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Abstract. Residual stresses due to curing and thermal stresses due to differences between the thermal expansion
coefficients of the matrix and fiber may have a major effect on the micro-stresses within a composite material
system and must be added to the stresses induced by the external mechanical loads. Such microstresses are often
sufficient to produce micro-cracking even in the absence of external loads, example during the cooling process.

In this investigation, a micro-mechnics approach is used in which the fibers of a composite material system
are modeled as cylindrical inclusions that are embedded into a matrix plate. The model is then used to predict,
analytically, the residual stresses due to a thermal expansion mismatch, e.g. during a cooling process. Additionally,
some critical effects due to a load transverse to the direction of the fibers are examined. The analysis provides a
better understanding of how residual stresses are developed and how they may be controlled in material systems
where small strains are present.

Moreover, the results are used to identify locations of possible crack failure and to derive a fracture criterion
for crack initiation at the local level. Comparison with experimental evidence for matrix cracking in intermetallic
composites caused by thermal expansion mismatch shows a good agreement.
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1. Introduction

In order to achieve revolutionary advances in turbopropulsion-powered systems for the next
century, advanced high-temperature ceramic matrix composites will be required. Yet, fab-
rication of these advanced materials is still being accomplished by traditional trial-and-error
approaches. Rarely such an approach, however, leads to an optimized material process that
yields components of a high quality. Perhaps material modeling coupled with numerical sim-
ulation may be an intelligent approach to material processing which ultimately may lead to
lower manufacturing costs.

Thus, if rational designs of ceramic composites are to be made, their performance under
static, dynamic, thermally fatigued and environmental loads need to be predictable. The first
step towards this goal is the realization that the ultimate failure, as well as many other aspects
of the composite behavior, is the result of the growth and accumulation of microdamage to the
fibers, matrix and their interfaces. Thus, it appears that any generally successful model of per-
formance and failure must incorporate the effects of this damage at the microlevel. Coupling,
therefore, between the micro-mechanical with that of the macro-mechanical behavior will be
very helpful in developing rational methods for the prediction of the structural life span of
such materials. This certainly represents a challenge.
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Figure 1.

For example, the residual stresses due to curing and thermal stresses due to differences
between the thermal expansion coefficients of the matrix and fiber may have a major effect
on the microstresses within a composite material system and must be added to the stresses
induced by the external mechanical loads. Such microstresses are often sufficient to produce
microcracking even in the absence of external loads, e.g. during the cooling process. Further-
more, if the material system is thermally fatigued, these residual stresses may cause some of
the existing micro-cracks to grow and coalesce and thus form the presence of larger cracks.

In this investigation, a systematic 3D, micromechanics approach is used in which the fibers
of a composite material system are modeled as cylindrical inclusions that are embedded into a
matrix plate. The analytical model is then solved and the results are used to predict, the resid-
ual stresses due to a thermal expansion mismatch. The model provides a better understanding
of how the residual stresses are being developed and how they may be controlled particularly
in relation to ceramic materials where there is no ductility present to accommodate plastic
deformation.

The analysis reveals the dependence of the residual stress field on the fiber volume fraction
ratio, identifies the critical locations where a crack is most likely to initiate and subsequently
propagate, recovers the interface shear stress profile and provides important information and
guidance to material designers for the pre-selection of fiber and matrix materials in order to
alleviate some of the residual stresses.

2. Mathematical model

Consider, for example, an infinite plate matrix which consists of material Beta21 (i.e. a ti-
tanium alloy ), see Figure 1. The matrix plate is assumed to extend to infinity both in thex- and
y-directions. In order to capture any possible 3D effects that may be present, the matrix plate
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is assumed to have a finite dimension 2h, along thez-direction. A uniform and square periodic
arrangement of cylindrical fibers, for example SCS-6 (i.e. carbon-coated silicon carbide), is
embedded into the matrix plate in the directions of thex- andy-axes. Although in the present
study we are primarily interested in the residual stresses due to the thermal expansion mis-
match, the material system is also vulnerable, in certain regions, to loadings that are transverse
to the fibers. For this reason two different types of loads are being considered:

(i) a uniform temperature load1T (cooling) that is applied throughout the material system
and

(ii) a uniform transverse loadσ0 perpendicular to the direction of the fibers and along the
y-direction.

Such consideration will identify some of the critical locations of the material system that
material designers should be aware of. Both fiber and matrix materials are assumed to be
homogeneous and linearly elastic. While it is true that for this particular composite system
the matrix is rather elastoplastic, in the present study we restrict the analysis to small strains.
Moreover, this particular material system is used only as a vehicle to show some of the details
of the model analysis.

