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Abstract. Bounds on the volume fraction of the constituents in a two-component mixture
are derived from measurements of the effective complex permittivity of the mixture, using the
analyticity of the effective property. First-order inverse bounds for general anisotropic materials,
as well as second-order bounds for isotropic mixtures, are obtained. By exploiting an analytic
representation of the effective complex permittivity, the problem of estimating the structural
parameters is reduced to a problem of evaluating the moments and support of a measure
containing information about the geometrical structure of the material. Rigorous bounds on
the volume fraction are found by inverting first- and second-order (Hashin—Shtrikman) forward
bounds on the complex permittivity. The inverse bounds are applied to measurements of the
effective complex permittivity of sea ice, which is a three-component mixture of ice, brine
and air. The sea ice is treated via the two-component theory applied to a mixture of brine
and an ice/air composite. The bounds on the brine volume of sea ice derived from the effective
permittivity measurements are in excellent agreement with data from experiments. The inversion
of forward bounds on the complex permittivity of composite media provides a basis for a
theory of inverse homogenization for recovering microstructural parameters from bulk property
measurements. Such results are applicable to problems in remote sensing, medical imaging and
non-destructive testing of materials.

1. Introduction

In recent years much effort has been focussed on estimating the effective complex
permittivity ¢* [2-4, 9, 10, 18, 19, 22, 23] of periodic and random media. In the present
paper we formulate and solve the inverse problem: having measured the effective complex
permittivity we want to make some conclusions about the volume fractions of the
constituents and the geometry of the microstructure. We consider sea ice as an example
of a random medium. Sea ice is a polycrystalline medium of pure ice with random brine
and air inclusions on the millimetre scale. Its electromagnetic behaviour on this scale is
quite complicated, and is governed by the complex permittiwty), which varies spatially

and admits very different values in the brine, ice and air. Many important features of sea
ice such as age, type, salinity, temperature, thermal and fluid transport properties, growth
history, etc, are related to the details of its microstructure. In particular, the geometry
and relative volume fraction of the inclusions depend strongly on the temperature of the
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ice, the conditions under which the ice was grown, and the history of the sample under
consideration.

In the quasistatic regime, when the wavelengil much larger than the microstructural
scale, the wave cannot resolve variations in the local complex permittigity on a fine
scale, and the brine and air microstructure on the millimetre scale is averaged out, or
‘homogenized’. The behaviour of the wave inside the sea ice in this case is primarily
governed by its effective complex permittivity. For example, this is the case for synthetic
aperture radar (SAR) used in remote sensing, which operates in the microwave region,
such as in the C-band, with central frequenty= 5.3 GHz and free-space wavelength
A =57 cm.

Various models and effective medium theories, such as the coherent potential
approximation, have been used to derive ‘mixing formulae’doof the system. Typically
the sea ice was assumed to consist of a host medium, pure ice, containing ellipsoidal
inclusions of brine and air (see [23, 25]). While mixing formulae are certainly useful, their
applicability to the full range of microstructures is limited, and the assumptions under which
they are derived are not always satisfied. A general analytic method for obtaining bounds
on the bulk effective properties of composite materials was developed in [2, 3, 18, 19, 9],
and applies to any two-component medium. This analytic method has been applied to sea
ice in [10, 21, 11]. Given an increasing amount of information on the microstructure, such
as the brine volume fraction, statistical isotropy, or the assumption that the brine phase is
contained in separated inclusions (i.e. it does not form a connected matrix, or percolate),
these bounds restrict all possible valuegofo increasingly smaller regions of the complex
¢* plane. However, as discussed before, it would be very useful to be able to deduce the
detailed microstructural properties of the medium, such as the geometry and the volume
fractions of the constituents, from electromagnetic measurements.

In the present paper, we invert the bounds on the effective complex permittivity to obtain
‘inverse’ bounds on structural parameters of a two-component mixture from given complex
permittivity data. Two types of inverse bounds on the volume fractions of the constituents are
derived: first-order bounds valid for general anisotropic two-component mixtures without
any geometrical constraints, and second-order bounds for isotropic mixtures. We obtain
both rigorous bounds on the possible range of volume fractions given a value of the
observed complex permittivity, valid in the quasistatic regime, and an accurate algorithm
for predicting the volume fraction associated with a given data set of permittivity values.
The sea ice is a three-component mixture of brine, ice and air. To apply the developed
algorithm, we modelled the three-component material as a mixture of brine and a composite
formed by ice and air. This is a significant simplification of a problem for three-component
materials which is possible due to the well known ‘bubbly’ structure of ice with a small
volume fraction of air. The algorithm is demonstrated on a representative data set from [1],
with excellent results.

