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ABSTRACT

Utilizing the theory of thin shell structures, a failure criterion is presented that one may use
to predict, analytically, the critical crack length that may cause catastrophic failure, or unzipping,
in cylindrical pressurized vessels, by knowing only the geometry and the material fracture
toughness K. This fracture toughness K, may be obtained from tests data carried out on flat plates
of the same material and thickness as that of the pressurized vessel and subjected to an equivalent
type of loading. The test results, however, must be plotted as a function of the characteristic ratio
(h/c), where h represents the specimen thickness and ¢ one half the crack length. Comparison
with carefully controlled experimental data substantiates its validity and its potential use.

The advantage of such an approach is that considerable amount of time and money may be

saved for it is now possible to predict the response behavior of pressurized vessels from test data
carried out on flat plates.



1. INTRODUCTION.

It is well known that large, thin-walled, pressurized vessels resemble balloons and like
balloons are subject to puncture and explosive loss. For a given material, under a specified stress

field due to an internal pressure qQ, , there will be a crack length in the material which will be
self-propagating. Crack lengths less than the critical value will cause leakage but not destruction.
However, if the critical crack length is ever reached, either by penetration or by the growth of a
small fatigue crack, explosion and complete loss of the structure may occur.

The principal task of fracture mechanics is precisely the prediction of such failures in the
presence of sharp discontinuities, based on geometry, material properties, material behavior, and
external loading. More specifically, the approach is based on a corollary of the first law of
thermodynamics, that was first applied to the phenomenon of fracture by Griffith in 1924. His
main hypothesis was that the total energy of a cracked system subjected to a loading remains
constant as the crack extends an infinitesimal distance.

Griffith applied his criterion to the stretching of an infinite isotropic plate containing a flat
sharp-ended, crack of length 2c. Following similar lines, Folias (1970) derived a similar failure
criterion for the prediction of failure in pressurized vessels by knowing only shell geometry,
material properties, and loading. The purpose of this paper is basically twofold : (1) to clarify the
proper interpretation and usage of the derived analytical criterion and (ii) to substantiate its
validity and its potential use with carefully controlled experiments. Perhaps it may be appropriate
here to note that, on a few previous occasions, the above criterion has been misused by some
researchers in attempting to predict failure in pressurized vessels.

b

2. CORRELATION BETWEEN PRESSURIZED VESSELS AND FLAT PLATES.

Utilizing the theory of thin, shallow shells, Folias (1964, 1965) showed that, if one allows
the radius R of a cylindrical pressurized vessel to tend to infinity, the hoop stress at failure, as a
result of fracture, is related to the failing stress of a flat plate subjected to an equivalent type of
loading through the equation

Shoop 1 »
Oplate ~— 1+f(A) ° ( 1 )

where f(A) is a geometric intrinsic property that, in the limit, as R —> o0 . tends to zero.
Moreover, the parameter A is defined by

22 =J12(1-v3) & (2)

where

R = the radius of the cylindrical vessel
h = the wall thickness



¢ = the half crack length
v = Poisson's ratio

As a practical matter, eq. (1) correlates flat sheet behavior with that of initially curved
specimens subjected to an equivalent loading. In experimental work on brittle fracture, for
example, considerable time and money can be saved if one could predict the response behavior of
curved sheets from test data carried out on flat plates of the same thickness. Equation (1) does
precisely that.

3. ANALYSIS OF TESTS CARRIED OUT ON FLAT PLATES.

Tests on, cracked flat plates made of aluminum 2219-T87, were carried out by Royce
Foreman ( NASA ) and the results can be found in Appendices A & B. These results may now be
used to determine the fracture toughness, K, which, in conjunction with the theory developed by
Folias (1974), may then be used to predict catastrophic failures in pressurized vessels. However,
in order to accomplish this one must examine the available experimental data from a slightly
different point of view.

It has long been recognized by the fracture community that the fracture toughness
parameter is not a material constant, and that its true value depends strongly on the specimen
thickness. The behavior is shown schematically in Fig.1. The reader will note that beyond a certain
thickness h_, a state of plane strain prevails and toughness reaches the so called plain strain value

K. Alternatively, there exists an optimum thickness h_, at which point toughness reaches its
highest value. This level is usually referred to as plane stress fracture toughness with a failure that
is characterized as shear or slant fracture. Moreover, for a thickness smaller than h_ there has been
some uncertainty about the toughness. In some cases, a horizontal level was found ( Allen 1971,
Feddersen 1970 ), while in other cases a decreasing toughness was observed ( Broek 1966,
Christensen 1961, Weiss 1965 ). It may also be noted that for thicknesses below h<h_, the
plastic zone is approximately equal to the specimen thickness and yielding in the thickness
direction is unconstrained. As a result, a state of plane stress can fully develop in such regions.
Presently, it is widely accepted that for h <h_ the fracture toughness decreases almost linearly to
the value of zero. Experimental evidence of this, for 7075-T6 aluminum alloy, is shown in Fig. 2
(see Tetelman 1967, p. 136).