The governing equations, are the well known Navier’s equations coupled with the Energy
Balance equation. More specifically,
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Where∇2 represents the Laplacian operator,T the temperature andν Poison’s ratio. The
stress field can be obtained from the stress-strain equations:

σij = λδij εkk + 2Gεij − α(3λ+ 2G)(T − To)δij . (5)

In this paper,1T = constant, which implies that all temperature derivatives with respect to
space are zero.

As to boundary conditions, we require that:

(i) the appropriate stresses do vanish at the free edges, i.e.

at |z| = h, σ
(j)
zz = 0, τ

(j)
rz = 0, τ

(j)

θz = 0; j = f,m (6–8)

(ii) perfect bonding is assumed to prevail at the fiber/matrix interface, i.e.

at r = a, u
(f )
r = u(m)r , v

(f )

θ = v(m)θ , w(f ) = w(m), (9–11)

σ
(f )
rr = σ (m)rr , τ

(f )
rz = τ (m)rz , τ

(f )

θr = τ (m)θr , (12–14)
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Figure 2. Cell configuration.

(iii) finally the boundary conditions within the cell configuration1. (See Figure 2), i.e. on the
planemm, u(m)n = 0, (15)

τ (m)mn = 0, τ (m)mz = 0,
∫
mm

Fx ds/Amm = σ0,

∫
mm

Fy ds = 0, (16–17)

whereFx, Fy are the resultant force components in thex- andy-direction respectively and
Amm the cross-sectional area of the planemm. Moreover, the planesx = 0 andy = 0 are
symmetry planes and, therefore, the solution must satisfy the symmetry boundary conditions.

3. The 3D displacement field

Without going into the mathematical details, the general 3D complementary displacement
field satisfying boundary conditions (6–8) has already been constructed by Folias (1976) and
the results may be expressed as:

u(c)(j) = 1

mj − 2

∞∑
ν=1

∂H (j)
ν

∂x
{2(mj − 1)f1(βνz)+mjf2(βνz)}

+
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∂H (j)
ν

∂y
cos(αnh) cos(αnz)+ l(j)1 − y
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(j)

3

∂x
+ 1

mj + 1
z2∂

2l
(j)

3
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, (18)
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(j)
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1 The reader should note that displacements are unique up to an additive constant.
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Figure 3a. Interface matrix stresses as a function ofz/h anda/h = 0.10.

Figure 3b. Interface matrix octahedral shear stress as a function ofz/h anda/h = 0.10.

w(c)(j) = 1

mj − 2

∞∑
ν=1

∂H (j)
ν
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{−2(mj − 1)f1(βνz)+mjf2(βνz)}

− 1
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3
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wherem = 1/ν, and

f1(βνz) = cos(βνh) cos(βνz), (21)

f2(βνz) = (βνh) sin(βνh) cos(βνz)− (βνz) cos(βνh) sin(βνz), (22)(
∂2

∂x2
+ ∂2

∂y2
− β2

ν

)
H(j)
ν = 0, (23)

(
∂2

∂x2
+ ∂2

∂y2
− α2

n

)
H(j)
n = 0, (24)

and wherel1, l2, l3 are 2D harmonic functions. Perhaps it is appropriate here to note that the
displacement fields are expressed in terms of two infinite series the first of which has complex
eigenvaluesβν , which are the roots of the equation

sin(2βνh) = −(2βνh), (25)
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and complex eigenfunctions. The second series has real eigenvalues,αn = nπ/h, n =
1,2 . . . , and real eigenfunctions. For more details of this form of the general solution see
Penado and Folias (1989). Constructing next appropriate solutions to equations (23–24) in the
polar form one has:

H(j)
ν =

∞∑
k=0

{A(j)k Kk(βνr)+ B(j)k Ik(βνr)} exp(ikθ) (26)

H(j)
n =

∞∑
k=0

{C(j)k Kk(αnr)+D(j)

k Ik(αnr)} exp(ikθ) (27)

and for the 2D harmonic functions

l
(j)

l =
∞∑

n=−∞

{
c
(j)

nl

( r
a

)n + d(j)nl ( ra)−n
}

exp(inθ); l = 1,2,3, (28)

where the constantsA(j)k , B(j)k , C(j)k , D(j)

k , c(j)nl , d(j)nl are to be determined from the remaining
boundary conditions (9–20). The reader should note that constantsA

(j)

k , B(j)k are complex.
Substituting the above equations into the remaining boundary conditions we arrive at a

system of equations that are then used to solve for the unknown coefficients. Without go-
ing into the long and tedious numerical details, once the coefficients have been determined,
the displacement and stress fields can then be recovered. For more details of the numerical
approach, see Penado and Folias (1989).