It should be remarked that a similar idea of estimating structural parameters from
homogenized measurements was used previously, and applied to multifrequency data for
thin silver films [17]. Analytical expressions for first-order inverse bounds were derived
in [6]. They were applied to the estimation of volume fraction of a polarizable component
from multifrequency measurements of the effective complex conductivity of a geophysical
mixture in [26]. Other approaches to the inversion for microstructural information have
been considered in [8, 16, 14, 22]. The developed method is sufficiently general to be able
to invert these bounds for much more detailed information about the microstructure, such as
brine inclusion separation (which is intimately connected with temperature and percolation
properties), but this is dealt with in [20].
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2. Bounds for the effective complex permittivity

The bounds for the effective complex permittivity of a two-component mixture were obtained
using the analytic continuation method [2, 3, 18, 9]. We consider a random mediRf) in
whered = 2 ord = 3. Lete(x, n) be a (spatially) stationary random field ine R and

n € Q, where is the set of all realizations of the random medium. We assume;) takes

the valueg; in the brine and; in the ice, and write (x, n) = €1 x1(x, n)+€2x2(x, 1), where

x; is the characteristic function of mediujin= 1, 2, which equals one for all realizations

n € Q having medium; at x, and equals zero otherwise. LE{(x, n) and D(x, n) be the
stationary random electric and displacement fields, relatedby, n) = €(x, n)E(x, n),
satisfying

V-D=0 VxE=0 (1)

where(E (x, n)) = e, e is a unit vector in theth direction, for som& =1, ...,d, and()
means ensemble average oyeior spatial average over all ®?. The effective complex
permittivity tensore* is defined as

(D) = €"(E). (2

For simplicity, we focus on one diagonal coefficiesit = ¢;;,. Due to homogeneity of
effective parameters;*(ce1, ce2) = ce*(e1, €2) for any constant, ¢* depends only on the
ratio h = €1/¢,, and we definen(h) = €*/¢,. The two main properties ofi(h) are that it

is analytic off (—oo, 0] in the & plane, and that it maps the upper half plane to the upper
half plane [2, 9], so that it is an example of a Herglotz function. Based on this fact, a
representation foe* was developed in [2] for periodic composites, and a general integral
representation foe* was obtained in [9]. FOF (s) = 1 — m(h),s = 1/(1 — h), which is
analytic off [0, 1] in the s plane, the integral representation is

* 1
F(s)=1— € _ A du(2) § = ; (3)

€2 S —Z 1—61/62

where the positive measuge on [0, 1] is the spectral measure of the self-adjoint operator
[x1, wherel' = V(—A)~1v. .

Statistical assumptions about the geometry are incorporategititoough its moments
w,. Comparison of a perturbation expansion of (3) around a homogeneous mgditino,
or €1 = €2) with a similar expansion of a resolvent representationAar) [9], yields

1
[ Zfo 2" du(2) = (D" (xal(Cx2)"ex] - ex). “)

Then g = p; if the volume fractionsp; and p, = 1 — p; of the brine and ice are known,
and u; = pipo/d if the material is statistically isotropic. In general, knowledge of the
(n + 1)-point correlation function of the medium allows calculationigf (in principle).
Bounds ore*, or F(s), are obtained by fixing in (3), varying over admissible measures
w (or admissible geometries), such as those that satisfy pgly= p;, and finding the
corresponding range of values 6f(s) in the complex plane [4, 9, 18, 19]. Two types of
bounds one* are readily obtained. The first bound® assumes only that the relative
volume fractionsp; and p, = 1 — p; are known, so that only,; = p; need be satisfied.
In this case, the admissible set of measures forms a compact, convex set. Since (3) is a
linear functional ofu, the extreme values af are attained by extreme points of the set of
admissible measures, which are the Dirac point measures of theggym The values of
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F must lie inside the circlg, /(s — z), —oo < z < 0o, and the regioD® is bounded by
circular arcs, one of which is parametrized in theplane by

i) = 2

0<z < pa (5)

To display the other arc, it is convenient to use the auxiliary function [2]

