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Abstract. This paper deals with the construction of an asymptotic solution for the stress field in a laminated
composite plate, with [0/90] stacking sequence. The plate contains through the thickness a line crack of length 2c
and its perimeter boundaries are sufficiently far away from the crack so that no edge effects are present. The stress
field is derived explicitly, and includes a correction factor to account for the laminate effects in the third dimension.
The stress σzz is a maximum at an angle of θ ≈ 83◦ (see Figure 3). The stress field may now be used to bridge the
gap between macro and micro mechanics and to derive a series of fracture criteria, at the micro and macro level,
which ultimately will provide us with a better understanding of the formation of the damaged zone ahead of the
crack tip. For example, the stress field is used to derive one such approximate fracture criterion for mode I loading
and for a self similar type of fracture, similar to that of Griffith. This criterion shows how the periodic length of the
material lay-up microstructure effects the fracturing characteristics of the material system. Comparison with some
experimental observations for two different material systems shows a fairly good agreement which substantiates
the predicted influence.

Key words: Cracked plate, fracture, laminated composite plate, 3D stress field, effect of thickness, effect of
periodic length, self-similar fracture.

1. Introduction

Despite careful design, practically every structure contains stress risers due to the presence of
inclusions, holes or cracks. Bolt holes and rivet holes are necessary components for structural
joints. It is not surprising, therefore, that the majority of service cracks nucleate in the vicinity
of a stress riser. While the subject of stress risers is certainly familiar to engineers, the situation
is significantly more complex in the case of high-performance laminated composite materials.
The presence of a hole or a crack in the laminate introduces significant stress contributions
in the third dimension which create a very complicated three-dimensional (3-D) stress state
in the vicinity of such discontinuities. Moreover, this complex state of stress may depend
on the stacking sequence of the laminate, the fiber orientation of each lamina as well as the
material properties of the fiber and of the matrix. Ultimately, these stress risers form a primary
source of damage initiation and property degradation, particularly in the presence of cyclic
loading. Experimental investigations carried out by Bakis and Stinchcomb (1986) on graphite-
epoxy laminates which have been weakened by a circular hole give us a better insight of this
damage growth development under the action of cyclic loading. In general, the progression
of this damaged process may be characterized as (i) debonding along fiber-matrix interfaces,
(ii) matrix cracking parallel to the fibers, (iii) matrix cracking between fibers, (iv) delamination
along the interface of two adjacent laminae with different fiber orientations, and (v) fiber
breakage.
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Thus, if rational designs using fiber-reinforced-resin matrix composite laminates are to be
made, their performance under static, dynamic, fatigue and environmental loads need to be
predictable. The first step towards this goal is the realization that the ultimate failure, as well
as many other aspects of the composite behavior, is the result of the growth and accumulation
of microdamage to the fibers, matrix and their interfaces. Thus, it appears that any generally
successful model of performance and failure must incorporate the effects of this damage in
some way. This certainly represents a challenge. In this paper, we will address some simple
forms of such damage, as related to that of crack initiation and possible delamination.

Delamination has long been recognized as one of the most important failure modes in lami-
nated composite structures. The growth of a delamination may result in a substantial reduction
of strength and stiffness of the laminate. The identification, therefore, of such locations in a
composite structure is of great interest to the designer. Experimental studies by Pipes et al.
(1973) have shown that the delamination mode of failure is most likely to initiate at the free
edges. One conjectures, therefore, that the stresses at the intersection between a free edge and
an interface may well be singular. Indeed, analytical investigations (Wang and Choi, 1982;
Zwiers et al. 1982) on straight free edges show that a stress singularity exists for certain types
of laminates.

Alternatively, a curved free edge is inherently a 3-D problem which presents greater mathe-
matical difficulties. For this reason, past analyses have been based primarily on finite element
methods with standard finite elements (Raju and Crews, 1982), as well as elements which
incorporate the stress singularity in the formulation (Rybicki and Schmueser, 1978; Ericson
et al. 1984). While such methods can provide us with stress trends in the boundary layer
region, it is rather difficult to extract from them with certainty the order of the prevailing
stress singularity that is present at the material interface. Moreover, experimental investiga-
tions carried out on straight edges by Pagano (1974) show that the laminate stacking sequence
can indeed affect the static strength of the laminate. Similar experimental observations were
also made by Daniel et al. (1974) on plates with circular holes. The subject, therefore, of stress
risers due to holes and particularly due to cracks in the presence of periodic structures does
warrant further investigation.

Thirteen years ago, Folias (1988a) investigated analytically the interlaminar stresses at the
boundary layer in the vicinity of a free-edge and a hole, for two different isotropic materials.
The analysis revealed that the stress field there possesses a weak singularity, that depends only
on the material properties of the two adjacent laminates. Subsequently, Folias (1992) extended
this analysis to also include transversely isotropic laminae of an arbitrary stacking sequence.
This analysis revealed that the stress singularity in the latter case depends, not only on the
material constants and the fiber orientations of the two adjacent laminae, but also on the polar
angle θ .

