refreezing
of ice surfaces (Maksym and Jeffries, 2001; Ackley
et al., 1995), and in the input of brine and fresh
water into the upper ocean from freezing, melting,
and drainage processes (Weeks and Ackley, 1986;
Thomas and Dieckmann (Eds.), 2003; Carmack,
1986), as well as in remote sensing (Hosseinmostafa
et al., 1995; Lytle and Golden, 1995; Golden et al.,
1998¢,b). Brine transport substantially controls the
replenishment of nutrients for sea ice micro-organ-
isms (Fritsen et al., 1994; Lizotte and Arrigo
(Eds.), 1998), and brine itself is the avenue through
which bacteria forage for their sustinence. Recently
there has even been speculation about the possibility
of primitive life forms existing on sea ice-covered
extraterrestrial bodies such as Europa (Thomas
and Dieckmann, 2002). One reason that sea ice on
earth has attracted recent attention is that it can
teach us about how organisms cope with cold,
extreme environments. The fluid transport proper-
ties of sea ice and its complex microstructure play
a key role in how micro-organisms living in earth’s
sea ice survive and thrive in a very harsh
environment.

Despite the pervasiveness of geophysical and bio-
logical problems where a quantitative, theoretical
understanding of the vertical fluid permeability &
for sea ice is needed, little is known. There are a
few observations of k (Ono and Kasai, 1985; Saito
and Ono, 1978), yet measurements which are care-
fully correlated with information about the micro-
structure have only recently been made by Freitag
(1999). From a theoretical standpoint even less is
known. It has long been observed (Cox and Weeks,
1975; Weeks and Ackley, 1986) that macroscopic
effects of fluid transport through sea ice, such as
changes in salinity due to brine drainage, become
significantly more noticeable for brine volume frac-
tions ¢ above a threshold value ¢. of roughly 5% or
larger. For a typical sea ice salinity of 5 parts per
thousand (ppt), this critical porosity ¢, corre-
sponds, via a formula relating brine volume to salin-
ity and temperature (Weeks and Ackley, 1986;
Eicken, 2003), to a critical temperature 7, ~ —5 °C.
This rule of fives is exhibited by classic, large-

grained columnar sea ice, and noticeably higher val-
ues of ¢, are seen in fine grained frazil ice with more
random crystalline configurations. Still, the critical
porosities ¢. seen in sea ice are much lower than
the 20-60% range for percolation thresholds exhib-
ited by standard lattice models in two and three
dimensions (Stauffer and Aharony, 1992), and by
random arrays of ellipsoids (DeBondt et al., 1992)
in the continuum, a commonly used model for the
brine inclusions. The brine inclusions in sea ice,
however, are situated primarily on the boundaries
between individual ice lamellae, which are similar
to plates.

It was observed by Golden et al. (1998a) that the
microstructure of sea ice can be approximated by
that of compressed powders (Kusy and Turner,
1971) of large polymer spheres and much smaller
metal or carbon black spheres, used in radar
absorbing technology (Priou (Ed.), 1992) and other
engineering applications. Continuum percolation
models were developed to predict the critical volume
fraction of the smaller metal spheres required for
percolation (Kusy and Turner, 1971; Malliaris and
Turner, 1971; Kusy, 1977; Janzen, 1980, 1975).
Compressed powder microstructures facilitated
achievement of desired conductivity properties with
very low critical volume fractions, while maintain-
ing key properties of the host polymer. The com-
pressed powder model was adapted (Golden et al.,
1998a) to explain the rule of fives in sea ice, and a
range of Antarctic data on ice production, thermal
transport, and biological processes. It was also
pointed out that percolation theory explains the
general trend of the one limited data set on fluid
permeability available then (Ono and Kasai, 1985)
which was suitable for comparison, although no
theoretical predictions were made.

Here, we find a deceptively simple theoretical
result for the behavior of the vertical fluid perme-
ability of sea ice and its dependence upon the micro-
structure, in the form of a rigorous upper bound.
The result can be understood by asking how inclu-
sions of a given volume fraction should be arranged
in order to maximize the permeability in the vertical
direction. Intuitively, the best arrangement is in
vertical pipes, so that no inclusion is wasted in the
process of fluid transport, and there are no impedi-
ments to flow. Similar findings for laminate geome-
tries which realize the arithmetic mean bounds on
effective electrical or thermal conductivity, or effec-
tive dielectric constant or magnetic permeability of
two phase composites have been known since the
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early 1900s. However, bounds such as these for fluid
permeability, which involve an inclusion length
scale not present in similar electrical, magnetic, or
thermal transport problems, were only recently pro-
ven by Torquato and Pham (2004). We incorporate
known microstructural information about brine
inclusions in sea ice (Perovich and Gow, 1996; Bock
and Eicken, 2005) into these void bounds to obtain
the first rigorous, theoretical estimates of fluid per-
meability in sea ice.

Given the central role that fluid transport plays
in the geophysics and biology of sea ice, and the
absence of works in this direction, here we give a
mathematical formulation of the permeability prob-
lem, and the related problem of diffusion in the pore
microstructure. We bring together and review meth-
ods, results, and theoretical ideas which play a role
in yielding the pipe bounds, and which lay the
groundwork for further investigations. In particu-
lar, our findings here provide a basis for comparison
with the results of a two-dimensional network
model for bulk fluid transport through sea ice
(Zhu et al., submitted for publication). In this ran-
dom pipe network the radii of the pipes are chosen
from distributions describing measured brine inclu-
sion cross-sectional areas (Perovich and Gow, 1996;
Bock and Eicken, 2005).

Unlike problems of effective electrical conductiv-
ity or permittivity in the quasistatic limit, in fluid
transport there is a length scale involved that
changes the nature of the results. The electrical con-
ductance g, of a cylinder of unit length and radius r
is g. = mr’e, where ¢ is the conductivity of the mate-
rial. On the other hand, the corresponding fluid con-
ductance gr of a pipe of unit length and inner radius
ris gr = mr*/8p, where y is the viscosity of the fluid.
Whereas the electrical conductivity is a property of
the material, and does not depend on the size of
the conductor, the corresponding fluid conductivity
*/8n, depends upon the cross-sectional area of the
pipe, as well as the viscosity of the fluid. Conse-
quently, for fluid flow, the permeability of a parallel
array of many pipes of small radius is less than that
of a few pipes of larger radius occupying the same
volume fraction. Another manifestation of the dif-
ference between fluid and electrical problems are
the different scalings required to obtain appropriate
infinite volume limits for the permeability and the
electrical conductivity in lattice models (Chayes
and Chayes, 1986; Golden, 1997).