€1 (1—-sF())
Es)=1—-—=——"-—" 6

() e s(1—F(s)) ©)
which is a Herglotz function likeF(s), analytic off [Q 1], with a representation like (3)
whose representing measure has massThen in theE plane, the other circular boundary

of DD is parametrized by
P2

Ci(z) =

0<z< pa (7)

In the ¢* plane (see figure 1)P® has verticesA; = ex(1 — C1(0)) = pie1 + poer and
By = €1/(1—C1(0)) = (p1/e1+ p2/€2)~ L, and collapses to the intervgh, /e1+ pa/ez) L <
€* < p1e1 + poeo Whene; ande; are real. In the last case, these bounds are the classical
arithmetic (upper) and harmonic (lower) mean bounds. The complex bounds (5) and (7) are
optimal and can be attained by a composite of uniformly aligned spheroids of material 1 in
all sizes coated with confocal shells of material 2 and vice versa [18, 19]. These arcs are
traced out as the aspect ratio varies. When the volume fractions of the components in the
mixture vary, the corresponding domaifis? cover the regionD(l), a general bound on
e* for arbitrary composites mixed from the initial materials.

If the mixture is further assumed to be statistically isotropic, é&g.= €*8;, then
w1 = p1p2/d must be satisfied as well. A convenient way of including this information is
to use the transformation introduced in [4]:

Fis) = - — — ®)

§) = — — .

ST SFG)

The function Fy(s) is, again, a Herglotz function having a representation like (3) with
representing measuye', with only a restriction on its massg = p2/pad.

Figure 1. lllustration of bounds on the bulk permittivity of a two-component mixture. For
a given volume fraction of one component, all possible effective permittivities of the mixture
lie in the lens shaped region™, whereas isotropic mixtures lie in the smaller lens shaped
domainD®@. All possible bulk permittivities of mixtures with arbitrary volume fractions lie in
the regionDél) which is a union of the domain®® over all volume fractions.
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Applying the same procedure as foX? yields a regionD®, whose boundaries are
again circular arcs. In th& plane, one of these arcs is parametrized by

_ pils—2) _
CR=— — 5 0si<@-Drd ©)

In the E plane, the other arc is parametrized by
A pa(s — 2)
Co(z) = 0<z<1/d. 10
2 = - pd - D/ esY 4o
In the ¢* plane,D® has verticesA, and B, (see figure 1), and collapses to the interval

1 -1 -
€2+p1< +ﬂ> <e*<el+pz< +ﬁ> (11)
€1—¢€ de € —€ de

whene; ande; are real withe; > €. These are the Hashin—Shtrikman bounds [13]. When

€1 < €2, the sequence of inequalities is reversed. The vertigesnd B, (which correspond

to the expressions in (11)), are attained by the Hashin—Shtrikman coated sphere geometries
(spheres of all sizes of material of permittiviy in the volume fractionp; coated with
spherical shells of materiab in the volume fractiorp, and vice versa), and lie on the arcs
which boundD®.

3. Inverse bounds for structural parameters

From equations (3) it immediately follows that the effective complex permittivity of the
mixture of two constituents can be represented as an integral with some positive Borel
measureu (dz) on unit interval:
! (do)

§—Z

€f=e—eF,(s)=c—¢ / (12)

0
whereF,, = 1—¢*/e; ands = 1/(1—e1/€2), s ¢ [0, 1]. An important feature of the integral
representation (12) of the effective property is that it separates the properties of the mixture
constituents, which are contained in the variapldrom the structural information about
the geometry of the mixture, which is contained in the meagurgishing to recover this
geometrical information from the measurements of the effective complex permittivity, we
need to describe a set of measurewhich generates a measured vattidor the effective

property:
M) = {i: Fu(s) = 1—€"/ea}. (13)

The structural information about the geometry of the mixture is contained in the moments
wu, of the measure. (see equation (4)). Using an expansionRfs) for |s| > 1 about a
homogeneous medium

1
F(s)=%+%+~-~ un=f 2" du(z) (14)
0

the moments of the measugecan be determined. If all the moments are known, then the
measureu is uniquely determined. Theoretically, if only a measured value of the effective
permittivity is given, we cannot determine the moments, nor the structure of the material.
This is because there can exist a great variety of structures generating the same response
under the applied field. But instead, we can determine an interval confining the first moment
of the measurg:. This will give us an interval of uncertainty for the volume fraction of
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one material in a mixture for a general anisotropic medium with no assumptions on the
geometrical structure.