In this paper an analytical method is developed in order to study the 3D stress field in
a, cracked, laminated composite plate with a periodic stacking sequence of [0◦/90◦] . This
particular stacking sequence is used in order to make the mathematical details of the paper
a little easier to follow. The general method, however, exhibits a great deal of flexibility and
can be used to solve a much larger class of mixed boundary value problems arising in the
field of fracture of composite material systems. The method can also be extended to include
cases where the cracks are neither parallel nor perpendicular to the direction of the fibers.
Special attention is given to the stress field in the neighborhood of the crack front. Finally,
one of the most important goals of this study is to assess what effect, if any, does the presence
of a periodic length have on the fracturing characteristics of a cracked laminated composite
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Figure 1. Laminated composite plate of arbitrary thickness and containing a crack.

material system. The author believes that such information is very important in trying to fully
understand the failure mechanisms of composite material systems.

2. Formulation of the problem

Consider the equilibrium of a laminated composite plate that occupies the space |x| < ∞, |z| <
∞, |y| < ∞, and contains a finite line crack of length 2c along the direction of the x-axis.
The plate consists of laminae made of transversely isotropic material with a [0◦/90◦]s stacking
sequence. Far away from the crack, the plate is assumed to be subjected to a uniform, tensile,
stress σ0 along the direction of the z-axis and parallel to the bounding planes (Figure 1).

In the absence of body forces, the coupled differential equations governing the displace-
ment functions u, v and w for a 0◦ layer are given by (Lekhnitskii, 1963):
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where the Cij ’s represent the material stiffness constants for a layer whose fibers are running
parallel to the z-axis.
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The stress-strain relations, for a 0◦ layer are given by the constitutive relations :
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. (4)

Similarly, for the 90◦ layer, the corresponding governing equations, as well as the stress-
strain relations, can be obtained from the above by a simple interchange of the appropriate
axes.

As to the boundary conditions, we require that both shear stresses, i.e.,

τxz = τyz = 0; at z = 0, and for all |x| < ∞, |y| < ∞, (5)

and that the normal stress

σzz =; at z = 0, and for all |x| < c, |y| < ∞. (6)

Finally, far away from the crack, all displacements and stresses are assumed to be finite.
Moreover, ahead of the crack prolongation, i.e., at z = 0 and for |x| > c, the material is
assumed to be continuous.

It is found convenient at this point to seek the solution to the crack plate problem in the
form

u = u(c) + u(P), etc.

which is characteristic to the solution of crack problems. The first component represents the
‘complimentary’ solution while the second component represents the usual ‘undisturbed’ or
‘particular’ solution of a plate without the presence of a crack.

3. Method of solution

The special case of a 3D homogeneous and isotropic, cracked, plate has been studied analyt-
ically by Folias (1975). Thus, motivated by these findings (see Equations (115)–(117) of the
above reference, one may seek the solution of the 0◦ layer system (i.e., Equations (1)–(3) in
the form:

u[0] = ∂

∂x
{f1 + f2} − ∂

∂y
{f3}, (7)

v[0] = ∂

∂y
{f1 + f2} + ∂

∂x
{f3}, (8)

w[0] = ∂

∂z
{m1f1 +m2f2}, (9)

where the constants m1 and m2 represent the roots of the algebraic equation
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[C55(C13 + C55)]m2 + [C2
55 + (C13 + C55)− C22C11]m + C55(C13 + C55) = 0 (10)

and where the stress potentials f1, f2, f3 satisfy the 3D, scaled, Laplace’s equation
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Similarly, the solution for the 90◦ layer is sought also in the form

u[90] = ∂
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{m1f̂1 +m2f̂2}, (13)
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where here again the stress potentials f̂1, f̂2, f̂3 satisfy the revised 3D, scaled, Laplace’s
equation
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Thus, the coupled governing equations have been uncoupled and furthermore reduced to
that of constructing a solution to a, 3D, Laplace’s equation.

4. A particular material

As a practical matter, we consider the material Hercules AS4/3501-6. This material is made
of thin carbon fibers (approximately 10 µm or 0.001 cm in diameter) which are placed in
an epoxy prepreg and pressed into thin sheets, with all the fibers running in one direction.
The sheets are then stacked so that in each layer the fibers run perpendicularly to the fibers
of the previous layer. The sheets are then heated and pressed together, so that the epoxy
forms a continuous matrix that holds the fibers together. The resulting plate is of the form
. . . 0◦/90◦/0◦/90◦ . . . . (see Figure 2). Moreover, each layer is quite thin (approx. 127 µm),
and a plate of this material, of one quarter inch thick, contains approximately 25 layers.