By considering here a simplified, parallel pipe
model of the brine microstructure of sea ice, we

obtain an upper bound on its vertical fluid perme-
ability k, given information about the porosity ¢
and pore length scale. The bound compares well
with laboratory data on k considered here, as well
as with field data presented in Heaton et al.
(2005), where a different form of the bound is con-
sidered. We also consider some data taken on the
radii and density of large pipes observed in the Ant-
arctic. These data yield an interesting constant,
found by Heaton et al. (2005) from other theoretical
and microstructural considerations, which appears
to provide a general upper bound for the full range
of all known data on sea ice fluid permeability.

As discussed above, our pipe bound is a special
case of a set of rigorous bounds on the fluid perme-
ability of a porous medium, called wvoid bounds
(Torquato, 2002). Upper bounds on the fluid perme-
ability of a statistically isotropic porous medium
were first proposed by Prager (1961), and a coeffi-
cient in these bounds was corrected by Berryman
and Milton (1985). The bounds depend on the
two-point correlation function of the pore space,
and novel variational formulations which yield
these and other bounds were found by Rubinstein
and Torquato (1989) and Torquato (2002). The
void bounds were evaluated explicitly by Torquato
and Pham (2004) for coated sphere and coated
cylinder geometries. In some cases these bounds
are optimal. The simple array of vertical pipes we
have used to model the brine microstructure in sea
ice is such an optimal geometry. The pipes provide
a rigorous upper bound for the permeability of an
appropriate class of microstructures sharing the
same porosity and characteristic pore length scale.
It is interesting to note that the variational prinici-
ples developed and used to derive bounds on the
permeability (Rubinstein and Torquato, 1989;
Torquato, 2002; Torquato and Pham, 2004) apply
similarly to bounding the trapping constant y or
the mean survival time © ~ 7~ for a porous medium.
If a reactant diffusing in the pore space can be
absorbed by traps on the boundaries, then there is
an average time which the reactant can be expected
to survive, which is closely related to the permeabil-
ity. Many processes in porous media depend upon
such considerations, and in sea ice they are of par-
ticular interest. In nuclear magnetic resonance imag-
ing, the NMR survival time is equivalent to 7, and
this type of imaging is particularly promising for
sea ice (Eicken et al., 2000). Moreover, bacterial
foraging (Vetter et al., 1998) in a porous medium
involves diffusion and reaction processes where
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knowledge of the trapping constant and survival
time may well provide useful biological information.

We remark that in reviewing the porous media
literature, we found the seminal and extensive con-
tributions of Torquato and coauthors (Torquato,
2002; Torquato and Pham, 2004; Rubinstein and
Torquato, 1989; Torquato, 1990; Torquato and
Avellaneda, 1991) to be particularly important
and illuminating in addressing the problem of fluid
transport through sea ice. Consequently in what fol-
lows, these works of Torquato in different contexts
dominate our formulation and discussions, and play
a key role in the results for sea ice.

2. Homogenization for permeability and trapping in
porous random media

2.1. Fluid flow in a porous medium

We consider low Reynolds number flow of a fluid
with viscosity u through a porous random medium,
occupying a region Q C R®. Brine of viscosity u
occupies the brine pore space 2, C Q, having a rel-
ative volume fraction ¢. The solid ice phase occu-
pies the ice grain space ; C Q, having a relative
volume fraction 1 — ¢. Let (@, P) be a probability
space characterizing the porous medium, where @
is the set of realizations of the random medium
and P is a probability measure on @. For any real-
ization w € O, let .#(x, ) be the indicator function
of the brine pore space Qu(w),

1, x€Qy(vw),
](x’w)_{o, x € Q).

We first assume that .#(x, w) is a stationary random
field such that P has translation invariant statistics.
Then the medium is statistically homogeneous, and
satisfies an ergodic hypothesis, where ensemble aver-
aging over realizations w € O is equivalent to an
infinite volume limit |Q| — oo of an integral average
over Q C R?, denoted by (-) (Torquato, 2002). This
and related limits have been shown to exist and to
be equal to the ensemble average in some situations,
thus establishing the ergodic hypothesis, which is
discussed below.

We are interested in sea ice as a porous medium
for a given temperature 7 and salinity S, which
determine the brine volume fraction ¢ (Weeks and
Ackley, 1986; Eicken, 2003). Within a given depth
range in an ice sheet, the microstructural character-
istics can be quite uniform over many meters hori-
zontally. In such layers the ergodic hypothesis is

(1)

satisfied. However, we are also interested in how
the properties of the ice vary with depth, where vari-
ations in temperature and salinity, as well as possi-
bly ice type and age, affect brine microstructural
features and transport properties. Typically, as with
many other porous media (Torquato, 2002), not just
sea ice, there is a microscopic length scale ¢ associ-
ated with the medium. For example, the scale over
which the two point correlation function obtained
from .#(x) varies, is a good measure of this length.
It is small compared to a typical macroscopic length
scale L, such as a sample size or thickness of a sta-
tistically homogeneous layer. Then the parameter
€ = ¢/L is small, and one is interested in obtaining
the effective fluid transport behavior in the limit as
€ — 0. To obtain such information, the method of
two-scale homogenization or two-scale convergence
(Rubinstein and Torquato, 1989; Torquato, 2002;
Hornung (Ed.), 1997) has been developed in various
forms, based on the identification of two scales: a
slow scale x and a fast scale y = x/e. The velocity
and pressure fields in the brine, v“(x) and p(x) with
x € Qp(w), are assumed to depend on these two
scales x and y. The idea is to average, or homogenize
over the fast microstructural scale, leading to a sim-
pler equation describing the overall behavior of the
flow, Darcy’s law. Slower variations of average
microstructural properties can then be incorporated
through dependence of the effective permeability
tensor on x, such as with depth in the sea ice.