To obtain information about other structural parameters, we can parametrize a subset
M of M in (13) which consists of singular measuygsoncentrated on points from the
interval [0 1]. Geometrically, this corresponds to the parametrization of the set of possible
microstructures using ‘coated sphere’ composites: inclusions of one material coated with
the second material. For the measures from this sufséie corresponding value df is
given by

F(s) = (15)

s§—T
For the zeroth-order bounds on the complex permittivity given by the dorlﬁrh in
figure 1, 0< ¢ <1, 0< 7t <1andF(1) < 1, which produces all possible formed
from the initial materials. Now, having a prescribed value fo%) we want to find the
appropriate intervals fox andz.

The interval fora gives us an interval of uncertainty for the volume fractjgnof one
material in the mixture,

1
Y < p < pd (16)

while the corresponding values far estimate the support of possible Dirac measytes
from the setM which are equivalent to the true spectral measure from the point of view of
the measured value ef*:

~(1 1 1 ~ ~
at=plsE") AP =pPsed) peMm 17)

The measureg” and i are on the boundary of the st.

By changingt in (15) the corresponding structures trace out the &rcs Ao, Br)
or (Aj, Bz, B1) (see figure 1) changing from the laminates (in 2D case) or cylinders (in
3D case) oriented along the field through coated spheroids with varying aspect ratio to
isotropic structures and then to laminates (or cylinders) oriented across the field. Hence
the last estimate for the measure support can be extended into an estimate for geometrical
parameters such as, for example, the degree of an anisotropy of the mixture [20].

These are the first-order bounds. However, if some information about the structure
of the composite is available, then bounds can be derived for the next moments, and the
uncertainty intervals will be essentially decreased. Pursuing this approach for isotropic
materials, we use the second-order expansion for the fundiornTherefore the inverse
bounds for the volume fraction of a component in an isotropic mixture can be referred to
as second-order inverse bounds.

Exploiting the transformation (8) from the functidn to the functionF; preserves the
type of integral representation

1,1 d
Fi(s) = fo po(do) (18)

s —Z

Hence the same approach works here as well. We can also determine the support of
equivalent measures € M

a”=p7sE™ P =pPee?) AeM (19)

and an admissible interval for the second moment of the measure, which gives us an interval
of uncertainty for the volume fraction for an isotropic medium, or the second-order bounds:

2
p? < p1 < pP. (20)
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Second order
volume fraction bounds

First order
volume fraction bounds Py
1 1 2 2
A< p< p® » A@ < p<g@

Figure 2. lllustration of bounds on the volume fraction of one component in the mixture derived
from the first-order anisotropic bounds (left-hand diagram) and from the second-order isotropic
bounds (right-hand diagram) for the effective permittivity. The small lens shaped domains each
contain the anisotropic (left) and isotropic (right) mixtures corresponding to the volume fractions
of the first componenp, and p,. These points give the lower and upper estimates for the volume
fraction of the first material in the mixture.

A geometrical illustration of the idea of the inversion is shown in figure 2.

Given an observed complex permittivity valeg&, we increase the volume fractign
in the boundD® until one of the circular arcs on the boundary Y touches the point
€*. This defines the lower bounpfl) on the possible range of volume fractions associated
with the data point. Similarly, we decreage until the other arc touches the data point,
giving an upper boung{" on the possible range of the volume fractions. Applying the
same procedure to the isotropic complex boun® yields even tighter Ioweqn,@ and
upper p{? bounds on the volume fractiopy.

Given a set of data points'(k) for a set of N measurements, =1, ..., N, we carry

out the inversion for each point, and then take the maximum évef the p* and the

minimum overk of the p?, and similarly forp® and p{?, which yield rather tight, accurate
estimates of the volume fractions in the mixture associated with the given data set.

Using this unified approach we rederive below the first-order bounds on the volume
fraction of a component in an anisotropic mixture, derived in [6], in the comgieplane.
Then assuming isotropy of the mixture, we derive the bounds for the volume fraction in
an isotropic mixture. These are the second-order bounds. We then apply the technique
developed here to real measurements of the complex permittivity of sea ice and compare

our bounds with experimental results.