Let us consider, therefore, such a composite plate that is made of alternating layers, with
layer 1 having fibers which run along the z-direction, and with layer 2 having fibers which run
along the x-direction. The resulting Cij coefficients for this material system have been found
experimentally as

C11 = 20.830, C55 = 0.710,

C22 = 1.651, C12 = 0.647,

C44 = 0.502, C13 = 0.623.

(17)
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Figure 2. Material lay-up of high temperature carbon/epoxy composite.

in million pounds (force) per square inch.
Thus, the governing equations describing the material behavior for layer 1 become

∂1{C22ε11 + (C22 − 2C44)ε22 + C13ε13} + 2∂2{C44ε12} + 2∂3{C55ε13} = 0, (18)

2∂1{C44ε12} + 2∂2{(C22 − 2C44)ε11 + C22ε22 + C13ε33} + 2∂3{C55ε23} = 0, (19)

2∂1{C55ε33} + 2∂2{C55ε23} + ∂3{C13ε11 + C13ε22 + C11ε33} = 0, (20)

where the symbols ∂1, ∂2, ∂3 represent the differential operators in the x, y, and z direction,
respectively, and where the εij represent the strains.

Alternatively, for layer 2 we have a similar set of equations but with different coefficients.
One may think, therefore, of the governing equations as a system of three, coupled, partial dif-
ferential equations with sectionally continuous, but constant, coefficients. More specifically,
the 3D governing equations become

{c1 + d1p(ay)}∂2
1u+ C55∂

2
3u+ {c2 + d2p(ay)}∂1∂2v + (C13 + C55)∂1∂3w+

+∂2{[c3 + d3p(ay)](∂2u + ∂1v)} = 0,
(21)

[c3 + d3p(ay)]∂1∂2u+ ∂2{[c2 + d2p(ay)]∂1u + [c4 + d4p(ay)]∂3w + C22∂2v}+
+[c3 + d3p(ay)]∂2

1v + [c5 + d5p(ay)](∂2
3v + ∂2∂3w) = 0,

(22)

(C13 + C55)∂1∂3u + C55∂
2
1w + [c6 + d6p(ay)]∂2

3w + ∂2{[c5 + d5p(ay)](∂2w + ∂3v)}
+[c4 + d4p(ay)]∂2∂3v = 0, (23)

where, for the Hercules material system AS4/3501-6, the constants ci and di have been com-
puted as

c1 = 11.241, d1 = −19.179,

c2 = 0.635, d2 = 0.024,

c3 = 0.606, d3 = −0.208,

c4 = 0.635, d4 = −0.024,

c5 = 0.606, d5 = −0.208,

c6 = 11.241, d6 = −19.179,

(24)

in million pounds (force) per square inch, and where
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p(ay) =
∞∑
n=1

pn(an) cos(any) (25)

with

pn(an) = sin(anh)/(anh); an = nπ/(2h). (26)

This general approach of using a Fourier series to describe the inhomogeneity of the mater-
ial makes it possible to model many different material systems. By picking appropriate series,
one may describe layers of different thickness, layers with glue between the layers, as well as
layers of completely different material.

5. Solution

The 2D solution of a single orthotropic layer containing a through the thickness crack was
studied analytically first by Ang and Williams (1961) and later by Wu (1968). Subsequently,
the 3D case of an isotropic, cracked, plate has been studied, analytically, by Folias (1975).
Folias has shown that, throughout the interior portion of the plate, the stress field is propor-
tional to r−0.5, and that as one approaches the free surface of the plate, a boundary layer
effect is shown to prevail. Furthermore, the thickness of this boundary layer is, in general,
less than 5% of the overall plate thickness. Moreover, it was shown that, in this vicinity, all
terms, including the Rn terms (where the symbol Rn, stands for higher order terms that do not
contribute to the r−0.5 stress singular behavior), contribute to the local stress field within this
boundary layer. Thus, in such regions, the stress singularity may indeed be different from that
which is present in the interior region. In the field of fracture mechanics, the strength of the
stress singularity, in such neighborhoods, is still an open question. The reader, however, may
find in the existing literature some information on the subject (see e.g., Wilcox, 1976; Rosakis
et al., 1988; Folias, 1975, 1988b).

Similar trends are also expected to prevail in the present analysis of laminated composite
plates. More specifically, in the interior portion of each layer the stress field is expected to be
proportional to r−0.5, and that as one approaches an interface between two adjacent laminae
the stress singularity will change. It may be emphasized, however, that the latter condition is
only applicable in a very small spherical region with center at the point where the crack tip
intersects the interface (see Figure 3). Its radius r is much less than 5% of the layer thickness.
It is now well recognized by the fracture community that the stress singularity in such regions
must satisfy the condition of local finite energy, a condition which permits stress fields of the
form

σ ∼ p−a; 0 ≤ a < 1.5. (27)

