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ABSTRACT 

Uniqueness theorems are proved for the fundamental boundary value problems of linear elastostatics in 
bodies of arbitrary shape. The displacement fields are required to have finite strain energy in bounded 
portions of the bodies and satisfy the principle of virtual work. For bounded bodies, the total strain energy 
is finite and uniqueness is proved without additional hypotheses. In particular, no restrictions other than 
the energy condition are placed on the field singularities that may occur at sharp edges and corners. For 
unbounded bodies, uniqueness can be proved as in the bounded case ff the total strain energy is finite. 
Sufficient conditions for this are shown to be the finiteness of the strain energy in bounded portions of the 
body together with the growth restriction 

fa u~(x)u~(x) dx = 0(r), r---~ co d L F[ 

r .a  

on the displacement field u~, where f~r, ~ is the portion of the body that lies between concentric spheres 
with radii r and r + 8 and 8 > 0. 

In troduct ion  

The classical theory of linear elastostatics. The  f u n d a m e n t a l  p r o b l e m  of  l i n e a r  
e l a s t o s t a t i c s  is to  d e t e r m i n e  t h e  e q u i l i b r i u m  d i s p l a c e m e n t  f i e ld  t h a t  is p r o d u c e d  i n  a n  
e l a s t i c  b o d y  o f  k n o w n  s h a p e  a n d  c o m p o s i t i o n  b y  t h e  a c t i o n  o f  k n o w n  b o d y  f o r c e s  
a n d  s u r f a c e s  t r a c t i o n s  o r  d i s p l a c e m e n t s .  I n  t h e  c l a s s i ca l  f o r m u l a t i o n  o f  t h e  t h e o r y  t h e  
d i s p l a c e m e n t s  a n d  s t r e s s e s  a r e  r e q u i r e d  t o  b e  d i f f e r e n t i a b l e  a n d  s a t i s f y  t h e  d i f f e r e n -  
t i a l  e q u a t i o n s  o f  e q u i l i b r i u m  i n  t h e  i n t e r i o r  o f  t h e  b o d y  a n d  t o  b e  c o n t i n u o u s  a n d  
s a t i s f y  t h e  p r e s c r i b e d  s u r f a c e  t r a c t i o n  o r  d i s p l a c e m e n t  c o n d i t i o n s  o n  t h e  b o u n d a r y .  
T h i s  b o u n d a r y  v a l u e  p r o b l e m  h a s  a h i s t o r y  t h a t  b e g i n s  w i t h  A .  L .  C a u c h y ' s  d i s c o v e r y  
o f  t h e  e q u i l i b r i u m  e q u a t i o n s  i n  1 8 2 2 ;  s e e  r e f e r e n c e  [18 ,  p .  8].  T h e  u n i q u e n e s s  o f  
c l a s s i ca l  s o l u t i o n s  f o r  b o u n d e d  b o d i e s  w i t h  s n l o o t h  s u r f a c e s  w a s  p r o v e d  b y  G .  
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Kirchhoff in 1859 [12]. General  existence theorems for classical solutions were first 
proved during the period 1906-1908 by integral equation methods. The principal 
contributors were I. Fredholm [6], G. Lauricella [17], R. Marcolongo [19], A. Korn 
[15, 16] and T. Boggio [2, 3]. More  recently G. Fichera has proved the existence of 
classical solutions in bounded bodies with smooth boundaries by the methods of 
modern  functional analysis [4, 5]. Thus the theory of the classical boundary value 
problems of linear elastostatics is essentially complete. 

The need for a more general theory. Unfortunately the classical theory described 
above provides an inadequate foundation for the analysis of most of the problems 
studied by applied scientists in their applications of linear elastostatics. Examination 
of any of the numerous books on theoretical elasticity, beginning with the classical 
treatise of A. E. H. Love [18], reveals that most of the problems treated in them 
involve unbounded bodies, such as infinite plate or bars, and/or  bodies having sharp 
edges or corners. Moreover,  the stress fields are known to have singularities at 
re-entrant  edges and corners. Examples of these difficulties can be found in the 
theory of cracks; see I. N. Sneddon and M. Lowengrub [22]. It is sometimes argued 
that the classical theory is a sufficient foundation for applications because real bodies 
are always bounded and boundaries with sharp edges and corners can be approxi- 
mated by smooth ones. However,  although this procedure simplifies the problems 
from the viewpoint of the classical theory, it makes them inaccessible to techniques 
such as separation of variables and integral transform methods that are used by 
applied scientists. Thus the real issue is whether  a mathematical theory can be 
devised that is sufficiently general to provide a foundation for the analysis of the 
singular problems that are actually studied by applied scientists. The  purpose of this 
paper  is to provide the beginnings of such a theory comprising a formulation of the 
elastostatic boundary value problems that is applicable to bodies of arbitrary shape 
and corresponding uniqueness theorems. 

Remarks on the formulation of boundary value problems. A "formulat ion" of a 
boundary value problem is a definition of the class of functions in which solutions 
are to be sought. The classical formulation of the elastostatic boundary value 
problem was described above. Many other  formulations are possible. For  example, 
the continuity conditions may be replaced at some or all boundary points by 
boundedness or integrability conditions, the equilibrium equations may be required 
to hold in a weak sense, etc. In principle, any formulation is acceptable if there is an 
existence theorem, stating that there is at least one solution in the class, and a 
uniqueness theorem, stating that there is at most one solution in the class. In practice 
the choice of a solution class turns on technical considerations.' The  proof of an 
existence theorem is facilitated by choosing a large solution class but uniqueness is 
lost if the class is too large. The proof  of a uniqueness theorem is facilitated by 
choosing a small solution class but existence is lost if the class is too small. For  
example, Kirchhoff's theorem on the uniqueness of classical solutions of the elastosta- 
tic boundary value problem can be proved for bodies having re-entrant  sharp edges 
but in this case no classical solution exists. 
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The role of existence and uniqueness theorems. A pure existence theorem for a 
boundary value problem demonstrates that the properties chosen to define the 
solution class are not  contradictory; i.e., there are functions with these properties. In 
the presence of an existence theorem a uniqueness theorem shows that the defining 
properties of the solution class characterize the solution completely. However,  a 
uniqueness theorem can be even more valuable when no general existence theorem 
is known. In such cases it may still be possible in certain instances, corresponding to 
special choices of the boundary or data, to construct a solution in the chosen solution 
class. A uniqueness theorem then shows that the solution is the correct one. An 
interesting example of this occurred in the theory of the diffraction of electromagne- 
tic waves by a perfectly conducting circular disk. In 1948 J. Meixner [20] proved a 
uniqueness theorem for this problem and used it to show that a solution that had 
been published in 1927 was incorrect. Of course, in the absence of a general 
existence theorem it is desirable to prove uniqueness in as large a solution class as 
possible since this facilitates application of the uniqueness theorem in specific 
instances. 

The boundedness question for the ~splacement fields. Linear  elastostatics is an 
approximation that is valid for small displacements. If the displacements are 
bounded then by suitable scaling they may be made arbitrarily small. Hence it is 
natural to make boundedness of the displacements a defining property of the 
solution class. Indeed, this proper ty  has often been employed in constructing 
solutions of particular problems. It has also been used by J. K. Knowles and T. A. 
Pucik [14] in the formulation and proof  of a general uniqueness theorem for plane 
crack problems. However ,  it is shown in this paper  that uniqueness holds in the 
larger class of solutions with locally finite energy, without boundedness conditions. 
This result shows that the boundedness hypothesis is redundant  and the bounded-  
ness property,  in instances where it holds, must be derivable f rom the other  
hypotheses. 