4. First- and second-order inverse bounds

Let f be the value off corresponding to the measured effective complex permittivity
for the given properties;, €, of the constituents. As shown above, if we do not input any
geometrical information about the mixture, aside from the volume fractions, the valfie of
lies inside the circular arc

pP1 0

Ci1(z) = <z < p2 (21)
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We vary p; so that the given valug lies on this arc and we obtain an equation for the
lower bound on the structural parametérs, z}:

pi=[fG—2). (22)

Solving it, we find the lower first-order boungg" andz'" for the volume fractiorp; and
the support of the measure supp:

Zl(l) _ Im(fs) — e ) Im (5)

Im (f) Im(f)
Here the bar in the second expression denotes the complex conjugate. The vﬁfﬂenof
(23) gives the bound for the interval of variation of the support of the megsune(15),
pl(l) gives the lower bound for the first moment of the meagurer its mass in (15). But
the first moment of the measugeequals the first moment of the true measureiiop = uo.
Hencepl(l) gives a rigorous bound for the volume fraction of the first component in the
mixture.
In order to obtain the other bound, we can consider an auxiliary functi@in [4]:

(23)

G(t):el_e =1—sF(s) (24)
€1 1—v
with the same properties a& for some positive measure. The advantage to using
this function as opposed tB(s) is that the spectrum (or support pf in (3)) is trivially
transformed via = 1 — s, so that spectral bounds obtained #orare easily translated over
to G, which is not the case foE. The valueg of the functionG corresponding to the

measured*, lies on the arc

Ci(x) = 22 0<z< ;1 (25)

hence we can derive bounds fgrand p, = 1 — p; similar to those considered above.
The formulae are analogous to (23), switchipgfor p,, f for g, ands for ¢t = 1 —s.
Thus we obtain the upper boung for the volume fraction of the first component and the
corresponding bound for the supporting

Im (g 1) _ Im(ggt)
Im (g) YT Im(g)

The estimate for the support of the measfirés obtained ag{" = 1 — z,, because from
the auxiliary relationship

(26)

u =

1—-1tG@)
1—1¢

it follows that poles of the functiong' andG sum up to unity. Simplifying (26), we obtain

the first-order bounds for the measure support and the volume fraction:

zfjl)zl—lm(—gt) 1(11>:1_|g|2|—m(;).
Im (g) Im (g)
Now, assume that the mixture under consideration is known to be isotropic, which
means that the measuret has to belong to the domaiP® (see figure 1). In order to
derive second-order bounds on the volume fraction of one component in a two-component
isotropic mixture, we consider the boundafy(z) in (9) of the circle containing the point
f inside:

Fl—1) = (27)

(28)

_ pnb—-2) B
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and choose the parameters such that the vAllies on the admissible part of the afg(z).
Separating real and imaginary parts we obtain a system of equationsafat p;. Solving
the system we need to choose a solution of (29) which satisfies & (d — 1)/d:

{p 2} 0<z<(d—1yd. (30)

In order to obtain the other bound we again consider the auxiliary funcétion(24), which
is obtained from the functio¥ (s) by changingp; for p, = 1 — p; ands fort = 1 —s.
The explicit formulae are as follows. Let us introduce complex parametarsd w as
€e(e*—e€) tl—w) €e1—€¢*  t(l—-v)
= = w = = .
€* (€1 — €2) tr—w €1 — €2 t—v
The second-order bounds®, z?'}, and{p{?, z?}, for the structural parameters are given
by the pair of solutions of (29) and the similar problem for the transformed fune¢tion

p|<2) = Q0(v, s) Zl(z) = R(v, s)
PP =1-Qw,s) 22 =1-R(w,s)

such that the constraint (30) (and the corresponding auxiliary constraint) is satisfied. Here
Q andR are

(31)

(32)

2dvsi + vi — \/T
Q. 5) = 2(dsi + vy)
Rev, s) = 2dvi(1—s;) —vi — /T (33)
2dvj

T =vi(vi — 4dsi|v|2 + 4dves; — 4d2visi2)

and the subscripts refer to the real or imaginary parts.

It is shown in [5] that the support of the measuwe is directly related to the
separation distance between the particles in matrix—particle composite. Based on the
approach developed here, we extract structural information about separation between the
brine inclusions in [20].

The geometrical idea of the second-order bounds in the comeplefane is illustrated
in figure 2. Complex permittivities of all possible mixtures formed from two materials with
the complex permittivities; and e, and arbitrary volume fraction of the constituents are
confined to the regiorD(()l). The composites with isotropic structure and arbitrary volume
fraction belong to the smaller regidhéz), which is a union of small lens shaped domains
corresponding to isotropic mixtures for all volume fractions. Two such domains are shown
in figure 2 for the volume fractions of the first material equal to 0.5 and 0.56. Inverse
bounds for the volume fractionp[Z), p?] provide a range of variation of the volume
fraction parametep = p; for all such small domains which could possibly contain the
measured value af*.