The velocity and pressure in the brine phase sat-
isfy the Stokes equations,

Vp' = uAve, x € Qp(w), (2)
V-r'=0, xe€Qw), (3)
v'(x) =0, x€0Q(w). 4)

A force acting on the medium such as gravity can be
incorporated into p°. Eq. (2) is the steady state fluid
momentum equation in the zero Reynolds number
limit, (3) is the incompressibility condition, and (4)
is the no-slip boundary condition on the pore sur-
face. The macroscopic equations can be derived
through a two-scale expansion (Keller, 1980; Tartar,
1980; Rubinstein and Torquato, 1989; Allaire, 1992;
Allaire, 1997; Torquato, 2002; Sahimi, 1995; Hor-
nung (Ed.), 1997)

v (x) = E0p(x,y, @) + €01 (x,y, 0) + -+ (5)
P(x) =pox) + epi (%, 0) + -+ (6)

Note that the leading term in the velocity expansion
is O(e?), while the leading term in the pressure
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expansion is O(1). This physical effect was handled
by Allaire (1997, 1992) analytically by scaling the
viscosity of the fluid by O(€®). Physically, the very
small viscosity of order ¢ exactly balances the
friction of the fluid from the no-slip boundary con-
dition on the solid boundaries of the pores. Substi-
tution of the two-scale expansion into the Stokes
equations yields systems of equations involving
both x and y derivatives. Analysis of the leading
order system is facilitated by consideration of a
second-order tensor “velocity” field w(y,w) and a
vector “pressure” field n(y,w) (Torquato, 2002),
both varying on the fast scale, which satisfy

A4w=V,1-1I yeQw), (7)
Vyw=0, ye o), (8)
w=0, ye€odQ, 9)

where 1 is the second-order identity tensor, and w
and = are extended to all of Q by taking their values
in the ice ©; to be 0. In these equations, the w;; com-
ponent of w is the jth component of the velocity due
to a unit pressure gradient in the ith direction, and
m; is the jth component of the associated scaled pres-
sure. By averaging the leading order term of the
velocity vg over y or realizations w, denoted by (-),
one can obtain the macroscopic equations govern-
ing the flow through the porous medium,

o) = fik Vp(x), (10)

V- v(x) =0, (11)
where p(x) = po(x) and
k= (w(y, w)), (12)

the effective permeability tensor. Eq. (10) is known
as Darcy’s law and Eq. (11) is the macroscopic
incompressibility condition. These macroscopic
equations were obtained by Allaire (1997, 1992)
for periodic media through an appropriate limit as
e — 0. We shall be interested in the permeability in
the vertical direction k.. = k, in units of m>.

An important approach to analyzing the behav-
ior of fluids in porous media, or any transport phe-
nomenon through a heterogeneous medium for that
matter, is network modeling or approximation
(Koplik, 1982; Berkowitz and Balberg, 1992; Sah-
imi, 1995; Dullien, 1992; Torquato, 2002; Wong
et al., 1984; Chayes and Chayes, 1986; Golden,
1997). From a practical standpoint, these networks
consist of random or regular arrays of pipes. The
geometry, connectedness, and sizes of the basic ele-

ments in these networks must reflect the characteris-
tics of the porous medium being modeled. In Fig. 1,
a numerical simulation of a two-dimensional flow
past a bed of discs of two different sizes is displayed.
It is easy to see from this image how a network of
pipes could provide a reasonable approximation to
this flow. One can also see from this image that
there are certain portions of the connected pore
space which carry an appreciable part of the flow,
while there are other portions which do not. As
noted by Torquato (2002), estimates of effective per-
meability based only on simple pore statistics such
as porosity are generally ineffective.

Pipe networks are often studied by relating the
problem of fluid flowing through them to the prob-
lem of electrical current flowing similarly. As men-
tioned in Section 1, because of the appearance of
a length scale in fluid problems which does not arise
in similar electrical conductivity problems, the sca-
lings required to obtain infinite volume or homgeni-
zation limits are different. For example, consider the
d-dimensional bond lattice connecting nearest
neighbor points in the integer lattice Z¢. The bonds
are assigned electrical conductivities from a proba-
bility distribution. The most common and simply
defined probabilistic model is to assign the con-
ductivites to be o¢; > 0 with probability p and
a, > 0 with probability 1 — p, where the assignments
are independent from one another. For purposes of
the discussion, let us consider a three-dimensional
network, and a cubic L x L x L sample of the bond
lattice. We attach a perfectly conducting plate to

Fig. 1. Simulation of Stokes flow through a bed of disks of two
different radii (from Torquato (2002), similar to images of Martys
and Garboczi (1992)). In this gray-scale image, black indicates
the highest fluid speeds, and white indicates no flow. Note how
the velocity field tends to concentrate into channels of least
resistance to the flow.
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two opposite faces. Let X;(p) be the effective con-
ductance of this network, which is the total current
that flows through the cube divided by the potential
difference maintained between the plates, as deter-
mined by Kirchoff’s laws. Alternatively, we consider
a random pipe network where the bonds are
assigned the fluid conductivity »2/8u, or fluid per-
meability 72/8, with probability p, and the fluid con-
ductivity 73/8y, with probability 1 — p. Let K;(p)/u
be the effective fluid conductance of this network,
which is the rate at which fluid input from one face
of the cube flows through an opposing face, given a
unit pressure gradient. In the uniform case with
p=1, Z;(p) and K;(p)/u exhibit the following char-
acteristic scalings (Chayes and Chayes, 1986;
Golden, 1997):

Zi(p) ~al™?, L — oo, (13)
K

Kilp) Do p o, (14)
B

for constants ¢ and b. For finite volumes these rela-
tions are not exact due to boundary effects. Then the
effective electrical conductivity o(p) and effective
fluid permeability k(p) for the infinite lattice can
be obtained through the following scaled limits:

o(p) = lim L%, (p), (15)
kp) = lim 'K, (p). (16)

The existence of the infinite volume limit and the
validity of the ergodic theorem was proven for elec-
trical conductivity and equivalent problems in the
continuum for 0 < /1 < oo, with & = ¢/, by Kozlov
(1978), Papanicolaou and Varadhan (1982), and
Golden and Papanicolaou (1983). In the case
h =0 or & = oo a similar result was proven by Zhi-
kov (1989). The nature of the approximation of
fluid networks by electrical networks, and the exis-
tence of the infinite volume limit for bulk fluid
transport coefficients have been addressed by Kop-
lik (1982), Berkowitz and Balberg (1992), Sahimi
(1995), Dullien (1992), and other authors.