Displacement fields with locally finite energy. In this paper it is taken as a fundamental 
principle that equilibrium displacement fields in elastic bodies must have finite strain 
energy in bounded portions of the bodies. Such displacement fields will be called 
displacement fields with locally finite energy (or, for brevity, fields wLFE). The 
equilibrium displacement field corresponding to prescribed body forces will be 
characterized among all fields wLFE, by the principle of virtual work. The class of 
displacement fields that obey these two principles will be called the solutions with 
locally finite energy (for brevity, solutions wLFE) of the elastostatic boundary value 
problems. The principal results of this paper  are uniqueness theorems for this class 
of solutions. In particular, the uniqueness of solutions wLFE in bounded bodies is 
proved without additional hypotheses concerning the boundary or the displacement 
field. The uniqueness of solutions wLFE in unbounded bodies is proved under  a 
growth restriction on the behavior of the stress or displacement fields a t  infinity. 
Moreover ,  it is shown by examples that a growth restriction is necessary for 
uniqueness. 
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The remainder  of the paper  is organized as follows. The  class of displacement 
fields wLFE is defined in § 1. §2 contains the definition of the class of solutions 
w L F E  in homogeneous  elastic bodies of arbitrary shape, subject to prescribed 
surface tractions, prescribed body forces and prescribed displacements or stresses at 
infinity. The  regularity propert ies  of solutions w L F E  are also discussed in this 
section. § 3 presents the uniqueness theorems for solutions wLFE of problems with 
prescribed surface tractions. In § 4 the methods and results of § 3 are extended to the 
other  classical boundary  value problems of linear elastostatics including problems 
with prescribed surface displacements, problems with mixed boundary  conditions, 
problems for inhomogeneous  elastic bodies and n-dimensional  generalizations. § 5 
contains a discussion of related literature. 

1. Displacement fields with locally finite energy 

A fixed system of Cartesian coordinates is used throughout  the paper  and points of 
Euclidean space are identified with their coordinate triples (Xl, x2, x3) = x ~ R 3. With 
this convention each elastic body in space is associated with a domain (open 
connected set) f ~ c R  3 that  describes the set of interior points of the body. The 
closure and boundary  of f~ are denoted by ~ and 0f~ = ~ - ~ ,  respectively. The 
notat ion of Cartesian tensor analysis [11] is used to describe the physical variables 
associated with elastic bodies. In particular, tensors of various orders are denoted by 
subscripts and the summat ion  convention is used. 

The  fundamental  unknown of elastostatic boundary  value problems is the dis- 
p lacement  field. I t  is denoted below by ui = ui(x). The notat ion u~,j = Ou~/Ox i is used 
for the covariant  derivative of ui. The  strain tensor field eij(u) associated with u~ is 
defined by the differential opera tor  

eij(u) = ½(u~,j + uj,~) (1.1) 

I t  is assumed, following G. Green  [7 and 18, pp. 11-12 and 95-99],  that for 
quasi-static isothermal small deformations of an elastic body there is a positive 
definite quadratic function of e~j, 

1 (1 .2 )  W ~ gCijkleijekb 

such that  for all K c f~ 

WK =-~ Cijkze~j(u)ekl(U) dx (1.3) 

is the strain energy of the displacement field u~ in the set K. The positivity 
assumption means  that  

cijkle~jekl > 0 for all eij= eii ~ 0 (1.4) 

The  stress-strain tensor c,ik~ is uniquely determined by w if the natural symmetries  

Cijkl = qikZ = Cklii (1.5) 



Uniqueness theorems for displacement fields 225 

are assumed. The  stress tensor field trij(u) associated with u~ is given by the 
differential opera to r  

~r~i ( u ) = C~jk~ek~ ( U ) (1.6) 

The  positive definiteness of w implies that  o-~j =Cijk~ek~ has a unique solution 
eij= ~klO'kl and w =½o-~je~j 1 = ~Y~jk~O-~jO'kt. In particular, 

WI.,: = ~  o-ij(u)eii(u) dx 1 

is a functional of o-~j(u) alone. A body is homogeneous  if and only if cijkz is constant 
in f~. I t  is isotropic if and only if [11, 18] 

where  2~ and ~ are scalars such tha t /x  > 0, 3)~ + 2~  > 0. The  results in § 2 and § 3 are 
formulated for the case of homogeneous  anisotropic bodies. In § 4 it is shown tha,  
the uniqueness theorems hold for the more  general case of inhomogeneous  anisot- 
ropic media  with bounded  uniformly positive definite stress-strain tensor. This 
means  that  the components  c~,k~ (x) are t e b e s g u e  measurable  and there exist positive 
constants co and cl-----co such that 

coe~,ei, ~ ci, kt (x)ei, ek~ <- c,e~je~, for all x e f~ (1.9) 

and all e, i = ej,. 
The  most  general uniqueness theorems for solutions wLFE will be  obtained by 

making the class of displacement fields w L F E  as large as possible subject to the L F E  
condition. Hence  it is natural  to define the energy integrals W:~(u) to be Lebesgue 
integrals and to interpret  the differential operators  eij in the distribution-theoretic 
sense. I t  can be shown that  this choice has the additional advantage that  the set of 
displacement  fields w L F E  is a complete  space in the sense of convergence in energy 
on bounded  sets. I t  was by using such complete  function spaces that  Fichera proved 
the existence of solutions of the elastostatic boundary  value problems in bounded  
domains.  

In the remainder  of this section several function spaces are defined that  are 
needed for the formulat ion and proof  of the uniqueness theorems.  In the definitions 
f~ c R 3 denotes an arbi trary domain.  

The  definitions are based on the Lebesgue space 

L 2 ( ~ ) =  {u  : ~--+ R l u ( x )  is L-measurable ,  la u(x)2 dx < ~  } (1.10) 

and the associated spaces 

Ll2°c(g~) = {u : ~ - + R [ u  ~ L2(U ) for every bounded measurable  K c 11} (1.11) 

L i2"~'(f~) = {u : f~---> R I u ~ L2(C) for every compact  C c fl} (1.12) 
and 

L~°'~(~) = L2(f~)A{u I u(x)  is equivalent to 0 outside a bounded  set} (1.13) 
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I t  is c lear  tha t  L~°~(12) c L 2 ( ~  ) c L~°¢(f~) ~ L~'~'(12). M o r e o v e r ,  L~°m(~) = L2(l))  = 
L~2°~(I)) if and  only  if f~ is bounded .  N o t e  tha t  the  condi t ion u ~ L~°¢(I)) restricts the  
be ha v io r  of  u nea r  Of~ because  the  sets K in (1.11) can be  any  b o u n d e d  o p e n  subsets  
of  fL T h e  condi t ion  u ~ L~"~(f~) is w e a k e r  because  it does  not  restr ict  the  behav io r  of  
u nea r  Of L All  of  the  funct ion  spaces  used  be low are  spaces  of  t ensor  fields on  12 

L2 (fl). whose  c o m p o n e n t s  lie in cer ta in  l inear  subspaces  of  ~" 
T h e  space  L~'(f~) m a y  be  in t e rp re t ed  as a l inear  subspace  of L. Schwar tz ' s  space  

~ ' ( ~ )  of  all dis t r ibut ions on  f~ [21]. Thus  funct ions  u ~ L~ ' ( fD  have  der ivat ives  of  all 
o rde r s  in 9'(12) and  if 

A = ~. A,~Ol'~l/Ox°~lOx~Ox~ 3 (1.14) 
0<lc~t<rn 

(where  ct = ( a a , ~ 2 ,  a3), I ~ 1 = ~ 1 + a 2 + ~ 3 )  is a par t ia l  differential  o p e r a t o r  wi th  
cons tan t  coefficients then  A u  ~ ' ( 1 2 ) .  T h e  no ta t ion  Au~L~2'~(f~) (resp. L~2°~(f~), 
L2(f~), L~°m(l)), etc.) will be  in t e rp re t ed  to m e a n  tha t  the  dis t r ibut ion A u  is in the  
subspace  L~"~(I)) (resp. U2°c(f~), L2(~) ,  L'2°~(I)), etc.). If  A~, A2 . . . . .  A ,  is a set  of  
par t ia l  differential  ope ra to r s  wi th  cons tan t  coefficients the  fol lowing no ta t ion  will be  
used. 