For measurements corresponding to different frequencies, the inverse bounds for the
volume fraction of a component were derived in [17, 6, 26] as an intersection of particular
bounding intervals. In determination of the brine volume fraction in sea ice below, we
consider the case where several measurements are made at the same temperature and the
same physical conditions. In this situation, we believe that, though we deal with slightly
different microstructures, we do not have means to distinguish them. Hence as well as
for frequency dependent measurements, it is the same structure, and the bounds for the
volume fraction are an intersection of all particular bounds, corresponding to particular
measurements.
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For a set of data points corresponding to the same structure the bounds are given by
an intersection of all admissible intervals. Suppose we have several measurehients
k=1,..., N, corresponding to the same composite structure which means that we do not
distinguish differences in geometry of the mixtures. We find that the intersectionkasfer
the intervalsp® (k) < p < pi (k) gives the bounds for the volume fractign= ps:

P9 = max k) < p < min P (k) = P g=12 (34)
Here pl(‘”(k) and pﬁ‘”(k) are, respectively, lower and upper bounds for the volume fraction

derived from the effective complex permittivity* (k) and ¢ is the order of the bounds,
g = 1 for a general mixtureg = 2 for an isotropic mixture.

5. Inverse bounds for the sea-ice brine volume from measured effective complex
permittivities

Determination of the structure of sea ice and brine content from measurements of the
effective complex permittivity is an important problem in remote sensing. We apply the
developed method to two data sets of 4.75 GHz measurements of the effective complex
permittivity of sea ice [1]. The data sets each contain nine measurements of the effective
complex permittivity of sea ice for two different temperatures and for different volume
fractions of brine. The temperatures aré °C and—11 °C. Given a sea-ice sample of
temperaturel’ °C and salinityS parts per thousand (ppt), the brine volumgis calculated

from the equation of Frankenstein and Garner [7]. Given the frequgn@Hz as well,

the complex permittivitye, of the brine is computed from the equations of Stogryn and
Desargant [24]. Furthermore, although the brine microstructure tends to be elongated in
the vertical direction, since only vertically incident waves are considered in [1], we are
justified in assuming that the geometry is isotropic within the horizontal plane, in which
case we takel = 2 above. These parameter calculations gave generally good agreement
with the boundsD™ and D@ in [10]. However, we found that closer agreement is obtained

if we slightly adjust the complex permittivity, of the ice by treating it as a composite
with a small volume fraction of air, and calculating its effective permittivigywith the
Maxwell-Garnett formula [15].

Sea ice is a mixture of three components: pure ice, brine and air with the unit complex
permittivity of air, e5r = 1, the complex permittivity of icejce = 3.15+10.002, and the
complex permittivity of brine depending on the temperature and frequency. We consider
this three-component mixture as obtained in a two-step mixing procedure: a composite of
ice and air is mixed with brine. We assume that the first mixture of ice and air is a 3D
isotropic composite of an ice matrix containing inclusions of air. As the volume fraction
of the air inclusions is small, and the permittivities of ice and air are relatively close, a
good approximation of the effective complex permittivity of such a mixture is given by the
Maxwell-Garnett formula for a two-phase composite

d pair(€ice — €air) i|

€ice(d — 1) + €air + Ppair(€ice — €air) ’
The Maxwell-Garnett formula, as well as Bruggeman's symmetric effective medium

formula [15], gives close results for the effective complex permittivity of the mixture of ice

and air. When the volume fraction of air in this mixture changes, the regigis D® and

D@ confining the possible effective permittivities of sea ice, change their location in the

€2 = €jce |:1 — (35)
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Figure 3. Experimentally measured complex permittivity values for sea-ice samples with brine
volume p = 0.036 (data set 1, left-hand diagram) and with brine volume- 0.0205 (data

set 2, right-hand diagram), and bounds for the complex permittivity of composites formed from
the brine and ice/air mixture with the corresponding volume fractions. The bigger lens shaped
region DD corresponds to all anisotropic composites, and the smaller lens shaped Bé§ion
confines the complex permittivities of two-dimensional isotropic mixtures. Points show the
measured values of the complex permittivity of sea ice containing the given percentage of brine.