4. Uniform loading transverse to the fibers (1T= 0)

Although in the present study we are primarily interested in the residual stresses due to the
thermal expansion mismatch, the material system is also vulnerable, in certain regions, to load-
ings that are transverse to the fibers in which case the effects may be even more pronounced.
For this reason, we give some of the important results due to a transverse loading

(i) Interior stress field

For a constant transverse loading only along the direction of thex-axis (i.e.1T = 0), the
3D stress field at the interface, for a volume fraction ratio ofVf = 0.07, was found to be
constant all along the interior (see Figure 3(a)) and that as one approaches the free surface
a boundary layer was observed to prevail, where the stresses increase rather rapidly. This
suggests, therefore, that a stress singularity may be present in this region. It may also be noted
that for fiber volume fractions ofVf = 0.07 or less, all interactions between fibers have for
all practical purposes subsided.

There are four important 3D characteristics that one can draw from this figure. First, the
width of this boundary layer is, approximately, two fiber diameters away from the free edge.
Second, the amplitude of the stresses at the center of the fiber length is, in general, a function
of the ratio of fiber diameter/fiber length. If, however, that ratio happens to be less than or equal
to 1/10, then the magnitude of the stresses is precisely that of plane strain. Third, for ratios
between 1/10 and 10 a state of ‘pseudo plane strain’ condition prevails whereby the amplitude
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Figure 4. Interface matrix stresses on the planez = 0 and as a function ofθ .

of the stresses now increases, even on the planez = 0, by as much as 10–12 percent. The term
pseudo is used because away from the boundary layer, the condition

σzz = ν(σrr + σθθ ) (29)

is still satisfied even though the stresses are functions of the variablez. Fourth, for ratios
greater than 10 the magnitude of the stresses is precisely that of plane stress. Finally, similar
stress profiles exist forVf ratios greater than 0.07, where the magnitude now is a function of
Vf .

Figures 3(a,b) depict the profile of the interface stresses along the lineθ = 0 as a function
of the ratioz/h. The numerical results are specialized for the material system: SCS-6 / fibers,
Beta21 / matrix. Figures 4 and 5, show typical interface stress profiles of the matrix and fiber
on the planez = 0, and as functions of the angleθ .

(ii) Edge stress field

As it was previously noted, in the neighborhood of the free surface e.g. the edge of the plate
or in the vicinity of crack bridging (see Figure 6), there may very well be present a stress
singularity. By utilizing a local 3D asymptotic analysis one can substantiate the presence
of a weak stress singularity. Complete details of this analysis can be found in the work of
Folias (1989). Without going into the mathematical details, a summary of the results, for
room temperature and for the material system discussed, is given below.

The local stress field is given by

σ
(j)

ik = ρ−αF (j)ik (θ, φ), (30)
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Figure 5. Interface fiber stresses on the planez = 0 and as a function ofθ .

Figure 6. Fiber meeting a free surface.

where theF (j)ik are explicit functions of the anglesθ andφ and the stress singularityα is a
function of the material constants. For a titanium matrix and SCS fibers it is found that

α = 0.110 at room temperature (31a)

α = 0.190 at 900◦C. (31b)

While, in order to determine the residual stresses at room temperature it is only necessary
to use the material constants of the system at room temperature, the material constants for
900◦C were also used in order to see the difference of the stress singularity exponentα. The
reader however, should be cautioned that this calculation is based on linear elasticity and on
the presence of a constant temperature field.

Moreover, atφ = 1
2π and forGf /Gm = 3.608 it is found that

σ (mm)rr = −11.219ρ−αB(f ), (32a)

σ
(mm)
θθ = −4.823ρ−αB(f ). (32b)
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Figure 7. The octahedral shear stress in the matrix and close to the edge where the fiber meets the free surface.

Similarly, atφ = 0 it is found that

σ (m)rr = −9.970ρ−αB(f ), (33a)

σ
(m)
θθ = −3.391ρ−αB(f ), (33b)

whereB(f ) stands for an arbitrary constant. The octahedral shear stress is plotted in Figure 7
where it is noted that its maximum occurs atθ = 40◦.

The following observations are also worthy of note. First, as the ratio of the shear moduli
increases, so is the stress singularity. This is compatible with our physical expectations and
within the assumptions of our theory. Second, all things being equal, at the edge the controlling
stress for failure is the radial stress particularly at the locationφ = 0 andθ = 0. Perhaps
it is also appropriate here to note that the carbon coatings on the SCS-6 fibers produce a
particularly weak interface. However, the authors would like to emphasize that this material
system is only used as a vehicle to show how the details of this analysis work.