L2(A1, A2 . . . . .  A~ ; 1)) =Lz( f~)  ffl{u [ Aiu ~ L2(I)),  j = 1, 2 . . . . .  n} (1.15) 

L~O~ra A2 , .  A,~;f~)=L~2°~(f~)n{u ]AjucL~2~(f~) , j=l ,  2, n} (1.16) 
int int L2 (Aa, A2 . . . . .  A , ; ~ ) = L ~ ' ( ~ ) A { u ] A i u e L  2 ( 1 ~ ) , j = 1 , 2 , . . . ,  n} (1.17) 

L~°m(A1, A2 . . . . .  A ,  ; ~)  = L~°~(~) f"l L2(A~, A2 . . . . .  A,~ ; £~) (1.18) 

In  par t icular ,  ff {A1, A2 . . . . .  A,~}={Ol</OxT,Ox'~Ox'~ ]0_< [a[--< m} the  fol lowing no-  
ta t ion  will be  used. 

L~(f~) = L2(A1, A2 . . . . .  A~ ; ~ )  

L~" l°c(l)) - r l o c r a  A2 ' , Art" ~O,) - -  ~ 2  k I x l ~  * " * , 

L 2  in,(~'~)= in, ~" L 2 ( A D A  2 . . . . .  A~ ; f~) 

L'~ . . . .  (f~) = L~°"(A~, A2 . . . . .  A~ ; a )  

(1.19) 

(1.20) 

(1.21) 

(1.22) 

No ta t ions  such as ui ~ L~°C(gl), e~j ~ L2(£1), etc. will be  in te rp re ted  to m e a n  tha t  
each  c o m p o n e n t  of  the  t ensor  field is in the  indicated space.  Wi th  this conven t ion  the  
classes of  d i sp lacemen t  fields w F E  (with finite energy)  and  w L F E  m a y  be  def ined as 
follows. 

D E F I N I T I O N .  A vec to r  field u~ on  ~ is said to be  a d i sp lacement  field w F E  if 
and  only  if it is in the  func t ion  space  

E ( f l )  = {u I ui e L~°C(fl), eij(u) c L2(~)} (1.23) 

Similarly,  ui is said to be  a d i sp l acemen t  field w L F E  if and  on ly  if it is in the  funct ion 
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space 

E ~°c (a )  = {u [ u~ c L~°~(£1), e,j (u) ~ LZ2°c(£~)} (1.24) 

Note  that  Et°~(£~)=E(£~) if and only if 1~ is bounded.  
The  terminology used in the definition is justified by the observat ion that  if the 

stress-strain tensor satisfies (1.9) then eu(u) E L2(12) implies cr, i(u ) c L2(f~) and hence 
u c E(Y~) implies 

'Io Wn =~ o-~j(u)e~i(u) dx < ~  (1.25) 

Similarly, ff (1.9) holds then e~i(u)cL~°C(fl) implies o-~j(u)eL~°~(~) and hence u c 
El°~(~) implies 

WK 1 f =2JK ~r~j(u)e~(u) dx < ~  (1.26) 

for  all bounded  measurable  sets K c f~. 
Each of the function spaces defined above is a complete  space with respect  to a 

suitable topology. Several examples of this will be  indicated. I t  is well known that  
L2(~) is a Hi lber t  space with scalar product  

(u, v) = Ia u(x)v(x) dx (1.27) 

Similarly, E(gl) and E ~°~ (FI) are Fr6chet spaces [28] with respect  to the families of 
semi-norms defined by 

OK, E(U)=(IKU~(X)U~(x)dx+faO'~(U)O'~j(u)dx) ~/2 (1.28) 

and 

/oc __ ( I  K x3 i]2 
0K,E(U) -- {U~ (X) U~ (X) + ~r~ i (u)o T (U)} d /  (1.29) 

respectively, where  K is any bounded  measurable  subset of f~. In particular, if ~ is 
bounded  then E t°c (f~) = E(f~) is a Hilber t  space. These completeness results play no 
role in the uniqueness theorems given below. However ,  they are essential for the 
validity of existence theorems for solutions wLFE.  This is evident f rom the proofs  of 
Fichera 's  existence theorems for bounded  bodies. 

In  the definition of E~°C(~l) the opera tors  e~j (u) defined by (1.1) are interpreted in 
the distr ibution-theoretic sense. Hence  the condition u ~ E ~°c (12) does not necessarily 
imply that  the individual derivatives u~,j c L~°C(~). However ,  it is known that  if 
u c N~°C(ll) then u~,i c L2(C) for every compact  set C c f~. This is a consequence of 
Korn ' s  inequality in the fo rm 

(k, k ) Ilu ,jllL(c)--- • Ile,j(u)llL( ) (1.30) 
\ i = l  i , j= l  
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which is valid for all u • E~°C(f~), all bounded open  sets K c~2 and all compact  sets 
C c K with a constant ~/= ~/(C, K). This result can be derived f rom the version of 
Korn 's  inequality due to J. Gobe r t  [8]. Moreover  ff 12 has the cone proper ty  [1, 9] 
then one may  take C = K in (1.30). Hence  in this case 

u • E ~°c (12)~ ui • L~a°c(12) (1.31) 

In  particular, for domains that  are bounded and have the cone proper ty  

u • E ( f ~ ) ~  u, • L~(Ft) (1.32) 

2. Equilibrium problems with prescribed surface tractions 

In  this section elastostatic equilibrium problems are formulated,  and regularity 
propert ies  of the solutions are discussed, for homogeneous  anisotropic elastic bodies 
of arbi trary shape that  are subject  to prescribed body forces, prescribed surface 
tractions and, in the case of unbounded bodies, prescribed displacements or stresses 
at infinity. The  cases of prescribed body forces F~, zero surface tractions and zero 
displacements or  stresses at infinity are discussed first. 

The principle of virtual work. Let  12 c R 3 be  an arbitrary domain and let u c E ~°c (12) 
be  the equilibrium displacement field w L F E  corresponding to body forces F~ • 
L~°m(12) and zero surface tractions. Imagine that  the equilibrium is disturbed slightly 
by changing u~ to ui + v~ where  v~ is a field w F E  f rom the set 

EC°m(O) = E(O) N {v I e~j(v) • L~°m(12)} (2.1) 

Le t  K c O  be a bounded  measurable  set such that  e,j(v) is equivalent to zero in 
1 2 - K .  Then WK(cr(u)) and W~(cr(u+v)) are the strain energies in K before  and 
after the disturbance. Hence  the work  done against internal forces during the 
disturbance is Wr,:(cr(u+v))-WK(o'(u)). The energy norm of v can be made  
arbitrarily small. If this is done and terms quadratic in v are dropped,  in keeping 
with the linear theory, the difference becomes 

Iao'~, (u)ei, (v) dx = Work  done against internal forces (2.2) 

Moreover ,  if the body forces are constant during the displacement then 

- Ia F~v~ dx = Work  done against body forces (2.3) 

No further work is done during the disturbance if the surface tractions are zero. The  
principle of virtual work  states that  the true equilibrium field u~(x) is characterized 
by the proper ty  that  the total work  done against the internal and external forces in 
any (small) disturbance of u~ consistent with the constraints is zero [23]. Thus in the 
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present  case 

fa o'ij(u)eij(v) d x -  fa Gvi dx=O (2.4) 

for all v ~ EC°"(f~). This motivates  the following 

D E F I N I T I O N .  A displacement field u~ is said to be  a solution wLFE of the 
equilibrium prob lem for  the domain  f~ with body forces F~ ~L~°"~(f~) and zero 
surface tractions if and only if u cE~°C(f~) and (2.4) holds for all v ~EC°m(fl). 