complexe* plane (see figures 1 and 2). The air volume fraction in the ice/air mixture was
chosen so that the regiad® corresponding to 2D isotropic composites would contain all
points of measurements from both data sets. This gives 2.5% of air in the ice/air mixture
and the value for permittivity, = 3.07 4+ 10.0019. We used this value as the complex
permittivity of the ice/air component in an ice/air/brine mixture. The complex permittivity
of the other component, brine, depends on the temperature, ane,i5$1 + i 45 for the

first set of measurements at the temperatu€e®C, ande, = 42.2 4 145.6 for the second

set of data at the temperaturel1°C. These data sets are shown in figure 3. (We remark
that the volume fraction of air could also be calculategriori from knowledge of the
density as in [11]).

First-order inverse bounds. For each particular data point from data sets 1 and 2, we used
our technique to evaluate the brine volume from the measurements of the effective complex
permittivity. As a first step we applied the bounds (23) and (28) for a general medium
without any geometrical information.

For data set 1 with the volume fraction of brine = 0.036, the intersection of
all particular admissible intervals for the brine volume fraction gives an estimate as
0.0213 < p < 0.0664. For data set 2 with the volume fraction of bripe= 0.0205,
this estimate is ©119< p < 0.0320.

Second-order inverse boundsThe second-order inverse bounds for the brine volume
fraction were derived from the measurements of the effective complex permittivity with the
assumption of 2D isotropy of the mixture. The intersection of the bounding intervals for data
set 1 with brine volumey = 0.036, estimates the brine volume a9383< p < 0.0422.

For data set 2 with volume fraction of brine= 0.0205, the inverse bounds for the brine
volume are 0189< p < 0.0213. The algorithm estimates the brine volume well within
10% error of the actual value of 0.0205 for data set 2.
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Figure 4. Comparison of the first- and second-order bounds for data set 1 with the actual brine
volume of 0.036 (left-hand diagram) and data set 2 with the actual brine volume of 0.0205
(right-hand diagram). Joint plots q;f,(l) (k) and p&l) (k) show the first-order inverse bounds for

general anisotropic composites, while pIotquS?)(k) and pﬁz)(k) show second-order inverse
bounds for isotropic mixtures, whekedenotes the index of the data point1,2,...,9. The
dashed lines show the interval of uncertainty in determining the brine volume derived with the
assumption of 2D isotropy.

Comparison of the first- and second-order bounds for each particular data point is shown
in figure 4 for data sets 1 and 2. On the horizontal axis is shown the index of the data
point. The points of the lower boung, and of the upper boung, corresponding to all
nine different data points are joined on the plots to give better exposition. The shape of
the curves is not important, because the numeration of the data points in the data sets is
arbitrary, but the distance between the lower and upper curves is important.

In figure 4 the points corresponding to the first-order inverse bopfiig) and p (k)
are plotted, giving the lower and upper estimates. The maximuphlhfc) and the minimum
of pV'(k) with respect tok give the first-order inverse bounds for general anisotropic
composites. For both data sets these are not very tight, permitting quite a large range of
variation for the volume fraction. The second-order boupﬁé and p{? derived with the
assumption about 2D isotropy of the composite, are shown for the same data sets. Again
the points of the lower bounqi;l(z)(k) and of the upper boung{? (k) for nine different
data pointsk = 1,...,9, are joined on the plot. In this case the interval of uncertainty is
reduced by more than half compared with the first-order estimate.

The geometrical structure of the composites in each of the two sets of measurements
is believed to vary negligibly, reflecting the similarity of the physical conditions of the
experiments. Therefore the bounds for the volume fraction have to satisfy all particular
restrictions, and are given by the intersection of all particular volume fraction intervals.

6. Conclusion

We have developed a unified approach to the problem of inverse bounds on the
microstructural parameters of a mixture. Two types of inverse bounds are derived using
the analyticity of the effective complex permittivity of the composite. They are first-order
inverse bounds on the volume fraction and structural parameters for general anisotropic
mixtures, and second-order inverse bounds for mixtures with 2D or 3D isotropic geometrical
structure. The inclusion of additional information on geometrical structure of the composite
considerably improves the inverse structural bounds. This is an expected result, because
introducing isotropic restrictions for a geometrical structure, we restrict the class of the
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composites. The inverse bounds obtained are used to estimate sea-ice brine volume from
real measurements of the effective complex permittivity of sea ice. The bounds are in very
good agreement with the experimental results.