Additionally, recent, three-dimensional, analytical studies on flat plates carried out by
Folias and his co-workers reveal that the stress concentration factor (1989, 1990), as well as the
stress intensity factor (1975), are actually functions of the radius to half thickness ratio (a / h), and
half crack size to half thickness ratio (c / h), respectively. For this reason, in Appendix C, we
tabulate Foreman's experimental fracture toughness data as a function of the parameter ( h/ c),
i.e. the thickness to half crack size ratio.

A careful examination of Appendices A, B & C reveal the following observations to be
worthy of note:



@) for the ratio of (h /c) = 0.047, the variation of the fracture toughness
reported was approximately 12% !

( This is interesting particularly when the thickness, crack sizes and
specimen widths were almost the same (see Appendix A, tests A). The
variation suggests, perhaps, the presence of some sort of local material
instability)

(i1) tests E, G, H do not appear to follow the expected trend. Something,
apparently, was different in this set of experiments that the authors cannot
speculate on and for this reason we will ignore ( see Fig. 3 )

(i) tests 2J, 2K, 2L were carried out on flat plates with a 0.08 in. thickness and
appear to be in line with the expected trend.

(iv)  comparison between tests A & 2K show that, even though the ratio h/cis
the same, and the ratio ¢ / w is approximately the same, the values of the
fracture toughness vary by 9%, which is in line with observation (j).

We conclude, therefore, that an experimental scatter of approximately 10 to 12 % is to be
expected for this material.

4. THE FRACTURE TOUGHNESS CURVE.

Utilizing the data of the table in Appendix C, we now plot the experimental values of the
fracture toughness K, as a function of the parameter ( h/ c) (see Fig. 3). The profile of the
fracture toughness appears to follow the theoretically expected trend. Perhaps it is appropriate
here to note that, this procedure works best if the experiments are carried out on flat plates of the
same thickness. Unfortunately, the tests reported in Appendices A & B were carried out on flat
plates with different thicknesses. Consequently, the reader may notice that tests A show a slightly
higher rise than those of tests 2K. This occurs in the region which is characterized with a 45°
plane fracture or more commonly referred to as ’ shear fracture '.

The reader may also notice that the thickness for the tests # A is h=0.191 in. ( see
Appendix A), while the thickness for the test 2K is h = 0.083 in. ( see Appendix B). This
observation brings the following two questions to mind. Why is there a need for the presence of
two different paths ? Moreover, at what value of h/ ¢ does this bifurcation take place ?

A partial answer to the above two questions may be obtained from the results of the work
on the, 3D, stress field of a plate weakened by the presence of a circular hole ( Folias et. al., 1990
)- Recently, utilizing a more sophisticated numerical analysis, the results have further been
sharpened ( Folias 1997) and the maximum, 3D, stress concentration factor versus the radius to
half thickness ratio is shown in Fig. 4. The results of this figure provide us with a definite answer,
at least for the case of a circular hole, of the regions in which a plate is considered to be in a state



of plane stress, i.e. a/h> 10, or in a state of plane strain, i.e. for a / h < 0.10. Moreover, the
transition region occurs between the values of 0.10 <a/h < 10, whereby the 3D effects become
more pronounced. Thus, if one assumes that a similar trend also prevails in the case of a, 3D,
cracked plate, one may conjecture that a state of plane stress exists for ratios of h/ ¢ <0.1. This
result appears to be in line with the experimental curves of Fig. 2 and Fig. 3. Furthermore, it is
also known that for h <h,, the fracture toughness is proportional to Jh_w . As a result, it is not

unusual to have a fan, or a series of paths, for different thicknesses that fan out to the left of the
critical ratio h / ¢ = 0.1. Such conjecture, may explain the experimental observations noted by
researchers in the past (see discussion of Fig. 1).