Necessary conditions for the solvability of problems with zero surface tractions. The 
fields 

vi ( x ) = at -t- eiikbiXk, x E R 3 (2.5) 

where  a, and b, are constant vectors and e,jk is the alternating tensor [11] satisfy 
% ( v ) = 0  in R 3 and hence v cEC°m(R3) .  In particular, v cEC°'~(fl). I t  follows f rom 
(2.4) with this choice of v that  necessary conditions for the existence of a solution 
w L F E  are 

fa G dx = 0 (2.6) 

; (~xj-~x,) dx =o (2.7) 

Physically, these conditions mean  that  the body forces G exert  no net resultant  or  
m o m e n t  on the body. They are assumed to be satisfied in the remainder  of the 
discussion of problems with zero surface tractions. 

Non-uniqueness of the displacements for problems with zero surface tractions. Equa-  
tions (2.5) define a displacement field that  describes a rigid body displacement [11]. 
Moreover ,  since eij(v)= 0 in R 3 the fields (2.5) may  be added to any solution u of 
(2.4). Physically, this means that  the equilibrium displacement fields are determined 
only up to rigid body displacements. Hence,  the natural uniqueness theorem for 
problems with zero surface tractions asserts that  the stress and strain fields are 
unique while the displacement fields are unique modulo  fields of the form (2.5). 

Bounded bodies and displacement fields wFE. If ~ is bounded  then E~°C(f~)= E ( ~ )  
and every solution w L F E  actually has finite total strain energy in f~. More  generallyl 
if u is a solution w L F E  for an arbitrary domain f~ and if u c E(f~) then u is said to be 
a solution wFE provided (2.4) holds for all v ~ E(Y~). The uniqueness of solutions 
wFE is proved in §3 without additional hypotheses concerning f~ or the displacement 
field. 

Unbounded bodies and equilibrium states with prescribed stresses or displacements at 
infinity. If ~ is unbounded  then, in general, solutions w L F E  in f~ are not unique. 
Simple examples  of non-uniqueness are available for the case f~=  R 3. The  field 
u~(x)=b~xj with constant bij = b j ~ ¢0  is a solution w L F E  in R 3 with F i ( x ) ~ 0  and 
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o'ii(u) = c,iklbkl#O since eij(u)= b,j and o-,j(u)ei~(u)= Cijklbijbkl > 0 .  A second example 
is provided by the homogeneous  isotropic plate with domain  12= 
{x I x~, x2 ~ R, Ix3] < h} rand stress-strain tensor (1.8). In this case ul = ()t + 2Ix)x1, u2 = 
(2t + 2t~)x2, u3 =-22tx3  defines a displacement field in 1~ with F~(x)~ 0, zero surface 
tractions and constant non-zero stress field ~r~ =O'22=6h/~ +4ix 2, all other  ~r~ = 0 .  
These examples show that  uniqueness theorems for solutions w L F E  in unbounded 
domains cannot  hold without some growth restrictions at infinity on u~ or cr, j. 

The  prob lem of finding suitable growth restrictions on u~ or o-~j that  guarantee the 
uniqueness of solutions w L F E  is a special case of the classical p rob lem of elastosta- 
tics of finding equilibrium displacement fields that have prescribed stresses or  
displacements at infinity. Many problems of this type are discussed in the treatise of 
Love  [18]. To  formulate  the p rob lem with prescribed stresses at infinity let 

a ==an{x I lxl>R} (2.8) 
and let uS(x) be a solution wLFE in I"IR =, for some R, whose stress field cr~ = cr~i(u =) 
has the desired behavior  at infinity. A solution w L F E  in f~ is sought such that 
o'~i(u)(x) is close to ~r~(x) at infinity, in a suitable sense. One  possibility is to extend 
uS to ~ and require 

Wa(~r (u) - or ~) < ~ (2.9) 

This suggests the 

D E F I N I T I O N .  A solution w L F E  of the equilibrium problem for an unbounded 
domain  f~ is said to have prescribed stresses ~r~ at infinity if and only if u , -  uS 
is a solution wFE for ~ .  

Solutions w L F E  with stresses o-~ = 0 at infinity are just the solutions wFE defined 
above.  Condit ion (2.9) is correct in this case, at least for exterior domains where the 
stresses generated by body forces F~ e L~°'(O) are known to satisfy cr~i(u)(x)= 
O(Ixl-2), [13]. 

To formulate  the prob lem with prescribed displacements at infinity let u?(x) be a 
displacement field that  is defined in I~R~ for some R, and has the desired behavior  at 
infinity. A solution w L F E  in O is sought such that  u~(x) is close to u?(x) at infinity, 
in a suitable sense. One  might try the condition u~- uS ~ La(f~R~), in analogy with 
(2.9). However ,  this condition is too strong. In fact, it is known that  if uS = 0 and f~ 
is an exterior domain  then the displacements generated by body forces F~ c L~°"'(I~) 
have the exact order  u~(x)= O(Ix[-1), [xl-->~ [10]. Thus a weaker  condition consis- 
tent  with this est imate is needed.  In what  follows the condition 

U ~ 2 I lu -  IIr,  = o(r) ,  (2.10) 
is used where 

U 2 Ig~ II I1~,~ = u,(x)u~(x) dx (2.11) 

f~. = l i  N{x l r<lxl  < r + ~} (2.12) 

and ~ > 0 is a constant. 
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DEFINITION.  A solution wLFE of the equilibrium problem for an unbounded 
domain f~ is said to have prescribed displacements u~ at infinity if and only if (2.10) 
holds for some 6 > 0. 

A sufficient condition for (2.10) to hold with u~ = 0 is 

ui(x)  = O(Ixl 1~2), I x l ~  (2.13) 
Of course, the precise order  condition on u~ that is sufficient to guarantee (2.10) in 
particular cases will depend on the geometry of Ft near infinity. For  example, if 
a- - {x l l x31  < h} then Sat.8 dx = O(r), r---~% and u~(x)= O(1) is a sufficient condition 
for (2.10) with u~'=0.  If f~={x I(xl,  x2)~ G, x 3 c R }  where G c R  2 is bounded then 
In,., dx = O(1) and u~(x) = ([x11/2), Ix l~ ,  is sufficient. 

Ellipticity of the Cauchy-Green operator. The principle of virtual work (2.4) with 
v~ ~ Co(f~) ~ EC°"(f~) implies that the equilibrium fields u~ are weak solutions of the 
system of partial differential equations (rii.j(u) + F~ = 0 in ~ .  If the body is homogene-  
ous, as is assumed in this section, then the system may be written 

A~kuk + ~  = 0 (2.14) 

where 

Ai~ = cijk, 02/Oxj Oxz (2.15) 

The matrix differential operator  (A~k), with coefficients that satisfy the positivity and 
symmetry conditions (1.4), (1.5), will be called the Cauchy-Green operator.  Condi- 
tions (1.4), (1.5) imply that (A~k) is strongly elliptic (C~jk~W0k¢i~t ~ 0 for all non-zero 
~ ,  ¢~) and hence elliptic (det (c~jkz¢j¢,) # 0 for all non-zero ~) [13, p. 20]. G. Fichera 
[5] has used the theory of elliptic boundary value problems to prove both interior 
and boundary regularity theorems for weak solutions of (2.14). The interior and 
boundary regularity properties of solutions wLFE that are implied by Fichera's 
results and methods are described here briefly. 

Interior regularity of solutions wLFE.  Fichera's interior regularity theorem [5, p. 36] 
implies the following results. 

T H E O R E M  2.1. Let  ~ ' ~ R  3 be an arbitrary domain. Let  u~cL~'(O),  e~i(u)~ 
m,int L~"~(ft) and ~ c L2 (~) where m >-- 0 is an integer. A s s u m e  that (2.4) holds for all 

vi ~ Co(~).  Then ,,+2 i~ ui ~ L2 " (1~). 