Wilcox (1976), in his benchmark paper, proved that if a 3D stress solution satisfies the con-
dition of local finite energy, the solution is unique. In the special case of 2D problems, the
condition of local finite energy implies that all displacements will be finite and in fact pro-
portional to rl/2. For this limit case, Wilcox’s theorem provides the same results predicted
by the 2D theorem of Knowles et al. (1973). Alternatively, in the case of 3D problems, the
displacements are allowed, at a finite number of points, to be infinite provided that the local
strain energy is finite. This is analogous to the 2D fact that stresses are infinite in the im-
mediate vicinity of the crack tip. Physically, a stronger stress singularity suggests that linear
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Figure 3. Local coordinates at a ply interface.

elasticity is inadequate in predicting the actual physical behavior of the material per se in
such neighborhoods. For example, the solution of a concentrated point load on a half space
(Boussineq’s problem) gives displacements which are proportional to ρ−1 in the neighborhood
of the point of application. However, this does not prohibit us from using the solution to extract
important physical and practical information, for the simple reason that the neighborhood of
its applicability is very small. Moreover, at such interfaces the material has chemically been
altered anyway due to the chemical bonds that have taken place. The reader may also note that
terms of the form σ ∼ ρ−a will not. contribute to the total strain energy, as long as a is not
equal to −1 or −1/2. Thus, for the development of a fracture criterion, we are only interested
in the contributions that come primarily from the interior solution. This solution, however,
must incorporate the layer thickness correction effect. Moreover, the interior solution in the
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neighborhood of the intersection of the crack front and an interface, represents the first and
dominant term of the local solution. This is because, as previously noted, other terms such as

σ ∼ r(n−0.5); n = 0, 1, . . . , (28)

also contribute to the same order of the local stress singularity a. The actual determination of
the stress singularity is beyond the scope of this paper and for this reason will he suppressed.
However, in view of the work of Folias, (1975), it is expected to be different and most likely
higher in its value. This may also be deduced from the implications of the two uniqueness the-
orems, for 2D (Knowles, 1970) and for 3D (Wilcox, 1976). If the singularity was to be smaller,
why is it then that the 3D uniqueness theorem allows higher order stress singularities? After
all, 2D elasticity theory is only a special limit of 3D elasticity theory! Additionally, the work of
Folias (1992b) perhaps also provides additional support of this conjecture by association. Be
that as it may, this subject is beyond the scope of this paper. Numerical methods, such as FE,
in general are not valid in such boundary layer regions and usually bypass such difficulties by
simply averaging the adjacent points. Moreover, neither can such methods capture the order
of the local prevailing stress singularity.

Thus, following the solution of an isotropic layer (Folias, 1975), in conjunction with the
work of Walker and Folias (1992), we may now construct Fourier integral representations for
the complimentary displacement functions u, v, and w which are valid throughout the com-
posite plate (see Appendix). From this general solution we may next construct the following
asymptotic expansions, which are valid within the immediate vicinity of the crack tip,

u = c&

∞∑
k=0

∫ ∞

0

Jk+1(sc)

sk+1
{A(k)

1 exp(−β1s|z|)+ A
(k)

2 exp(−β2s|z|)} sin(sx)ds + Rn, (29)
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∫ ∞

0
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(k)

2 exp(−β2s|z|)} cos(sx)ds + Rn, (30)
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∫ ∞

0

Jk+1(sc)
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{C(k)

1 exp(−β1s|z|)+C
(k)

2 exp(−β2s|z|)} cos(sx)ds+Rn,

(31)

where the symbol Rn stands for higher order terms that do not contribute to the r−0.5 stress
singular behavior, and where the coefficients A(k)

1 , A
(k)
2 , B

(k)
1 , B

(k)
2 , C

(k)
1 , C

(k)
2 are functions of

the Fourier integral parameter s and of the geometric coordinate y. For our specific material
example, these are given by the relations

β1 = 3.3784 − 3.7881p(ay), β2 = 0.4317 − 0.4840p(ay), (32)

A
(0)
1 = −0.2005σ0 − 0.3420σ0p(ay),

A
(0)
2 = 0.0463σ0 + 0.0790σ0p(ay),

B
(0)
1 = 0.0000σ0 + 0.0000σ0p(ay),

B
(0)
2 = 0.0000σ0 + 0.0000σ0p(ay),

C
(0)
1 = 0.0104σ0 + 0.0117σ0p(ay),

C
(0)
2 = −0.3534σ0 − 0.3962σ0p(ay).

(33)
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(For the sake of convenience in typing the present paper, we have restricted the numerical
accuracy of the above relations to four significant figures). Also in writing the asymptotic
expansions for the complementary displacements, i.e., Equations(29)–(31) a great deal of
knowledge and information has been utilized from past works on the method of solution of
singular integral equations as well as on the method of solution of mixed boundary value prob-
lems, which Folias has previously developed for the solution of cracked pressurized vessels.
Again it should be emphasized that, the asymptotic representations above, are valid only in
the vicinity of the crack tip and that when the crack front meets an interface lay-up, there it
represents only the first, yet dominant, term of the local solution.