Room Temp. 900◦C

at φ = 0 : σ (m)rr

σ
(m)
θθ

= 2.94,
σ (m)rr

σ
(m)
θθ

= 2.94,

at φ = 1
2π :

σ (m)rr

σ
(m)
θθ

= 2.33,
σ (m)rr

σ
(m)
θθ

= 2.18.

The reader may notice that there is a very small difference in the ratios.
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Figure 8. Interface radial matrix stress on the planez = 0 and as a function ofθ .

Similarly, in the vicinity of the edge, the octahedral shear stress attains a maximum at an
angle ofφ = 40◦ (see Figure 7). It is interesting to note that in this neighborhood, the ratio of

τoctmaxroomtemp

τoctmax900C

= 1

2.09

which suggests that, at high temperatures, the material will undergo substantial plastic de-
formation in this region if subjected to a load transverse to the fibers.

Thus, a mode I and III crack failure may initiate at the edge and along the interface,
particularly when the material system is subjected to a transverse (to the fibers) load in which
case it becomes more pronounced.

5. Residual stresses due to1T (σ 0 =0)

Residual stresses due to curing and thermal stresses due to differences between the thermal
expansion coefficients of the matrix and fiber may have a major effect on the microstresses
within a composite material system and must be added to the stresses induced by the external
mechanical loads. Such microstresses are often sufficient to produce microcracking even in
the absence of external mechanical loads, for example during a cooling process.

In this section we let the applied loadσ0 = 0 and furthermore assume1T to be a constant.
The analytical model is then used to predict, the residual stresses due to the thermal expansion
mismatch between the fiber and matrix.

Without going into the mathematical details, we consider a composite material system
consisting of SCS-6 fibers which are embedded into a beta21 matrix plate and the entire
system is then exposed to an environment of a uniform cooling temperature1T . While it
is true that the material constants do change continuously as a function of the temperature,
the thermal coefficients appear in the solution as a ratio, which ratio changes very little. On
the other hand, the ratio of the shear moduli changes considerably as the temperature varies.
Consequently, the results are very much dependent on the material properties which one uses.
Thus, if one bases the analysis on the shear moduli ratio at room temperature, the following
stress profiles are recovered at the fiber/matrix interface. Figure 8 depicts, for aVf = 0.39, the
radial matrix stress on the planez = 0 and as function of the angleθ . It is noted that the radial
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Figure 9. Interfaceσθθ matrix stress on the planez = 0 and as a function ofθ .

stress is compressive. Similarly, the tangential stress is tensile in nature and its maximum
occurs at the locationθ = 0 (see Figure 9). In general, the location of this maximum is a
function of the material properties and particularly of the shear moduli ratio. Moreover, in
this analysis perfect bonding was assumed to prevail at the fiber/matrix interface. If, however,
we were to relax the conditions at the interface whereby we allow slippage to occur, then the
maximum will occur elsewhere. More specifically in this case it occurs atθ = 45◦.

Examining next the possibility of matrix cracking, it becomes evident from the above that
no cracking will occur in the matrix for1T = 900◦C. This matrix material is too strong for
preexisting microcracks to grow. Examination of theσzz stress also shows that no cracks will
develop in that direction either. The results are in line with those obtained by Kroupa (1994)
based on a finite element analysis.

Finally, it should be noted that the effect of the shear moduli ratio on the interface stresses
can be substantial. This can be seen by the following comparison of the tangential interface
stress when using three different shear moduli ratios that reflect three different and discrete
temperature levels

Vf
σθθ

αmGm1T

σθθ

αmGm1T

σθθ

αmGm1T

Room Temp. Mid Temp. High Temp.

0.39 1.36 1.59 1.64

Although it would be desirable to have a program in which the material properties can vary
continuously with temperature, one can compensate by taking the results corresponding to the
high shear moduli ratio. The thermal expansion coefficients on the other hand appear as a ratio
which ratio does not vary appreciably to make any significant differences.

The variation of the normalized tangential interface stress as a function of the fiber volume
fraction for this material, is almost linear and may be approximated with the equation

σθθ

αmGm1T
= 0.92+ 1.02Vf + 0.28V 2

f . (34)

In view of the above, this matrix will not exhibit any cracking as a result of the residual
stresses which are developed during the cooling process. Experimental evidence showed no
such cracking either.
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Figure 10. Interface radial matrix stress on the planez = 0 and as a function ofθ .

Figure 11. Interfaceσθθ matrix stress on the planez = 0 and as a function ofθ .