Acknowledgments

We would like to thank Christopher Orum for very helpful comments on the manuscript.
This work was supported by ONR grant NO000149310141 and NSF grants DMS-9622367
and OPP-9725038.

References

[1] Arcone S A, Gav A J and McGrew S 1986 Structure and dielectric properties at 4.8 and 9.5 GHz of saline
ice J. Geophys. Re®1 (C12) 14281-303
[2] Bergman D J 1978 The dielectric constant of a composite material—a problem in classical pPiygics
Rep.C 43 377-407
[3] Bergman D J 1980 Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric
constant of a two-component composite matePlays. Rev. Let#44 1285
[4] Bergman D J 1982 Rigorous bounds for the dielectric constant of a two-component confusitBhys.
13878
[5] Bruno O 1991 The effective conductivity of strongly heterogeneous compd3ites R. SocA 433 353-81
[6] Cherkaeva E and TrjpA C 1996 Bounds on porosity for dielectric loggiRgoc. 9th Conf. of the European
Consortium for Mathematics in Industry (ECMI96, Denmark, 19@6)ngby: Technical University of
Denmark) pp 304-6
[7] Frankenstein G and Garner R 1967 Equations for determining the brine volume of sea ice @t6mto
—22.9° C J. Glaciology 6 (48) 943-4
[8] Gajdardziska-Josifovska M, McPhedran R C, McKen2iR and Collis R E 1989 Silver—-magnesium fluoride
cermet films. 2: optical and electrical propertiggpl. Opt.28 2744-53
[9] Golden K and Papanicolaou G 1983 Bounds on effective parameters of heterogeneous media by analytic
continuationCommun. Math. Phy€0 473-91
[10] Golden K 1995 Bounds on the complex permittivity of seaJc&eophys. Res. (OcearK)0 (C7) 699-711
[11] Golden K M 1997 The interaction of microwaves with sea Mé@ve Propagation in Complex Media (IMA
Volumes in Mathematics and its Applications @8) G Papanicolaou (Berlin: Springer) pp 75-94
[12] Hallikainen M 1992 Microwave remote sensing of low-salinity seaNtierowave Remote Sensing of Sea Ice
(Geophysical Monograph 6&8d F D Carsey (AGU) pp 361-73
[13] Hashin Z and Shtrikman S 1962 A variational approach to the theory of the effective magnetic permeability
of multiphase materiald. Appl. Phys33 3125-31
[14] Haslund E and Nost B 1998 Determination of porosity and formation factor of water-saturated porous
specimens from dielectric dispersion measurem&asphysic$63 149-53
[15] Landauer R 1978 Electrical conductivity in inhomogeneous meglectrical, Transport and Optical
Properties of Inhomogeneous Media (ETOPIM, Ohio State University, Columbus, OH, (M¥)York:
American Institute of Physics)
[16] McPhedran R C, McKeneiD R and Miltan G W 1982 Extraction of structural information from measured
transport properties of compositéppl. Phys A 29 19-27
[17] McPhedra R C and Miltmm G W 1990 Inverse transport problems for composite mbftiia Res. Soc. Symp.
Proc. 195257-74
[18] Milton G W 1980 Bounds on the complex dielectric constant of a composite matgnil Phys. Lett37
300-2
[19] Milton G W 1981 Bounds on the complex permittivity of a two component composite mateAabl. Phys.
52 5286-93
[20] Orum C, Cherkaeva E and Goll& M 1998 Recovery of inclusion separations in a composite from effective
property measurements, in preparation
[21] Sawicz R and Golden K 1995 Bounds on the complex permittivity of matrix—particle compdsifgspl.
Phys.78 7240-6



450 E Cherkaeva ath K M Golden

[22] Sen P N 1981 Relation of certain geometrical features to the dielectric anomaly of @ephysics46
1714-20

[23] Sihvola A H and Kong J A 1988 Effective permittivity of dielectric mixturSEE Trans. Geosci. Remote
Sensing26 420-9

[24] Stogryn A and Desargant G J 1985 The dielectric properties of brine in sea ice at microwave frequencies
IEEE Trans. Antenn. PropagafP-33 523-32

[25] TingaW R, Vos W A G andBlossey D F 1973 Generalized approach to multiphase dielectric mixture theory
J. Appl. Phys44 3897-902

[26] Tripp A C, Cherkaeva E and Hulen J 1998 Bounds on the complex conductivity of geophysical mixtures
Geophys. Prospecting6 in press