2.2. Diffusion and trapping in a porous medium

The results of Torquato and Pham (2004) which
provide the rigorous basis for our pipe bounds are
derived in terms of the trapping constant y for a
porous medium. As discussed in Section 1, knowl-
edge of the trapping constant y or mean survival
time 1 is relevant to NMR imaging of the micro-

structure of a porous medium such as sea ice. Fur-
thermore, in view of the principal features of
bacterial foraging in a fluid filled porous medium
(Vetter et al., 1998), knowledge of these parameters,
or closely related quantities, may yield insights into
life sustaining processes for sea ice micro-organisms.
Through the release of extracellular enzymes (EE)
into a fluid filled porous medium and subsequent
reactions with particulate organic matter (POM)
comprising some part of the solid matrix, microbes
can obtain resulting dissolved organic matter
(DOM) they need to live (Vetter et al., 1998). We
thus formulate the trapping problem in a porous
medium, given its close connection to our pipe
bounds, as well as its relevance to biological and
chemical diffusion processes in the brine microstruc-
ture of sea ice. The following formulation of the
trapping problem (Torquato, 2002) provides a
framework which encompasses some key, albeit
simplified features of these important processes.

Consider the problem of a tracer, such as an
enzyme or a magnetized hydrogen nucleus, diffusing
in the fluid phase Q,(w) C Q C R? of a porous med-
tum. The tracer reacts with partially or completely
absorbing traps on the boundary 0Qy(w) of the pore
space for each realizatation w of the random porous
medium (O, P). The traps comprise the entire sur-
face 0Qi(w) of the ice or some portion of the solid
boundary. The traps themselves may represent par-
ticulate sediment entrained in the sea ice having
nutritive organic content. Let ¢(x,y,t,®), with x
and y in @, as above, be the time dependent concen-
tration of the reactant governed by the diffusion
equation

d
& — DAc+G,
ot

x € Qp(w), (17)
with the boundary condition on the pore-trap
interface,

Dg—;—&-KC:O, x € 0Qp(w). (18)
In (17), D is the diffusion coefficient of the reactant
in the fluid filling the pore space, x is a positive sur-
face reaction rate constant, and G is a generation
rate of reactant per unit trap-free volume. In (18),
n is the unit outward normal from the pore space.
As a particle diffuses in the trap-free region, or the
pore space Qu(w), it is absorbed on the boundary
of the solid matrix with a probability related to
the surface rate constant k. A dimensionless surface
rate constant k* = x¢/D, where ¢ is a characteristic
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pore length, can be used to distinguish different
regimes of influence:

K' <1
K> 1

(diffusion-controlled),

(reaction-controlled).

In the diffusion-controlled regime, D is small rela-
tive to k/, and a reactant will typically diffuse in
the pore space for much longer than the character-
istic time associated with the surface reaction. In
the limit of infinite surface reaction x — oo, the
boundary condition on the pore-trap interface be-
comes a perfectly absorbing Dirichlet condition, with
¢ =0 on 0Qy(w) wherever the traps are located. In
the reaction-controlled regime, D is large relative
to x/, and a reactant will typically diffuse in the pore
space for a relatively short time before if hits a trap
and has a chance to react. For vanishing surface
reaction rate x = 0, the boundary condition on the
pore-trap interface becomes a perfectly reflecting
Neumann condition, with % =0.

We now consider the steady state problem in the
diffusion-controlled limit of infinite surface reaction
K — oo, with the perfectly absorbing boundary con-
dition ¢ =0 at the pore-trap interfaces (Torquato,
2002). The rate of removal of the reactant by the
absorbing boundaries in this case is exactly compen-
sated by the production rate per unit volume G of
the reactant. Then the diffusion equation (17), or
mass conservation equation, becomes a Poisson
equation

DAc = -G, x€Qy(w), ¢=0, x¢edQ(w).

(19)

Assume again that the parameter ¢ = ¢/L is small,
and that the microstructure €, as characterized
by .#, and concentration, or probability density c
exhibit dependence upon a slow scale x and a fast
scale y = x/e as discussed above, while G = G(x).
Then

DAc‘(x) = —G(x), x € Qy(w),
(x) =0, xe€0Q(w). (20)

The macroscopic behavior is derived again through
a two-scale expansion

c“(x) = eco(x,y, @) + Ecr(x, vy, ) + - - -

with the leading order equation DA,cy(x,y,w) =
—G(x), x € Qp(w) and boundary condition co(x,
y,0) =0, x € 0Q(w). A scaled concentration field
u defined by co(x,y,w) = D' G(x)u(y, w) solves

A)’u(yv w)=—-1, x€Q(w),
u(y,w) =0, x€0Qy(w), (21)

where u = 0 in the region ;(w) and is thus defined
throughout Q. Averaging the defining relation for
u yields the macroscopic constitutive relation for
the trapping problem,

G(x) = 3DC(), (22)

where C is an averaged concentration C(x)=
(co(x,y,)) and 7 is the trapping constant,

7=y, @) = (U, )7 (v, w)). (23)

The trapping constant y, and its relation to the
mean survival time t, can be understood physically
as follows (Torquato, 2002). Let the total number
of diffusing Brownian particles created in the pore
space per unit time be N and the total number of
particles exterior to the traps at a given time be
Ny. Then the average trapping rate per particle f;
is given by

N
ﬂtr = N_ .
0
The mean survival time t of a Brownian particle in
the pore space is the inverse of the trapping rate,

N

-1 0

v=be = N

Since N = G¢ and Ny = CV, where V' =|Q)|,

(24)

[ )

T=——=-=. (25)
VoD D

In terms of the survival time 7 the macroscopic con-

situtive law (22) can be written as

C(x) = 1¢G(x), (26)

even though there is no underlying local constitutive
law. It is useful to note that when the pore space be-
comes disconnected the trapping constant does not
exhibit critical behavior as does the fluid permeabil-
ity, electrical conductivity, or effective diffusivity
near a percolation threshold. Roughly speaking,
7~ !, which has units of (length)? like the permeabil-
ity k, is a measure of the average pore size. A
Brownian particle in a fluid pore still diffuses for
some time before hitting the boundary, whether or
not that pore is disconnected from much larger,
connected fluid structures. On the other hand, in
the absence of any conducting pathways across a
sample, the bulk permeability or conductivity of
the sample vanishes.