Figure 12. Normalized interface stresses on the planez = 0 and as a function ofVf .
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As a second physical example, we consider the material system consisting of SiC fibers
embedded into an MoSi2 matrix. The material system is characterized by the material proper-
tiesνf = νm = 0.25, andGf /Gm = 1.05,αf /αm = 0.56. Again omitting the mathematical
details for aVf = 0.49, the interface tangential, and radial stresses, on the planez = 0 and as
functions of the angleθ , are given in Figures 10–11, respectively. The reader may notice here
that the maximum value of the tangential stress occurs atθ = 45◦, while the radial stress is
compressive with a maximum absolute atθ = 0. Finally, in Figure 12, we plot the variation
of the maximum value of the tangential and radial stresses as a function ofVf . The following
remarks are worthy of note

(i) for a decrease in temperature (e.g. during cooling),σθθ is the controlling stress,
(ii) for an increase in temperature (e.g. operating temperature),σrr is the controlling stress.

In general, the location of the maximum interface stress depends heavily on the material
properties and not on the fiber spacing. This suggests, therefore, that all things being equal,
during the cooling process a crack is most likely to develop at the interface and atθ = 45◦
and then advance into the matrix until it reaches the adjacent fiber. Alternatively, during the
operating temperature the crack is most likely to develop along the interface and atθ = 0◦
and then advance along the interface towards the positionθ = 45◦. Moreover, as the volume
fraction ratio increases, the stresses increase in magnitude in the absolute value sense.

6. Fracture criterion for crack initiation

In view of our previous discussion, it is clear that the model may be used

(i) to identify the location where cracks are most likely to initiate and propagate, and
(ii) to identify the controlling stress that governs the failure.

Thus, if one assumes the presence of a small crack, of lengthc, in the matrix and adjacent to
the interface, and along the direction ofθ = 45◦, it is now possible to derive an approximate
fracture criterion for crack initiation with which one can estimate the magnitude of the critical
tangential stress that may cause the matrix to crack along this direction. More specifically
(Hellan, 1984)

{σ (m)θθ }critical1.12
√
πc

1− 0.15
c

b
(
1−√2a

b

)
 = Kc, (35)

whereKc is the material fracture toughness and where

{σ (m)θθ }critical = {σ (m)θθ }θ=45◦, r=a{αm1TGm}, (36)

of our previous analysis. Specializing the fracture criterion for the material system MoSi2/SIC
one finds the critical cooling temperatureT to be 1,356 Kelvin which corresponds to 1,083◦C.
In this case we assume a crack size ofc/a = 0.1. The rational for this assumption is based
not on a specific material but on previous knowledge of the behavior of 3D stress fields in
regions where a boundary layer may be present as a result of an interface or a free boundary.
Comparison with experimental observations carried out at Santa Barbara by Lu et al. (1992)
on the same material system shows good agreement. The processing temperature reported
was 1330◦C, which is way beyond the critical value and for this reason cracks were expected
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Figure 13. Experimental evidence of cracking in intermetallic composites.

to form, and they did (see Figure 13(a)). The model furthermore shows that, as the ratioVf
decreases, the magnitude of the residual stress also decreases and as a result the ‘safe’ cooling
temperature increases to 1,197◦C for aVf = 0.41. Thus, the cracks in this case should be a
little less visible, which they are (see Figure 13(b), where we have accounted for the different
scale). Notice also that for this material system the cracks are atθ = 45◦, as predicted by the
model. A similar criterion can also be developed for the radial, as well as thez-direction.

In conclusion, the model predicts an estimate of a safe processing temperature which will
suppress the growth of microcracks. It may also be worthy to note that the theoretical model is
applicable to ceramic, metal/matrix, as well as organic composites provided that the respective
plastic deformations are relatively small. For moderately large plastic deformations, however,
a correction factor to account for the nonelastic behavior of the matrix should be introduced.

7. Conclusions

An analytical model has been developed, in order to estimate the residual stresses for matrix
cracking in ceramics and intermetalic composite material systems. The model may be used

• to identify the location where cracks are most likely to initiate and propagate, and
• to identify the controlling stress that governs the primary failure,
• to identify the controlling stress that governs the secondary failure,
• to provide information to material designers for the pre-selection of fiber and matrix

materials.

Moreover, an approximate fracture criterion for crack initiation has been developed that
may be used to predict the critical temperature, e.g. during the operating and cooling, beyond
which micro-cracks are most likely to initiate and propagate within the material system. The
criterion may also be used to search for possible optimization features between fiber spacing
and material properties in order to achieve maximum strength.
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