C O R O L L A R Y  2.2. Let  O c R  3 be an arbitrary domain and let u be a solution 
wLFU of the equilibrium problem for f~ with F~ ~ L ~  . . . .  (~). Then u~ ~ L~+~'~"(f~). 

C O R O L L A R Y  2.3. I f  the hypotheses of  Theorem 2.1 or Corollary 2.2 hold then 
u~ ~ C m (f~). 

C O R O L L A R Y  2.4. Let  f l c  R 3 be an arbitrary domain and let u ~ E  ~°~ satisfy 
eu(u)=½(u~,~ +u i , i )=0  in L~°~(f~). Then there exist constants a~, b~ such that u~(x)= 
ai + e~b~x~ in ~ .  

Fichera proved Theorem 2.1 in [5] under  the hypotheses f ~  L~(fl) ,  u ~ L2(~). 
However ,  the theorem as stated above is an immediate consequence of his theorem. 
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Corollary 2.2 is a special case of Theorem 2.1. Corollary 2.3 follows from Theorem 
2.1 and Sobolev's imbedding theorem [5, p. 26]. Corollary 2.4 may be verified by 
noting that u is a solution wLFE in f~ with body forces F~ = 0 in 12. Thus ui c C~(f~), 
by Corollary 2.3, and uia + uj.i = 0 in ft. The proof that every such ui has the form 
ui = ai +e~jkbjxk is classical [11, p. 71]. 

Boundary regularity of solutions wLFE.  Fichera's theorems on regularity at the 
boundary imply the following results (see [5, Chapters 10 and 12]). 

T H E O R E M  2.5. Let  [ ' ~ c R  3 be a domain with boundary Ol~cC ~. Let u be a 
solution w L F E  of  the equilibrium problem for II with Fi • L~°m(f~)n C~(~).  Then 
ui • C~(~) and 

o-~j(u)n i = 0  on Of~ (2.16) 

where n, is the unit exterior normal field on 0~. 

C O R O L L A R Y  2.6, Let  Xo•Ol~ and assume that there is a neighborhood 
Ns(xo) ={xl I x - x 0 l < 6 }  such that of~nNa(xo)  • C ~. Moreover, let F~ • 
L~°m(~) n C~(fi n Ns(xo)). Then u~ • C~(fi n Ns(xo)) and o-~(u)nj = 0  on of~nN6(xo).  

Corollary 2.6 is an immediate consequence of Theorem 2.5 since boundary 
regularity is a local property.  Boundary  regularity results can also be proved when 
012 and G have a finite number of derivatives. The following results can be proved 
by the methods of [5]; see also [1]. 

T H E O R E M  2,7. Let  [ ' ~ c  R 3 have a boundary point Xo such that Of~NNs(xo)•  
C k+2 for some ~ > 0  where k >--0 is an integer. Let  u be a solution w L F E  of the 

• L 2 (1"~) n L2(I) n N8 (Xo)). Then u~ • equilibrium problem for ~ with G ~om k 
L~ +2(12 n N~ (Xo)). 

C O R O L L A R Y  2.8. Under the hypotheses of  Theorem 2.7, v q • C k ( ~ N N s ( x o ) ) .  
Moreover, if k >-- 1 then trii(u)nj = 0  on 3f~nNs(xo) .  

C O R O L L A R Y  2.9. Let  12 ~ R 3 be a domain with boundary 3f~ • C k+2, k >--O. Let 
k,corn u be a solution w L F E  of the equilibrium problem for f l  with G • La (f~). Then 

u ~ • C k ( ~ ) .  Moreover, if k_>2 then u~ is a classical solution of the equilibrium 
boundary value problem with body forces Fi • Cok-2(~)c L~ . . . .  (1~) and zero surface 
tractions; i.e., u i satisfies ( 2 . 1 0 ) a n d  

CijklUk,j!-~-F/ = 0 in ~ .  (2.17) 

Bodies whose boundary aO is a piece-wise smooth surface with piece-wise smooth 
edges with corners are of great interest for applications. A class of bodies of this type 
are the C-domains, defined and studied by N. Weck [24]. Solutions wLFE in such 
domains are regular and satisfy the boundary condition (2.16) near smooth points of 
0fl, by Corollary 2.8. At  edge and corner points of 0fl condition (2.16) is meaning- 
less, because n~ is undefined, and the only regularity proper ty  that remains is the 
L F E  condition. For  this reason the L F E  condition is sometimes called the "edge 
condit ion" [20]. 
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Equilibrium problems with non-zero surface tractions. The formulat ion (2.4) of the 
principle of virtual work  is appropr ia te  for the case of zero surface tractions. The  
surface traction at a point  Xo~O~ is by definition the vector  cr, j(U(Xo))nj(xo) and 
hence is defined only at boundary  points where the boundary  values o-,i(u(x0) ) and 
the normal  vector  ni(xo) exist. If  a port ion S c 0f~ is sufficiently smooth  for n i and 
boundary  values of ~r,j(u) to exist on it then the principle of virtual work can be 
extended to include the boundary  condition 

~j(u)ni ={ti on S (2.18) 
0 on O l l -  S 

To  do this the t e rm 

- Is t~v~ dS = W o r k  done against surface tractions (2.19) 

must  be  added to (2.4), so that  the extended principle becomes 

Ia o'~j(u)e,j(v) d x -  la F~v~dX- ls t, V, dS=O (2.20) 

for  all v ~ E c°m (1)). Moreover ,  it is known f rom Sobolev's  imbedding theorem that  
every v ~EC°m(fl) has boundary  values v c L2(S) on smooth  portions S c O~ [1, p. 
38]. In the important  special case where  0f~ is piece-wise smooth  then o'ii(u)n j exists 
a lmost  everywhere  on 0f~ and S may  be replaced by O~ in (2.18), (2.19) and (2.20). 

3. Uniqueness theorems for problems with prescribed surface tractions 

The strain energy theorem for classical solutions of the elastostatic equilibrium 
prob lem with body forces F~ and zero surface tractions states that  [18, p. 173] 

Wa = l l a  crij(u)e~(u)dx=lIa ~uidx (3.1) 

The  uniqueness of classical solutions is a corollary. In this section the strain energy 
theorem is extended to arbi trary domains f l  and all solutions wFE ( =  solutions 
w L F E  and zero stresses at infinity if f~ is unbounded)  and solutions w L F E  and zero 
displacements at infinity. The  uniqueness of solutions w L F E  with prescribed stresses 
or  displacements at infinity follow as corollaries. The  simple case of solutions wFE is 
t reated first. 

T H E O R E M  3.1. Let u be a solution wEE of the equilibrium problem with body forces 
F~ ~L~°m(f~) and zero surface tractions in a domain ~ c R 3. Then the strain energy 
equation (3.1) holds. 

The proof  is immediate  f rom the representat ion (1.7) for  Wa and the definition of 
solution wFE, since one may  take v~ = ui c E ( ~ )  in (2.4). 
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C O R O L L A R Y  3.2. Uniqueness of Solutions wFE. Let u} 1~, u} 2~ be two solutions 
wFE of the equilibrium problem with the same body forces F~ ~ CO°m(12) and zero 
surface tractions. Then 

O'ij(U (1)) = Ori/-(U (2)) in 12 (3.2) 

and there exist constant vectors a~, b~ such that 

U}I)(X)-  u}z)(x) = ai q-eijkbixk in 12 (3.3) 

Proof. u~ = u}~)-u} 2~ is a solution wFE with body forces F~--=0 in 12 and zero 
surface tractions. Thus (3.1) holds with F~=0 and o-~i(u)=0 in L2(~-~ ) by the 
positive-definiteness of the energy. Moreover, o-~j(u)~ C=(f~) by Corollary 2.3 and 
hence o-ij(u)(x)=--O in 12 which implies (3.2). Finally, Corollary 3.4 implies u~(x)= 
a~ + e~jkbjxk which implies (3.3). 