808 K M. Golden et al. | Mechanics of Materials 38 (2006) 801-817

2.3. The trapping problem and relaxation of nuclear
magnetization

As mentioned in Section 1, magnetic resonance
imaging of sea ice microstructure (Eicken et al.,
2000) is a promising avenue for characterizing sea
ice as a porous medium and how its microstructure
and transport properties evolve with temperature
and other parameters. Here we review some results
(Torquato, 2002; Torquato and Avellaneda, 1991;
Sahimi, 1995) which make precise the connection
between the mean survival time considered in the
previous subsection, and relaxation processes in
nuclear magnetic resonance (NMR) imaging.

In Eq. (17), the time dependent diffusion equa-
tion with trap surface boundary condition in Eq.
(18), let the source be a Dirac point measure at
t=0 with mass ¢y, or G=cyo(¢). The solution
c(x,t) of Eq. (17) can be expanded in the orthonor-
mal eigenfunctions ¥,(x) of the Laplacian operator
A on the pore space Qu(w) with boundary condi-
tions (18),

clx,t) = ¢ Z ae” /Ty (x),
n=1

1
an = 7~ l//n ()C) dx’ (27)
Vy Qp(w)
where Vy, = |Qp),
A, ==l x € Qp(), (28)
0
D ali" +xy, =0, x€dQ(w). (29)

The diffusive relaxation times 7,, are related to the
spectrum of 4 by

1
D),
For long times, the term associated with the smallest
eigenvalue 4, or the largest or principal relaxation
time 7', dominates the expansion.

The survival probability S(7) is defined in terms
of an average of the concentration ¢(x,?) at time ¢
compared to the initial amount c,

S(1) 1/9()@@, (31)

Vo o

T, = (30)

which is the fraction of Brownian particles that sur-
vive until time ¢, with S(0) = 1. If the orthonormal
expansion (27) is substituted into the integral for
S(¢), then

S(t) =" ae /™. (32)
n=1

In NMR imaging, the protons in the hydrogen
atoms of water carry magnetic spin, so that they
can align in an external magnetic field. Because
the molecules are thermally agitated, not all of them
will align with the field. Once the field is turned off,
the characteristic time 77 associated with a return to
equilibrium, is called a relaxation time. Experiments
show that the relaxation time for a container of
water is very different than for water saturating a
porous medium (Sahimi, 1995). The relaxation time
T, as reflected in the spectrum of 4 on Qu(w), is
strongly affected by surface relaxation mechanisms.
It is sensitive to the microstructure of the porous
medium and provides insight into the structure of
the pore space. Let m(x, t) be the density of the pro-
ton magnetization in the z-direction, and mq be the
initial total magnetization, equivalent to ¢ and ¢
above. Further, let m(¢) be the averaged magnetiza-
tion density. Then, as in (31), the dimensionless,
volume averaged magnetization arising in NMR is
the survival time,

m(?)
S(t) =——=. 33
(=" (33)
Finally, we relate the mean survival time 7 consid-
ered in the previous subsection to S(z). Torquato
and Avellaneda (1991) find the following two
expressions:

1= ZIQ’Z’T” - /0 S(f)dr (34)

and the following inequalities can be then be
proved:

AT, <t<Ty. (35)

3. Bounds on the trapping constant and fluid
permeability of a porous medium

3.1. Characterizing the microstructure of a porous
medium

As discussed in Section 1, the presence of a length
scale in fluid problems which does not appear in
electrical conductivity and related problems compli-
cates the estimation and bounding of the fluid
permeability and trapping constant of a porous
medium. In fluid problems in a porous medium this
length scale generally appears via the two-point
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correlation function. Before defining the two-point
function, let us first define the one-point function
Si(x) as the probability that a point at position
x € Q lies in the brine phase (Torquato, 2002),

Si(x) = P{I(x) =1} = (J(x)), (36)
which is just the porosity,
S = ¢. (37)

The two-point correlation function Sy(r) is the prob-
ability that two points at positions x € Q and
x +r € Q both lie in the brine phase,

S,(r)=P{I(x)- I(x+r)=1}
=(I(x) - I(x+r)). (38)

If the medium is statistically isotropic then S,(r)
depends only on the magnitude |r| of r. The general
form of S,(r) provides information about the gross
features of the microstructure of the porous med-
ium. For example, Torquato (2002) considers the
two-point functions for two random arrays of
spheres. First, an array with possibly overlapping
disks is shown, and its two-point function decays
monotonically to its asymptotic value ¢ at |r| = 2a,
where «a is the radius of the disks. On the other
hand, for an array of non-overlapping disks, S,(r)
initially decays towards its asympotic value as
r — oo of ¢ near |r| = 2a as well, but exhibits oscil-
lations for small |r| around ¢?, indicative of short
range order, with a period on the order of the disk
diameters 2a. This behavior reflects spatial correla-
tions between particles due to excluded volume or
hard-core effects (Torquato, 2002). It is interesting
to note that this oscillatory behavior of the two-
point function S,(r) from horizontal cross-sections,
is clearly exhibited for the brine inclusions in sea
ice (Perovich and Gow, 1991). Such behavior is con-
sistent with the excluded volume effects displayed by
the brine inclusions and their preferred arrangement
on the boundaries of the ice platelets. The amplitude
of the oscillations in S,(r) found by Perovich and
Gow (1991) increases substantially with tempera-
ture.

3.2. Variational formulation of fluid transport in a
porous medium

The bounds which we will apply to the fluid per-
meability and trapping constant in sea ice are
derived from energy variational principles. In order
to formulate the bounds (Torquato and Pham,

2004; Torquato, 2002), let us first state the energetic
definitions for the trapping constant and fluid
permeability. In the trapping problem, the scaled
concentration field u satisfies Eq. (21), and the trap-
ping constant y is given by ! = (u.#). Under the
ergodicity assumptions discussed above, the trap-
ping constant can be written in terms of the energy
functional,

y™! = (Vu(x) - Vu(x)  (x)). (39)

This quadratic form representation for 7' is ob-
tained from Au = —1 by multiplying by u and inte-
grating by parts, where the boundary terms vanish
in the infinite volume limit. In the fluid permeability
problem, the effective fluid permeability tensor can
be expressed as k = (w), where the Stokes velocity
tensor w is defined in Egs. (7)+(9). Equivalently, k
can be expressed in terms of the energy functional,

k= (Vw:VwJs), (40)

where the symbol : denotes contraction with respect
to two indices (Torquato, 2002). It follows from this
representation that the permeability tensor k is sym-
metric and positive definite.