By construction, the above complementary displacement field satisfies the governing equa-
tions, the boundary conditions on the faces of the crack by negating their respective contribu-
tions from the particular solution, i.e.,

σ (p)
zz =

{
σ

[90]
0 ; h < y < 2h,

σ
[0]
0 ; 0 < y < h,

periodic (34)

τ (p)xz = τ (p)yz = 0; z = 0; |x| < ∞; |y| < ∞ (35a,b)

where

σ
[0]
0 = 1

2h

∫ h

−h
σ

[0]
zz particular dy (36a)

and

σ
[90]
0 = 1

2h

∫ 3h

h

σ
[90]
zz particular dy, (36b)

as well as the continuity conditions on the plane of the crack and ahead of the crack tip.
Moreover, at the ply interfaces, it satisfies the boundary conditions on the normal stress σyy
and the shear stresses τxy, τyz. For simplicity in this paper, we have approximated the stress
component σ (p)

zz , on the faces of the crack to be sectionally continuous in the y-direction.
In general, it will also be a function of x, something that the integral equation handles very
nicely with a few additional and simple calculations. Thus, the work may easily be extended
to also handle a very general loading that an airframe panel may be subjected to. This loading
conditions are part of the particular solution and correspond to the case of an uncracked panel.
For more information regarding particular solutions and complementary solutions the reader
is referred to a book on fracture mechanics.

6. The complementary stress field

From the complementary displacement field, it is an easy matter now to compute the comple-
mentary stress field.

6.1. INTERIOR SOLUTION

Without going into the mathematical details, it is found that the interior, 3D, stress field is
proportional to the usual 1/

√
r singular behavior. A 3D plot of the normalized stress σzz is

given in Figure 4. The reader may notice that in all figures the angle θ is given in radians. As
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Figure 4. The stress σzz as a function of (y/h) and θ .

expected, its maximum value occurs in the 0 layer and at a value of θ = 83◦, while in the
90 layer its value is relatively low. This suggests, therefore, that fiber breakage is most likely
to occur in the 0 layer as a possible mode of local failure. A 3D plot of the normalized stress
σyy is given in Figure 5. Notice that the stress σyy attains a maximum value at θ = 0 and in
the 0 layer. This suggests, therefore, that possible debonding may very well take place in the
vicinity of the crack front particularly at the interfaces y = h, 3h, . . . and on the xz-plane.
Debonding, however, may also take place on other planes, e.g., yz-plane. In Figure 6 we plot
the stress σθθ . Its maximum occurs at θ = 0 and in the interior of the 0 layer, and it vanishes
as one reaches the crack face θ = π as it should. In Figure 7 we plot the shear stress τrθ ,
which also vanishes at θ = 0 and at θ = π , thus satisfying the boundary conditions, and
which attains a maximum at approximately θ = 57◦.

Finally, the reader may notice that the stress field changes rather abruptly, in a boundary
layer sense, as one approaches the vicinity of the intersection of the crack front and a lay-
up interface. This item has been discussed previously and the reader may recall that, in such
neighborhoods, the 1/

√
r term represents only the first and dominant term there and that other

terms of the form (r(n−1/2);n = 0..∞) also contribute to that local stress field. The reader
should be cautious in interpreting the previous statement for it does not necessarily imply that
the stress singularity there is of the order of 1/

√
r. On the contrary, the stress singularity there

is expected to be different.

6.2. EXTERIOR SOLUTION

Along the crack front and in the vicinity of a lay-up interface, the stress field can be shown to
be

σij ∼ ρ−afij (θ, φ, ρ) (37)

where ρ, φ, θ represent the local spherical coordinates with center the intersection point.
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Figure 5. The stress σyy as a function of (y/h) and θ .

Finally, the function &, is determined from the solution of the Cauchy singular integral
equation for the stress σzz over the crack faces. Using the displacement functions given in the
Appendix, the stress σzz, at z = 0, may be written after some algebraic manipulations in the
form∫∫

crack faces
υ(ξ, η)H(x − ξ, y − η) dξ dη = f (x, y), |x| < c, periodic in y, (38)

where the kernel H is a long expression of terms involving modified Bessel Kn functions. The
integral equation obtained is similar that of the case of one isotropic layer (Folias, 1980). The
details of the method of solution of the above singular integral equation are similar to those
developed by Folias for the solution of pressurized vessels containing a line crack (see Folias
1965a,b). Without going into the long and tedious mathematical details, we find

& ≈
{

1 + 1.55π

(
hp

c

)
− 1.69π

(
hp

c

)2

+ · · ·
}O.5

;
(
hp

c

)
< 0.8, (39)

which represents the asymptotic expansion, for very large λ, of

& ≈
{

1 + 6.90I1(λ)K1(λ)− 5.28

(
1

λ

)
I2(λ)K1(λ)+ · · ·

}0.5

; λ � 1 (40)

with

λ = c√
2 hp

, (41)

and where hp represents the periodic length of the composite material system. The functions
I and K represent the modified Bessel functions. It may emphasized that Equation (40) is
only valid for very large values of the parameter λ, and that both Equations (39)–(40) are only
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Figure 6. The stress σθθ as a function of (y/h) and θ .

applicable for the material example chosen. Finally, the reader should note that the present
analysis assumes that hp is not equal to zero.