C O R O L L A R Y  3.3. Uniqueness of solutions wL FE with prescribed stresses at 
infinity. Let  f l c  R 3 be unbounded and let u} ~, u} a) be two solutions wLFE of the 
equilibrium problem with the same body forces F~, zero surface tractions and the same 
stresses (r~ at infinity. Then (3.2) and (3.3) hold. 

Proof. By hypothesis, both u} ~)- u~ and u}2)-u.~ are solutions wFE for 12. It 
follows that the difference field u~ = u} ~)- u} z) is a solution wFE with body forces 
F~ -= 0 in 12 and zero surface tractions. Equations (3.2), (3.3) follow as in the proof of 
Corollary 3.2. 

The uniqueness theorem for solutions wLFE with prescribed displacements at 
infinity will be based on the following generalization of Theorem 3.1. 

T H E O R E M  3.4. Let u be a solution w L F E  of the equilibrium problem with body 
forces Fi ~L~°m(12) and zero surface tractions in an unbounded domain f~c  R 3. 
Moreover, let u satisfy 

fR ~ bt -2 II IIr,  dr = 

for some R > 0 and 6 > O. Then the strain energy equation (3.1) holds. 

(3.4) 

A proof of Theorem 3.4 is given at the end of the section, following the statement 
and discussion of the remaining uniqueness theorems. 

C O R O L L A R Y  3.5. Uniqueness of solutions w L FE with prescribed displacements 
at infinity. Let I I c  R 3 be unbounded and let u} 1~, u} 2~ be two solutions wL FE of the 
equilibrium problem with the same body forces F~, zero surface tractions and the same 
displacements us  at infinity. Then (3.2) and (3.3) hold. 

Proof. By hypothesis [[u(k~-u=l]r.6 = O(rl/2), r - - + ~ ,  k = 1, 2. It follows by the 
triangle inequality that the differences field u~ = u~ 1~- u~ 2~ satisfies Ilulk = o(rl/2), 
r--~ % or equivalently 

U 2 I[ IIr,  = O(r) ,  (3 5) 
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which implies condition (3.4). Moreover ,  u is a solution wLFE with F~ = 0 and zero 
surface tractions. Hence  (3.1) holds with F~ = 0, by Theo rem 3.4, and the conclusions 
(3.2), (3.3) follow as before.  

Uniqueness theorems for problems with non-zero surface tractions. The uniqueness 
theorems proved  above  are valid for arbitrary bounded  and unbounded domains 
~c~ c R 3. NO local or  global restrictions are imposed on I I  or Of}. If a port ion S c Of} is 
smooth  enough for  the surface tractions o-~i(u)n j and surface integrals (2.19) to be  
defined then solutions w L F E  with non-zero surface tractions h on S are defined by 
the principle of virtual work. The  uniqueness theorems for solutions with zero 
surface tractions extend immediately  to this case because the difference of two 
solutions with the same surface tractions h is a solution with zero surface tractions. 

Other growth conditions at infinity. I t  is clear f rom condition (3.4) of Theo rem 3.4 
that  condition (3.5) is only one sufficient condition for uniqueness. Generalizations 
are obta ined by replacing (3.5) by 

u 2 (3.6) II I[r,~ = o ( p ( r ) ) ,  r-~oo 

where p(r) is a function such that  

~ p ( r )  1 dr = +oo (3.7) 

If I I  is an exterior  domain ({x [ Ix l>R}c~ for R --R0) and if the body is isotropic 
as well as homogeneous ;  i.e., (1.8) holds, then the uniqueness theorem can be 
proved  under  weaker  growth restrictions than (3.4). Indeed,  under  these conditions 
Fichera [4] has p roved  that  

ui(x) = o(1) ~ ui(x) = O(Ix[ -1) and (r~j(x) = O(Ix1-2) (3.8) 

M. E. Gurt in  and E. Sternberg [10] have rederived this result and proved  the 
complementa ry  result that  

~ j (x)  = o(1) ~ u,(x) = O(Ix[ -1) and ~r~i(x) = O(lx1-2) (3.9) 

Moreover ,  these results are based on an expansion theorem for biharmonic functions 
in a neighborhood of infinity and are independent  of all. Thus the uniqueness 
theorems for solutions w L F E  with prescribed displacements or  stresses at infinity in 
homogeneous  isotropic solids are valid for arbitrary exterior  domains f} under  the 
conditions 

u~(x)-uT(x)= o(1),  I x [ ~  (3.10) 
and 

o'~i(u)(x)--o-~(x) = o(i) ,  Ixl--" ~ (3.11) 

respectively. 

Proof of Theorem 3.4. The  idea of the proof  is to put  v~ = u~ in the principle of 
virtual work  identity (2.4), as in the proof  of Theo rem 3.1. However ,  this cannot  be  
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done directly when u is a solution wLFE because v ~ Ec°"'(tl) must have compact 
support. Instead, let vi(x)= d~(x)ui(x) where 

~(x)=l~c((lxl--R)/8),  R > O ,  8 > 0 ,  x e R  3 (3.12) 

and to e C~(R) is a function such that to'(T) --< 0, 0 ----- t0(r) --- 1 and 

{1, ~---0 
to(v)= o, 7>_1 (3.13) 

These properties imply that 4) c Co(R3), 0 --- &(x) -- 1 and 

lxL-<R 
4)(x) = [0, Ixl>--R +(3 (3.14) 

It  follows that for all u c U~°C(f~), v = eku ~ Uc°m(~) and 

v~ d = 4)u~.j + &,ju~ (3.15) 

Moreover ,  

~bj (x) = to'(([x] - R)/8)xi/8 Ix l (3.16) 

and 

supp 4~,j c f~R,~ (3.17) 

With this choice of vi 

eij (v)  = 4,eij (u) + l(4, ~uj + rk,ju,) (3.18) 

and hence 

O'ij (u)ei j  ('5) = dpo'ij (u)e~i (u) + crij (u)&.,uj 

= 4mSi(u)e,i(u) + 8-~to'(lxl-  R)/8)o-~j(u)2,u i 
where ~ =xj/Ix I. By assumption ~ cLTm(f~). Choose Ro so large that supp F~ 
{xllx] <-Ro} and substitute v, = ~bu, and (3.19) in (2.4) with R-->Ro. The result can 
be written 

fa 4xr~j(u)e~j(u) dx + 8-~ i to%(u)2,uj dx- f. ~u~ dx =O (3.20) 

The goal of the remainder  of the proof is to calculate the limit of equation (3.20) 
for R - - - ~  and to show that the limiting form is the energy equation (3.1). To this 
end define 

f ( R ) =  fa to(~3 l( ,x ,-R))o-, , (u)e~,(u)dx-la F~u~dx, R>-Ro (3.21) 

By equation (3.20) an alternative representation is 

f 8-1 f (R)  = - -~1" to'(8-~(lxl-R))crii(u)2~u i dx (3.22) 
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The properties of f(R) that are needed to complete the proof of Theorem 3.4 are 
described by 

L E M M A  3.6. f c CI[Ro, oo) and has derivative 

f'(R) = --~--1 Er~_. ¢'(8-1lx [-R))o-~j(u)e*j(u) dx >-0 (3.23) 

In particular, f(R) is monotone non-decreasing on [Ro, oo). Moreover, 

f2(R)<--M2[Iu[I~,J'(R), R >--Ro (3.24) 

where M 2 = (8-1cl) max q/(-r)]. 
O ~ ' r ~ l  

Proof of Lemma 3.6. Form the difference quotient 

h- l { f (R+h)- f (R)}=;a  h- l{ t ) (~- l ([x l -R-h)) -¢(~ ~(]xl-R)) } 
la.R +a +~ 

x o-ii(u)eii(u) dx (3.25) 
The quotient 

h l{~b(~-~(lxl-R-h))-O(~-l(lxl-R))}--~-~-lO'(~ ~(Ixl-Rl),h--~O (3.26) 

uniformly for x in bounded sets in R 3. Moreover, o-~j (u)e/j(u) is Lebesgue integrable 
on bounded subsets of 11. Thus passage to the limit h---~0 in (3.25) is permissible by 
Lebesgue's dominated convergence theorem. Hence f'(R) exists for all R --> R0 and is 
given by (3.23). It is easy to  show that the integral in (3.23) defines a continuous 
function of R which is non-negative. The monotonicity of f(R) follows. 