For the trapping constant, we are interested in
the variational lower bound,

aZ

Vo(x) - Vo(x).Z (x))

where 7 () is the set of admissible trial or test
concentration fields defined by

7> Vo € T(Qy), (41)

T (Qy,) = {ergodic v(x) satisfying Av(x) = —a, x € Qp }.
(42)
For fluid permeability in the isotropic case with

k = kI, the corresponding variational upper bound
on k is given by

(Vg : Vgs(x))
ﬂ2
where 7 (Qy) is the set of admissible trial or test

velocity vector fields defined by

k< Vq € T (), (43)

T () = {ergodic q(x) satisfying V
x (Aq+ fe) =0, x € Q,}, (44)

for a unit vector e. The variational inequality (43)
generalizes to a statement about positive definite,
second-order tensors in the anisotropic case.

It is somewhat surprising that, as we will see
below, effective properties characterizing diffusion
in a porous medium, such as y, are closely related
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to effective properties characterizing bulk transport
from flow, such as k. There is a general inequality
relating these two types of problems (Torquato,
2002). For any ergodic porous medium, possibly
anisotropic, with k, y, t, and D defined above,

k <y 'I=D¢rl (45)

Equivalently, (7' — k) is a positive definite, sym-
metric, second-order tensor.

3.3. Void bounds on fluid transport properties of
porous media

A void trial field v(x) was constructed for the
trapping problem in three dimensions by Torquato
and Rubinstein (1989). The generalization of this
field to any dimension d > 2 (Torquato, 2002) is
given by
o) = [ gt - 4l (46)

bs Ja
where ¢pg=1 — ¢ is the solid ice volume fraction,
and g(x,y) is the free space Green’s function for
the Laplacian 4. With r = |x — y|,

—LInr, d=2,
g(’”) = 127[ 2-d 4> 3
@20@’” o 4 Z

where Q(d) = 2n%?/I'(d[2) is the total solid angle
contained in a d-dimensional sphere, and I'(z) is
the Gamma function. Substitution of the trial field
v(x) in (46) into the variational lower bound (41)
on y with o =1 yields the two-point void lower
bound for trapping,

(47)

2

= (ﬂf (48)
ZP

where /p is a pore length scale defined by

0= —/ (S2(r) — ¢H)rinrdr, d =2, (49)

0

b= b (Sy(r) — ¢*)rdr, d = 3. (50)

d—2 J,

For fluid permeability, a void trial tensor field q(x)
similar to the test field v(x) above, inserted into
the variational upper bound (43), yields the two-
point void upper bound for permeability in three
and higher dimensions,

(d+1)(d—2) ¢

k< VR
d* -3 :

d=3. (51)

The void bounds encompassed by the inequalities
(48) and (51) hold for all ergodic microstructures
sharing the same porosity ¢ and pore length scale
lp (Torquato and Pham, 2004).

4. Pipe bounds for permeability and trapping in sea
ice

4.1. Void bounds on fluid transport for coated spheres
and cylinders

For effective conductivity and bulk modulus of
statistically isotropic two phase composites, the
bounds of Hashin and Shtrikman (1962) are the best
possible. They incorporate information from the
two-point correlation function. However, when the
medium is isotropic, the relevant integrals involving
S>(r) depend only on the volume fractions and
dimension of the system, and not on any length
scale inherent in S,(r). The Hashin—Shtrikman
bounds are optimal given the volume fractions, in
that they are realizable by certain composite geom-
etries (Hashin and Shtrikman, 1962; Milton, 2002;
Torquato, 2002), including arrays of coated spheres
in three dimensions and coated cylinders in two-
dimensional systems (Hashin and Shtrikman,
1962). For fluid transport, various bounds on the
fluid permeability k£ and trapping constant y have
been found and used extensively (Torquato, 2002;
Sahimi, 1995). However, prior to the results of Tor-
quato and Pham (2004), microstructures which
exactly realize any of these bounds in the literature
had yet to be identified. As pointed out in Section 1,
the main obstacle in such problems is the depen-
dence of the transport coefficients like y and & on
a length scale which does not arise in the conductiv-
ity and elasticity problems. These effective parame-
ters depend nontrivially on the two-point and
higher order correlation functions in a way that is
fundamentally different than for conductivity and
elasticity. The void bounds of the previous section
depend explicitly on the two-point function Sy(r)
and have been evaluated for various particle models
(Torquato, 2002; Sahimi, 1995; Milton, 2002).

The composite microgeometries (Hashin and
Shtrikman, 1962; Torquato and Pham, 2004) which
attain the Hashin—Shtrikman bounds consist of
arrays of coated spheres in d = 3 or coated cylinders
in d=2. In d =3, the composite spheres are com-
posed of a spherical core of phase 1 (inclusion) with
radius Ry, surrounded by a concentric shell of phase
2 (matrix) of radius Ry;. The ratio (R;/Ry)’ is fixed
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and equal to the inclusion volume fraction ¢, and
these composite spheres fill all space. While there
are restrictions on the distribution of the sphere
radii in order to fill all space, without loss of gener-
ality one can assume that there is a discrete, infinite
set of radii corresponding to the sphere sizes in the
model. Let p, be the number density of the kth type
of composite sphere of outer radius Ry, with corre-
sponding inclusion radius R;,. The nth moment of
the distribution of R; can be written as

n 1 n
(RY) = ’ > ok, (52)
k=1

where p is a normalization constant and n > 3. In
d =2 the spheres are replaced by cylindrical cores
of phase 1 (inclusion) with radius Rj, surrounded
by a concentric cylindrical shell of phase 2 (matrix)
of radius Ry;. The ratio (Ri/Rym)? is fixed and equal
to the inclusion volume fraction ¢, and these com-
posite cylinders fill all space.