7. Bridging the gap between macro and micro mechanics

As it was noted in the introduction, the damaged zone ahead of the crack tip may be char-
acterized as (i) fiber breakage, (ii) matrix cracking between fibers, (iii) debonding along
fiber-matrix interfaces, (iv) matrix cracking parallel to the fibers, (v) delamination along the
interface of two adjacent laminae with different fiber orientations, etc. It is now possible to
bridge the gap between macro and micro mechanics and thus provide some further insight on
the identification of locations where the above possible type of local failures are most likely
to occur, why they occur and what their overall effect may be.

For example, by examining the stress σyy ahead of the crack tip, we notice that the respec-
tive locations y = h, 3h, 5h etc., present possible locations where delamination is most likely
to take place on the xz-plane. We envision delamination as the debonding of the fiber/matrix
interface, followed by cracking of the adjacent matrix, along the last row of fibers as depicted
in Figure 11 (Folias, 1991). Thus from Figure 6, and for θ = 0,

σ [0]
yy /σ

[90]
yy = σyyply1/σyyply2 = 0.164/0.046 = 3.6,

that is a ratio of approximately 4 which suggests that, all things being equal, delamination in
layer 1 is most likely to take place than in layer 2.

Finally, both the Tsai–Hill failure criterion as well as the Walker and Thacker (1999) failure
criterion will be used in order to predict an overall failure for the composite material system
from a global point of view and the two criteria will be compared. It may be noted here
that Walker and Thacker have recently shown that the Tsai–Hill failure criterion cannot be
used to model anisotropic materials with two strong directions (Yield = Y ) and one weak
direction (Yield = X), where X ≤ Y/2. This is because the geometrical yield surfaces present
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Figure 7. The stress τrθ as a function of (y/h) and θ .

problems. For further discussion on this matter, the reader is referred to the paper by Walker
and Thacker (1999). Pending further investigation, the subject matter of bridging the gap
between macro and micro mechanics, as well as the two global failure criteria mentioned
above, will be the subject of a continuation paper which is to follow.

8. A fracture criterion

It has long been recognized by the fracture community that metal plates, as well as laminated
composite plates, which contain, through, flaws or cracks present a reduced resistance to
fracture initiation. Consequently, the presence of a flaw or a crack in the plate may severely
reduce the strength of the structure and thus cause sudden failures at nominal tensile stresses
which may be much lower than the allowable stress. To ensure, therefore, the integrity of the
structure, the designer must be cognizant of the relation that exists between fracture load,
material properties, flaw shape and size, periodic lay-up orientation, and structural geometry.
While the author is very much aware that one fracture criterion may not adequately address
the complete failure in a composite material system, it can, however, when integrated with
other local criteria provide us with important information that ultimately will help us in better
understanding of the phenomenon of damage. Thus, in this section, we will assume that the
material fractures in a self-similar manner and will investigate what effect, if any, does the
periodic length of the local micro-structure have on the fracturing characteristics of the system.
The author strongly believes that the answer to this question is paramount for the complete
understanding of failures in composite material systems.

Be that as it may, the principal task of fracture mechanics is precisely the prediction of
failure due to the presence of sharp discontinuities. Specifically, the approach is based on
a corollary of the first law of thermodynamics which was first applied to the phenomenon of
fracture of metals by Griffith (1924). His hypothesis was that the total energy of a cracked sys-
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tem subjected to an external loading remains constant as the crack advances an infinitesimal
distance. That is

∂Usystem

∂c
= 0. (42)

Thus, following the work of Griffith, we compute the total strain energy of the system, as
well as the surface energy. To compute the strain energy, we use the divergence theorem and
express the strain energy in terms of the complementary displacement w on the crack faces
z = 0. Without going into the mathematical details, Griffiths criterion for crack initiation may
be approximated by:

σc
√
πc

{
1 + 1.55π

(
hp

c

)
− 1.68π

(
hp

c

)2

+ · · ·
}0.5

≈ K; for 0 <

(
hp

c

)
< 0.8, (43)

where K stands for the fracture toughness of the composite material system, and 2c stands for
the size of the crack. Note also that the special case of hp = 0 is meaningless in this analysis.
As the ratio of hp/c increases, more and more terms will be required for a more accurate
result. The fracture toughness of the material system is assumed to be a material constant
which must be determined by an experiment. A closer examination of Equation (43) suggests
the presence of an effective crack length, i.e.,

σc
√
πceffect ≈ K, (44)

where

ceffect =
{

1 + 1.55π

(
hp

c

)
− 1.68π

(
hp

c

)2

+ · · ·
}
c. (45)