To prove the inequality (3.24) note that (3.22) implies the estimate 

If(R)l~-ll I~'(~-l(IxI-R))l [o'/j(u)2~ui[ dx, R>--Ro 

Moreover, by repeated application of Schwarz's inequality 

IO'ij ( U ) X / U j  [ ~ (O'ij ( U ) ~ O ' k j  ( U ) . ~ k ) 1 / 2 ( U j / ~ ) 1 / 2  

/ 3 \ 1/2 (E 
i = I  / 

~ 1  ,,1121 3 \1/2 
/ '= / ' k = l  
3 3 3 

-- X Y Y. 
j = l  , - - 1  j - - 1  

Now eij= T/iklo'kz together with (1.9) imply 

C110"ijO"ij ~ o'ije/i --= "YijklO',jO'kl ~ C010"i]O'ij 

for all (r,i = o-iv Combining these inequalities gives 

I(,~(u)2,u~l-- c l/:Z ( Gii ( u ) eii ( u ) ) l/2 ( uiui  ) l/2 

(3.27) 

(3.28) 
(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Substituting in (3.27) and using Schwarz's inequality again and equation (3.23) gives 

If(R)l-< ~--lcl/2I~R, 8 1O'(a--l(Ixl-- R))l(o'~j(u)eii(u))l/2(uiuj) 1/2 dx 

(IO \ 112 
< ~--1-C 1/2 ( f  I~Ylo-ij(u)eij(u)dx) 1/2 II~t[ujujdx) 
- -  1 \'~f~R,8 R,g 

<_ ~ icl/=~**J2(~f'(R))~J211ullR,~ (3.33) 
where tx = M a x  14/(x)l. Squaring (3.33) gives (3.24). 

Proof of  Theorem 3.4 Concluded. Lemma 3.6 implies that f (+~) exists as a finite 
number or +~.  It will be shown that f ( + ~ ) =  0. There are three cases to consider. 

Case 1. 0<f(+oo)_<+~. In this case there exists RI>--Ro such that f(R)>--f(R1)> 
0 for R---R 1 .  Hence (3.24) can be written 

d / X l  f ' (R) 
d--R ~ f ~ )  - ~ ( R )  ----- M-2[I ull~,2~, R>--R1 (3.34) 

and integration gives 

1 1 > M _ 2 [  R Ilul172 dr, R >--RI (3.35) 
f (R l )  f (R)  .R1 

In particular, since f ( R ) > 0  for R->R~, 

M 2 fR  U-2 (3.36) -- [1 []r,~dr for R>--R1 
f(R1) J,R~ 

But this contradicts hypothesis (3.4) of the theorem. Hence Case 1 cannot occur. 

Case 2. f(+m)--<0 and f (R1)=0  for some RI>--Ro . In this case O<--f(R~)<--f(+~) < -- 
0; i.e. f ( + ~ ) =  0. 

Case 3. f(+oo)~0 and f ( R ) < 0  for all R-->Ro. In this case (3.34) and (3.35) hold 
and the latter can be written, since If(R)l = - f ( R ) ,  

1 1 £R 
if(R)~>--if(R1)l + M  -2 Ilul[,.~ dr, R >-- R~ (3.37) R1 

Hence condition (3.4) implies that f ( + ~ ) =  0. 
It has been shown that (3.4) implies f ( + ~ ) =  0; that is, 

lim Ia @(8 ' ( IxI -  R))o-~i(u)e~,(u) dx = ~a ~u~ dx (3.38) 

Since q~(8-l(Ix[-R)) is a monotone increasing function of R for each fixed x c R 3 
and tends to 1 everywhere when R--->oo, (3.38) implies equation (3.1). In particular 
Wa <oo because Ia~u~ dx is finite. This completes the proof. 
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4. Uniqueness theorems for other equilibrium problems 

The purpose of  this section is to show how the methods and results developed 
above can be extended to the most  general equilibrium problems of linear elastosta- 
tics. Equilibria subject  to other  boundary  conditions, equilibria in inhomogeneous  
anisotropic bodies and n-dimensional  generalizations are discussed. In each case the 
boundary  conditions for displacement fields wFE and w L F E  are defined by approp-  
riate subspaces of E(Ft) and E t°c (12), respectively, and a corresponding form of the 
principle of virtual work  is given. Regulari ty and uniqueness results for the new 
problems are indicated without  proofs. In fact, the proofs of sections 2 and 3 are 
valid with minor  modifications. 

Equilibrium problems with prescribed surface displacements. The case of zero surface 
displacements is discussed first. Suitable subspaces of displacements fields are 

Eo(f~) = Closure in E(Ft) of EC°m(12) n { u  [supp u c Ft} (4.1) 

E~o°C(f~) = Closure in E~°C(Ft) of E¢°m(Ft)n{u [supp u c Ft} (4.2) 

The  topologies in E(Ft) and Eu'~([l) are those defined by (1.28) and (1.29), 
respectively. The  notat ion 

E;°"(O) = E c°m (O) n Eo(12) (4.3) 

is also used. A solution wFE of the equilibrium prob lem with body forces G c 
L~°m(Ft) and zero surface displacements in a field u ~ Eo(Ft) that  satisfies (2.4) for all 
v ~ E0(f~). Similarly, a solution w L F E  of the same prob lem is a field u ~ E~o°C(Ft) that  
satisfies (2.4) for all v c E~°'~(Ft). Problems with non-zero surface displacements 

u~(x) =/~(x), x t a F t  (4.4) 

may  be reduced to the preceding p rob lem if there exists a field u°~  
E~°C(f~)O{u I o-~j(u°)~L~°m(Ft)}. Then  u'~=u~--u ° is a solution w L F E  with zero 
boundary  displacements.  

The  remaining boundary  conditions can be formulated only when 0f~ is piecewise 
/ 

smooth.  I t  will be  assumed that  0Ft-is a C-domain  in the sense of [24]. For such 
domains the unit exterior  normal  field n~ (x) is defined and continuous at all points of 
0f~ except  edges and corners and one can define the normal  and tangential  compo-  
nents of vector  field on OFt by 

u~ = u~ + u;, u~=(uiv~)v, (4.5) 

moreover ,  uTv~ = 0 for all u~,v, and hence 
i 

u~v~ = urv~ + u;v; (4.6) 

Equilibrium problems with prescribed tangential surface tractions and normal surface 
displacements. Suitable subspaces of displacement fields are defined by 

E~(Ft) = E(Ft) N{u [ u~ = 0 on 0f~} (4.7) 

E~°c(O) = E~°~(O) n { u  I u~ = 0 on 0a} (4.8) 
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The existence of u" and u" on 01) for all u 6 E ~°~ (~) follows f rom Korn 's  inequality 
and Sobolev's  imbedding theorem.  A solution wFE of the equilibrium problem with 
body forces F~ ~ L~°~(12), zero tangential surface tractions and zero normal  surface 
displacements is a field u cE~(1)) that  satisfies (2.4) for all v ~E,(f~).  Similarly, a 
solution w L F E  of the same prob lem is a field u ~ E~°~(1)) such that  (2.4) holds for all 
v ~ E~°"~(1))= E,,(1))VI E~°m(f~). Problems with non-zero surface tractions and dis- 
placements  are t reated by reducing them to the preceding case through subtraction 
of a suitable field. 