Torquato and Pham (2004) explicitly evaluate the
void bounds on k and y for the coated sphere and
coated cylinder geometries. In some cases the void
bounds are optimal, since the exact solutions for k
and y in these cases coincide with the expressions
for k and y appearing in the bounds. The void lower
bound on the trapping constant in d = 3 is realized
by coated sphere geometries—not just with the
Hashin—Shtrikman size distribution, but with any
reasonable size distribution for nonoverlapping
spheres. This optimal, two-point void lower bound
is given by
L ISR

O(R})
In terms of the mean survival time 7 in (34), the low-
er bound on y in (53) yields a general upper bound
on t for geometries with spherical inclusions in
d=3,
R S U}
76D = 15D (R))

(53)

(54)

The void bounds can be explicitly calculated as well
for coated cylinder geometries in d = 2. The lower
void bound on the trapping constant,

8(R}
y = < I4>,
D(RY)
is again optimal, being attained by the exact result

for the coated cylinder model. For the correspond-
ing survival time,

(55)

L (R)
T< 5=~ 56

3D (R3) 0
Now think of the inner cylinders as pipes coated
by the solid matrix, and consider fluid flow inside
bundles of parallel, circular cylindrical tubes, corre-
sponding to the coated cylinder model. The velocity
field has only an axial component, and the Stokes
equations reduce to the same Poisson equation
arising in the trapping problem, as observed by
Torquato (1990, 2002). These observations, dis-
cussed further below, lead to the exact result in
the case of parallel tubes that

=y (57)

Thus, for axial flow inside parallel cylindrical tubes
occupying a volume fraction ¢,

_ oY)
8(&?)

This bound is again optimal, and is attained by the
exact result for the coated cylinder model.

It is useful here to calculate explicitly the perme-
ability and trapping constant for a parallel array of
cylinders, all of the same radius. We will use this
model for sea ice microstructure, and see directly
as well how this simple geometry attains the d =2
void bounds. Consider the steady state flow of a vis-
cous fluid through a cylindrical tube with circular
cross-section of radius a (Torquato, 2002). Since
the brine channels in sea ice have a preferred vertical
orientation, let us assume the tube has as its axis the
vertical or xs-axis in R’. Assuming the no-slip
boundary condition on the inner surface of the tube,
the Stokes equations reduce to

10/ ow
rar(rar) :—1, r<a, (59)

w=0 , w<oo, r=0, (60)

(58)

, r=a

where w(r) represents the radial dependence of the
vertical component of the scaled velocity field. The
right side of (59) is the constant, scaled pressure gra-
dient. The solution of (59) and (60) is
1

w(r) = 7(@ =),
The permeability of one cylindrical pipe of radius a
is the average of w over the disk of radius a centered
at the origin,

0<r<a. (61)

1 2n a a2
k= / w(r)rdrdf = —. (62)
o Jo

na? 8
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Consider now an infinite set of parallel pipes each of
inner radius a uniformly distributed throughout an
impermeable solid to form a porous medium, such
that the volume fraction of the fluid phase contained
in the tubes is ¢. Then the effective permeability k of
this porous medium is

_ ¢
k=5 (63)

For this medium of porosity ¢ and fixed inclusion
radius, the ratio of moments (R})/(R?) is just a’.
Thus, the parallel pipe porous medium is a model
which attains the optimal bound (58). As noted
above (Torquato, 1990, 2002) for circular cylindri-
cal tubes, the Stokes equation (59) for the velocity
is equivalent to the Poisson equation for the concen-
tration in the trapping problem. Thus, for this par-
allel pipe porous medium, we have as well for the
trapping constant and mean survival time,
1 ¢a® a’

- and r:@.

= (64)

4.2. Comparison of void bounds with sea ice
permeability data

The brine microstructure in sea ice exhibits
strong anisotropy, with the brine inclusions tending

to be highly elongated in the vertical direction. Fur-
thermore, especially during warming, these inclu-
sions tend to coalesce and form channels or pipes
through the ice matrix, with strongly preferred ver-
tical orientation (Weeks and Ackley, 1986; Eicken,
2003). In Fig. 2, some of these brine channels from
Arctic sea ice are displayed, and in Fig. 4, we show
some large brine pipes in Antarctic sea ice, as
viewed from the surface of the ice, under sunny con-
ditions with temperatures around 0°C. Several
studies, such as those by Eicken et al. (2000), Pero-
vich and Gow (1996), and Bock and Eicken (2005),
have provided extensive statistics of the cross-sec-
tional areas 4 and morphologies of oriented brine
inclusions in sea ice. The measurements are taken
over a wide range of temperatures and brine vol-
umes ¢. Given the generally cylindrical shape of
an inclusion with cross-sectional area A =~ R
where R is the cylinder radius, measurements of
the average area (A4) yield an estimate of the aver-
age pipe radius (R), or pore length scale entering
into the fluid transport bounds. As an optimal
microgeometry whose permeability exactly coin-
cides with the void upper bound on k in (58), we
use the parallel tube model with porosity ¢ and
pipe radii @ = (R). The permeability of the paral-
lel pipe model, k= ¢a’/8 in (63), provides a

Fig. 2. Vertical (left) and horizontal (right) section photographs of brine channels in Chukchi Sea landfast first-year sea ice sampled near
Barrow, Alaska on March 30, 2004. The image on the left corresponds to 15-40 cm depth in the ice column. The image on the right shows
part (20 cm x 30 cm) of a horizontal section, obtained from serial sections (photographs by J. Miner, based on refinement of an approach

developed by Cole and Shapiro (1998)).
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theoretical upper bound for the vertical permeabil-
ity of sea ice.

Perovich and Gow (1996) and Bock and Eicken
(2005) find that the average cross-sectional area
(A) increases substantially with temperature or
brine volume fraction ¢. To incorporate this impor-
tant effect, keeping in mind that we seek an upper
bound on k, we note that the variable data on (A4)
range from about 0.015 mm? for ¢ near 0, to about
0.035 mm? near ¢ = 0.25. As a simple model to esti-
mate the observed data on (4) obtained by Perovich
and Gow (1996), we allow the radius a = (R) to
increase linearly from a=7x10"m (or a=
0.07mm) when ¢~0 to a=11x10"m (or
a=0.1 mm) at ¢ =0.25. Thus, our pipe bound for
the vertical fluid permeability k of sea ice is

pla(e)]’

k< 2890
8

a(¢) =7 %107 + (1.6 x 107*)¢.
(65)

It has been observed by Perovich and Gow (1996)
that the cross-sectional areas 4 of the brine inclu-
sions can be described by a lognormal distribution
with probability density function

1
2nf

1
—ex
2 A P

—(In4 — o)’
25 ’

where o and f§ are the mean and standard deviation
of In 4. More information about k can be obtained
from further analysis of this distribution function

f(4)

(66)

-10
3x10 1

-10
2x10

-10
1x10 1

fluid permeability k (m?)