Thus, the effect of the third dimension, as well as the effect of the local lay-up microstructure
along the crack front, increases the actual length of the crack by a factor that is a little larger
than c, at least in some region. It is rather instructive to plot the correction factor as a function
of the parameter (hp/c) (see Figure 8). The dotted curve shows the direction which the correc-
tion factor appears to go towards as the number of terms increases. Thus, the shape of the curve
appears to be, as expected, similar to that of past experimental evidence on cracked aluminum
alloy plates (Foreman, 1995), where the fracture toughness now bas been plotted as a function
of the ratio (h/c). This suggestion was made by Folias which he based on 3D, linear elastic,
fracture considerations and is discussed to some extend in the following reference (Folias
et al., 1998).

The above criterion represents a departure from the Mar–Lin theory (Mar, 1977), which
is presently used by some to predict failures in laminated composite plates. The Mar–Lin
criterion is semi-epmpirical and reads as

σc(πc)
m = Happ, (46)

where m and Happ are two material constants both of which must be determined from exper-
imental observations. Such a criterion, however, suggests that traditional fracture mechanics
concepts may not adequately predict failures in laminated composite plates, which may be a
little too premature to deduce at the present time. Moreover, different constants m and Happ

must be determined each time for different material systems
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Figure 8. Thickness correction factor for the fracture toughness versus (hp/c).

9. Comparison between theory and experiments

A theory, in general, is most useful if there exists some experimental evidence to substantiate
its validity and its potential use. Thus, in the following, comparisons will be made between
some available experimental test data and their theoretically predicted fracture stresses. Al-
though the author has tried very hard to find experimental data for a composite material system
with a 0/90 lay-up, he was unable to find any. He was, however, able to find some experimental
data of similar material systems that will do the job.

Perhaps it may be appropriate here to remind the reader that one of our main goals in this
analysis is to establish and substantiate the effect that the periodic length of the local micro-
structure has on the fracturing characteristics of a composite. While the author well recognizes
that, under certain conditions of the material properties, the crack may not advance in a self-
similar manner (see Boeing, 2000), however, in order to show the presence of the periodic
effect it is best to consider experimental data of a material system that fails in a self-similar
manner. Lacking such complete and reliable experimental study, we will use experimental data
that are presently available for two slightly different, yet similar, material systems which will
do the job. Ultimately, an integrated macro and micro mechanics approach of a composite
material system will reveal under what conditions the crack will advance in a self-similar
manner or in a manner which presents splitting normal to the crack front. The question of
the crack path is not as simple as one may initially think. In general, the author believes the
actual path will depend on the material properties, the specific material lay-ups, the different
percentages of same lay-ups, the size of the crack, as well as the overall thickness of the
composite panel and this is only for mode I loading. Thus, for a failure due to splitting that is
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Table 1. Predictions based on Griffith theory Material lay-up: [45/0/-45/90]2s
and [45/0/-45/90]4s

2c hp σc exp K ksi.
√

in. K ksi.
√

in. No. of plies

no correction Equation (43)

1 in. 0.044 38.2 ksi. 16

1 0.044 37.8 47.4 55.8 16

1 0.044 42.8 16

1 0.044 40.4 32

1 0.044 39.9 32

1 0.044 38.2 32

2 0.044 32.4 16

2 0.044 29.5 16

2 0.044 34.4 16

2 0.044 28.8 32

2 0.044 29.0 32

2 0.044 28.7 50.9 55.8 16

4 0.044 26.7 16

4 0.044 22.6 16

4 0.044 22.3 16

4 0.044 20.2 32

4 0.044 23.2 32

4 0.044 21.7 50.6 53.4 32

Remarks: The variation of the fracture toughness with no correction factor is 7%,
while with correction factor is 4%.

normal to the crack tip, a different failure criterion will be developed, and will be included in
a follow up paper.

Be that as it may, the test data were provided by NASA and were carried out by Boeing-
St. Louis, on laminated composite panels characterized as high temperature carbon epoxy
material systems with a central crack (Boeing, 2000). The fiber volume fraction was ap-
proximately 58%, and the dimensions of the outside panel perimeter, relative to the crack,
were sufficiently large so that no edge effects will be present. The panels were subjected to a
uniform tensile load and the normal stress at fracture was recorded. Unfortunately, the panels
that were tested did not have a [0 / 90 ]2s lay-up. On the other hand, certain panels did have
very similar lay-ups. In as much as they were similar and in as much as they failed in a self-
similar manner, we will use our derived fracture criterion, i.e., Equation (43), in conjunction
with the proper interpretation of the parameter (hp/c), to predict the corresponding fracture
stress. The results are given in Tables 1 and 2. The reader may also note that other panels that
were also tested with different percentage ratios of same lay-ups failed in a manner that was
perpendicular to the crack front. These data will be used in the continuation paper with an
appropriate fracture criterion.