Equilibrium problems with prescribed normal surface tractions and tangential surface 
displacements. This p rob lem is dual to the preceding one. Appropr ia te  classes of 
displacements are 

E.(f~) = E(1)) V/{u I u" = 0 on 01)} (4.9) 

E~C(a) = E~°~ (1)) N{u I u" = 0 on Of~} (4.10) 

Equilibrium problems with elastically supported surface. Physically, this corresponds 
to the case where surface displacements produce  surface tractions that  satisfy 
H o o k e ' s  law: 

o'~j(u)nj +/3ui = 0  on 0f~ (4.11) 

where /3 > 0 is defined on 01). A solution w L F E  is a field u c E ~c (1)) such that 

Ia o-~j(u)e~j(v) d x -  I~ F~v~ dx + Ioa /3u~v~ dS =O (4.12) 

for all v e E~°'~(f~). Identi ty (4.12) is the principle of virtual work for this problem, 
the last t e rm being the virtual work  done against the induced surface tractions by the 
virtual displacement v. If follows f rom (4.12) that  (4.11) holds at smooth  points of 
01). 

Equilibrium problems with mixed boundary conditions. A mixed problem that  in- 
dudes  the preceding problems as special cases can be formulated by decomposing 
01) into five portions and imposing one of the boundary  conditions defined above on 
each portion. Thus, if 

0~'~ = S 1 LJ S 2 ~_J S 3 ~J S 4 LJ S 5 (disjoint union) (4.13) 

and 

E~C(1)) =E~°C(1))Cl{u [ u = 0  on $1, u ~ = 0  on $2, u" = 0  on $3} (4.14) 

then the principle of virtual work 

fr ~j(u)e~i(v) d x -  la Gv~dx + i /3u, v~dS=O (4.15) 
5 

for all v e E~m(1))=  E~C(f~)N EC°m(f~) characterizes the solutions of the equilibrium 
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prob lem that  satisfy u = 0  on $1, u ~ = 0  and ( c h i ( u ) n y = 0  on S2, u ' = 0  and 
(~r~j(u)ny = 0 on S3, o-ij(u)nj = 0 o n  S 4 and o'ii(u)ni +[3ui = 0  on $5. 

Regulari ty and uniqueness theorems will be  discussed for this mixed p rob lem since 
it includes the others as special cases. 

Regularity theorems. The interior regularity propert ies  of solutions w L F E  of the 
mixed p rob lem follow f rom Theo rem  2.1 and are exactly the same as for the case 
discussed in Section 2. Concerning boundary  regularity, it can be shown by the 
methods  of Fichera 's  monograph  [5] that  if f~ is a C-domain  of class C ~ such that  
S ° = i n t e r i o r  of Sk in 0fl is a C ~ manifold for k = l  . . . . .  5, and if G ~  
C~(~)  V/L~°m(fl) then solutions w L F E  of the mixed p rob lem satisfy 

~ c~ (a  u s ° U sO u so u sO u s °) n L~"°~(a). 

The  condition ~ ~oc ui ~L2" (fl), which follows f rom Korn 's  inequality and Sobolev's  
theorem,  is the "edge  condit ion" that  is needed for uniqueness. The  boundary  
conditions on $2, $3 and $5 are not discussed by Fichera in [5] but  can be t reated by 
his methods.  

Uniqueness theorems. Solutions wFE of the mixed problem lie in 

E,,(f l)=E(fl)A{u [ u = 0  on S~, u v = 0  on S2, u ~ = 0  on S3} (4.16) 

and satisfy (4.15) for  all v c Em(f~). The  strain energy theorem for the p rob lem is 

l l a  + l f s  =2fa Fiuidx (4.17) Wn =2 o'ij(u)eij(u) dx -~ {3uiu, dS 1 
5 

where the first equat ion defines the strain energy for the mixed problem.  The  
uniqueness of solutions wFE is an immediate  corollary. Solutions with prescribed 
stresses or displacements at infinity will be  defined by (2.9) and (2.10), respectively, 
as in the surface tractions problem.  Moreover ,  the strain energy theorem,  Theo rem 
3.4, extends to solutions w L F E  of the mixed problem.  In fact, the same proof  is valid 
because if u ~ E~C(fl) and 4~ ~ Co(R3) then v = qm e E~'~(f l)  = Era ( t )  N EC°m(fl). The  
uniqueness of solutions w L F E  of the mixed problem with prescribed displacements 
at infinity is an immediate  corollary. I t  can also be  shown that  the displacement fields 
for the mixed p rob lem are unique except in the special case of pure  surface tractions 
boundary  condition ($4 = 3f~). 

Inhomogeneous bodies. The uniqueness and energy theorems given above remain 
valid if the constant stress strain tensor ciik~ is replaced by a field Ciikl(X ) that is 
Lebesgue measurable  in f~ and satisfies (1.9). The  interior and boundary  regularity 
theorems of Section 2 are valid when c~ikl (x) has sufficient differentiability in I I  and 
~ ,  respectively; cf. [1, p. 132]. 

n-Dimensional problems. Fichera [5] has developed his theory for an n-dimensional  
generalization of the equations of elastostatics. All of the theorems given above 
extend to this n-dimensional  p rob lem with only notational  changes. The cases n = 1 



242 C. H. Wilcox 

and n = 2 are applicable to elastostatic fields that are functions of only one or two of 
the Cartesian coordinates. 

5. A discussion of  related Hterature 

Fichera's paper [4] of 1950 provided the first significant extension of Kirchhoff's 
uniqueness theorem to unbounded domains. His result (3.8) implies that equilibrium 
fields in homogeneous isotropic bodies in exterior domains have finite energy ff the 
displacements vanish at infinity. The  uniqueness of equilibrium fields in such bodies 
is an immediate corollary. Corresponding results for fields whose stresses vanish at 
infinity follow from the 1961 result (3.9) of Gurt in and Sternberg [10]. The author 
knows of no general uniqueness results for anisotropic bodies in exterior domains or 
for bodies whose boundary is unbounded.  

In Fichera's monograph [5] of 1965 the existence and uniqueness of classical 
solutions to elastostatic equilibrium problems in bounded domains with smooth 
boundaries is proved by the methods of functional analysis. This provides an 
alternative to the classical integral equation methods cited in the introduction. 
However ,  the formulation and techniques employed by Fichera can provide more  
general results. Fichera's semi-weak solutions (Lecture 7) are essentially the solu- 
tions wFE of this paper. Hence,  Fichera's results (Lectures 7 and 12) imply the 
uniqueness of solutions wFE for bounded domains and boundary conditions for 
which Korn 's  inequality is valid. For the zero surface displacements problem the 
inequality holds for every bounded domain. For  the zero surface tractions problem it 
holds for domains with the cone property.  

The li terature on uniqueness theorems in linear elastostatics up to 1970 was 
surveyed in a monograph by R. J. Knops and L. E. Payne [13] published in 1971. 
This work also contains uniqueness theorems for a class of weak solutions. However,  
the hypothesis that the displacement fields are continuous in ~ restricts the scope of 
these results. 

Uniqueness theorems for plane crack problems were proved by J. K. Knowles and 
T. A. Pucik in 1973 [14] under the assumption that the displacements are bounded, 
but  not necessarily continuous, at the crack tips. The  elegant differential inequality 
method used in this work provided the inspiration for the proof of Theorem 3.4. 

The  methods employed in this paper to prove uniqueness theorems for solutions 
wLFE in arbitrary domains were introduced by the author during the period 
1962-64 in a series of papers on boundary value problems of the theory of wave 
propagation [25, 26, 27]. The article [27] contains as a special case uniqueness 
theorems for elastodynamic problems in arbitrary domains. 
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