813

(Zhu et al., submitted for publication; Heaton
et al., 2005). We note that via Eq. (57), our upper
pipe bound on the permeability yields a lower
bound on the trapping constant, y > 8/¢[a(¢)F.

In Fig. 3, we compare our pipe bound (65) with
laboratory data on k taken on sea ice grown in an
indoor tank. Given that the curve is a theoretical
upper bound on the values of k, it compares well
with the data. The data shown in Fig. 3 were taken
by Freitag (1999) and Eicken within the framework
of the multidisciplinary Large Scale Facility experi-
ment INTERICE 1996/1997. The ice was grown in
the 30-m-long Arctic Environmental Test Basin of
the Hamburg Ship Model Basin in Hamburg, Ger-
many. The indoor tank was 6 m wide and 1 m deep.
During a freezing cycle of 8 days ice formation was
induced by air temperatures down to —16 °C, which
resulted in approximately 15-20cm of new ice.
Afterwards, during a 7 day warming period the for-
merly negative temperature gradient within the ice is
changed to a slightly positive one. The bulk salinity
decreases to values of 2-3 ppt. Before the perme-
ability is measured the ice samples are centrifuged
at the sampling site at the in situ temperature, using
a method developed by Weissenberger et al. (1992).
The separation of the brine preserves the original
pore space even when the samples are stored and
handled at colder temperatures. The samples have
a cylindrical form with approximately 9 cm in diam-
eter and 6 cm in length. In the laboratory experi-
ments, a fluid of known viscosity is pressed
through an ice sample, applying a constant imposed

o
3
o 3
o ©
o
o %o o0 °©
0 0.05 0.10 0.15 0.20 0.25

brine volume fraction ¢

Fig. 3. The void upper bound in (65) is represented by the curve above. It captures laboratory data on the vertical fluid permeability of

artificially grown sea ice.
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driving force. By measuring the specific discharge,
and the pressure drop along the sample, the perme-
ability can be calculated from Darcy’s law. The fluid
used for the measurements is N-decane (C;oH»»).
N-decane is insoluble in water and therefore has
little effect on the sea ice matrix. Its melting point
is —30 °C with density and viscosity values approx-
imately 20% lower than brine values.

During a measurement cycle, the mean of 5-20
permeability values at different pressure levels is
found. Imposed pressures do not exceed 70 mbar.
The induced flow direction through the ice matrix
corresponds to the vertical direction through sea
ice in situ. The main uncertainty in the method
arises from the centrifuging process. An incomplete
release of brine as well as temperature variations
between the sampling and centrifuging time could
have significant influence. In our measurements it
is assumed that the error caused by temperature
variations are negligible because of only slight tem-
perature gradients during summer. But freezing of
retained brine leads to underestimations. With an
assumption of a uniform reduction of radii in a sim-
plified pore model of vertical tubes, the permeability
would be underestimated by a factor of 0.6 if the
maximal amount of 20% of retained brine (Weiss-
enberger et al., 1992) is expected. However errors
in pressure, outflow measurements and data pro-
cessing do not exceed 10%, so that in sum a possible
uncertainty in the permeability values comes to
about 50%. The experimental set up is suitable
for permeability measurements between 10~'¢ and
1077 m?. The upper limit is given by the restriction
of Darcy’s law to laminar flow. The lower range
for permeability estimation is limited by the increas-
ing amount of time required to measure such small
flows, to many hours and longer.

During the Mertz Glacier Polynya Experiment,
16 July-7 September 1999, aboard RSV Aurora
Australis, Golden and Lytle conducted measure-
ments of percolation processes in first year sea ice
in the vicinity of 144 °E and 66 °S. As mentioned
above, flooding of a snow layer on the surface of
sea ice through upward brine percolation, and
subsequent freezing of the slush, is an important
mechanism for ice production in some regions of
the Antarctic. This process is also essential for sup-
plying nutrients to algal communities growing in the
ice. To assess the level of ice production or nutrient
replenishment through brine percolation processes,
it would be useful to be able to obtain an overall
upper bound on the vertical fluid permeability of

the sea ice, which incorporates information about
the large channels present in warmed sea ice, which
are not considered in the averages reported by Pero-
vich and Gow (1996). During a particularly warm
period around 12-15 August, where air tempera-
tures got as high as about 0 °C, and the ice surface
temperatures were in the —4 to —5 °C range, we
cleared away the snow and observed extensive
arrays of brine tubes at the sea ice surface, which
extended at least some centimeters into the ice, pre-
sumably much further. The ice was less than 50 cm
thick. We constructed three percolation pits, or
square meter areas with the snow cleared off, during
two of the ice stations. We estimated the number of
well developed brine tubes, measured their diame-
ters, measured temperatures, and took photos and
video of these structures. A photo of these large
brine pipes from the surface of the ice, and a photo
of the percolation pit are displayed in Fig. 4. The
estimates for the number of tubes with about 1 cm
diameters were 60-65, 90-100, and 100-120 per
m?. Interestingly, in the second pit over about a
15 min period after the snow was cleared away we
observed that about 2 cm of brine had flooded the
surface of the ice in one corner of the pit. We
encountered warm, thin, brine soaked, porous sea
ice during that period, with large numbers of open
channels. It is reasonable to assume that we encoun-
tered sea ice under conditions where the porosity
and vertical permeability were near the upper end
of possible values. As an approximate, global upper
bound on the vertical permeability of sea ice, we
evaluate the parallel pipe model using the following
parameters: about 100 pipes per square meter, with
total porosity ¢ = 0.01, each pipe has a diameter of
1 cm, or radius @ = 5x 107> m. Then using the pipe
medium expression (63) for k, and assuming that
these large pipes carry the bulk of the fluid being
transported, yields a general upper bound of

k<3 %10 m? (67)

This constant plays a central role in further analysis
of the permeability of sea ice, and arises from a
completely different analysis of the sea ice micro-
structure used in continuum percolation theory
(Heaton et al., 2005). This constant also lies above,
just slightly in some cases, all the data and numeri-
cal simulations of sea ice permeability of Freitag
(1999). It should be remarked, though, that an addi-
tional factor (>1) may be necessary in this global
bound to incorporate information on variations in
pipe sizes, which are not considered here.
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Fig. 4. On the left is a photo (taken by Golden) of the surface of warm, porous sea ice in Antarctica, showing large brine channels. On the
right is a photo (taken by A. Roberts) showing a percolation pit with the Aurora Australis and Golden in the background.
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