In determining the periodic length, we proceed as follows. First of all, each ply was of
0.0055 in. thickness. Thus, the thickness of the panel for the first entry in the table was

2hpanel = 0.0055(number of plies) = 0.0055(16) = 0.088in
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Table 2. Predictions based on Griffith theory Material lay-up:
[45/0/-45/0/0/90/90/45/-45]s and [45/0/-45/0/0/90/0/45/0/-45]2s

2c hp σc exp K ksi.
√

in. K ksi.
√

in. No. of plies

no correction Equation (43)

1 in. 0.11 42.5 ksi. 40

1 0.11 41.5 52 70 40

1 0.11 44.9 40

1 0.11 45.5 20

1 0.11 49.6 20

1 0.11 45.2 20

2 0.11 34.8 40

2 0.11 33.6 40

2 0.11 32.7 58 70 40

2 0.11 36.7 20

2 0.11 36.6 20

2 0.11 36.6 20

4 0.11 24.8 40

4 0.11 28.8 40

4 0.11 25.9 40

4 0.11 27.4 20

4 0.11 23.8 60 67 20

4 0.11 26.4 20

Remarks: The variation of the fracture toughness with no correction factor is
14%. As the ratio hp/c increases, so will the variation up to a certain point.

and the corresponding periodic length is

hp = hpanel = 0.088/2 = 0.044.

The reader should recall that one may use Fourier series in two different ways. To represent
a function that is periodic from −∞ < y < ∞ or alternatively, to represent a function from
−hpanel < y < hpanel, where outside of that interval we do not care what the series represents.

As one can see from the above, as well as from Figures 9 and 10, the agreement between
theory and experiments appears to be fairly good. The reader may also notice that for the first
material system the fracture toughness is 55.8 ksi

√
in, while for the second material system

70 ksi
√

in. This is not surprising for the structure of the latter material system appears to he
inherently stronger.

Perhaps it may be appropriate here to make the following two additional comments. First,
we believe that only the lowest fracture stress values are of interest in determining critical
instability. The rest of it, is experimental scatter. Second, although there is a difference be-
tween the material systems [. . . ]2s, [. . . ]4s and the [0/90], we have used the same criterion,
i.e. Equation (43). The first two materials, by construction, have the same periodicity and as a
result should he examined simultaneously. On the other hand, minor changes were anticipated
in the fracture criterion between the first two and the third material systems. Perhaps it may
be appropriate here to raise the question, why is it that a fracture criterion, which is based
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Figure 9. Comparison between theory and experiment of the fracture stress for the material system [45/0/−45/90].

Figure 10. Comparison between theory and experiment of the fracture stress for the material system
[45/0/−45/0/0/90/45/0/−45].
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Figure 11. Delamination is modeled as the debonding of the last raw of fibers.

on the derivation of a [0/90] material system, appears to also work for a material system that
includes [±45]-layers ? A partial answer to this question is provided on pp. 157–159, of the
book by Hellan (1984) and it deals with the effect that the angle of attach between the line of
the load and the line of the crack has on the fracture stress. Finally, the reader may also note
that in the experimental data there is some experimental scatter of approximately 6% and 8%
for Tables 1 and 2, respectively.

10. Conclusions

An asymptotic solution has been constructed in order to determine the effects in the third
dimension on the stress field in a laminated composite material system containing a through
the thickness, line, crack. The derived stress field, which includes a correction factor that
accounts for the effect of thickness, is then used to derive a fracture criterion, similar to that
of Griffith, which shows the effect that the periodic length of the local micro-structure has on
the fracturing characteristics of the material system. More specifically, the overall effect of the
laminate thickness and of the lay-up micro-structure is to increase, in essence, the size of the
crack from 2c to 2ceffect. This effective crack length is given by Equation (45). Comparison
with some available experimental data shows a fairly good agreement and promise.

From this analysis, it is now possible to bridge the gap between macro and micro mechanics
and to provide further insight on the identification of locations where fiber breakage, interface
debonding, as well as delaminations are most likely to occur. Pending some further study, this
represents the subject of a continuation paper that would follow soon.
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Appendix

The complementary displacement functions become
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u = A0 +
∞∑
n=1

An cos(any),

where

A0 = 1/2{U [90]
0 + U

[0]
0 } + 1/2

∞∑
v=1

sin(δvh)

(δvh)
{U [90]

v + U [0]
v [2 cos(δvh)− 1]}

An = sin(anh)

(anh)
{U [90]
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0 [2 cos(anh)− 1]}

+1/h
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1
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v ][δv sin(δvh) cos(anh)−
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and
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U [0]
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v=1
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0
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sm1A
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v exp

(
−
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s2ε2
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v |z|
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+sm2B
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v exp
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× sin(sx)ds.

The remaining complimentary displacements v and w have a similar form. From the above,
one may now construct an asymptotic behavior of the displacement field having the proper
behavior at the vicinity of the crack. This is given in Equations (29)-(31).
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