S. FAILURE PREDICTION IN PRESSURIZED VESSELS.

The fracture toughness curve, as given by Fig. 3, may now be used to predict the static
failing pressures in cylindrical vessels made of Al 2219-T87. For static considerations, the results
by Folias (1974) should be applicable. More specifically, under the assumption that bending and
bulging effects are negligible, Folias's general failure criterion ( see Thin-Shell Structures, Chapter
21, editors Fung and Sechler, Prentice-Hall, 1974 ) may then be approximated by the simple
relationship

R MC Y1+ 0.31702 =K | (3)

where q, is expressed in psi. Alternatively, if the effects of bending and bulging are sufficiently
large, then the approximate eq.( 3 ) can no longer be used and the general failure criterion must be
utilized.

Recently, two very carefully controlled experiments on pressurized vessels were carried
out by Nemat Nasser and his group at UCSD. The work was done in order to assess the structural
characteristics of the United States Manned Module of the International Space Station. The tests
were carried out on cylindrical pressurized vessels, of 20.75 in. in diameter and for two different
values of thickness, h=0.05 in. and h = 0.086 in. respectively. The cylinders were made out of
Al 2219-T87.

A crack length of 2¢ = 5.5 in. was very cleverly introduced by the rapid impact of a knife
edge. The crack resembled a very sharp ellipse with crack tips sharp enough to represent a crack.
Subsequently, the vessels were sealed internally with a thick hard rubber sheet, in the area of the
crack, and were then pressurized incrementally with pressure differentials of 5 psi. This
incremental 'pressure stepping' clearly suggests that the bending and bulging effects can no longer
be neglected since they represent a cumulative effect.

Let us examine next, how well can one predict the failing pressures for the UCSD static
tests # 1 & # 2. A closer examination of the geometrical and loading characteristics of test # 1
reveal that, because A is greater than 5.5 and because the bending effects present are not



negligible, one must use the general failure criterion by including the pertinent bending terms
which in this case are significant. In view of this, eq. ( 3 ) now becomes

Too n/TCFA) =K (4)

where F()) is given numerically in the above reference. Without going into the numerical details
('see Appendix D ), the predicted results for tests # 1 and # 2 become respectively :

General Data :
2R =20.75in., 2c=5.5/2 in.
(i) UCSD static test # 1 :

For test # 1, h=0.05in. and h/ ¢ = 0.02, and from Fig. 3 one reads a value of K
that is closest to that thickness

Jor test# 1, using K=K, = 62 ksi.’{iﬁ., q, = 31.2 psi. (5)
The failing pressure reported was 34.4 psi.

It should, furthermore, be noted that for the UCSD test # 1, the hard rubber sheet used to
seal the crack was well bonded to the interior surface of the vessel. Consequently, the rubber did
carry some load and this was substantiated after the failure since it fractured along the same
direction of the crack and at a 45° plane through its thickness. In carrying out test # 2, however,
the rubber sheet was not bonded to the vessel. We have estimated the load carrying capacity of
the rubber sheet for test # 1 to be approximately 1.6 psi. Thus, accounting for the rubber ( see
Appendix E ), we predict a failing pressure for test # 1 to be, approximately, 32.8 psi.

(ii) UCSD static test # 2 :

For test # 2, h=0.086 in. and h/ ¢ = 0.03, and from Fig. 3, one reads a value
of K that is closest to that thickness '

Jor test # 2, using K=K, .= 65ksiVin., q,=59.6 psi. (6)
The failing pressure reported was 59.9 psi.

Perhaps it is appropriate here to emphasize that in both, UCSD, tests the upper and lower
faces of the crack were not touching.



6. CONCLUSIONS.
In view of the foregoing analysis, the authors conclude that -

Q) Foreman's test data on cracked plates, as depicted in F ig. 3,
are indeed very meaningful.

(i) ~ UCSD static tests # 1 & # 2 are compatible with Foreman's results and
follow the theoretically expected curve.

(i)  Failure in cylindrical pressurized vessels can be predicted from tests data
carried out on flat plates.

(iv)  Plasticity effects present are negligible.

(v)  UCSD tests data # 1 & # 2 depict a failure of plane stress or shear failure ,
i.e. 3D effects are negligible (except as they appear through the curve of
the fracture toughness K, i.e. Fig. 3).

(vi)  The US space station falls into the region of shear failure, i.e. the region
to the left of the point h/ ¢ = 0.08 (see Fig.3), but with a value of A < 4.

7. STATIC CRITICAL CRACK LENGTHS FOR THE US SPACE STATION.
Based on :
(1) Foreman's test data on cracked flat plates
(i) UCSD static tests #1 & #2

(iii) the fracture toughness profile of material Al-2219-T87, as depicted in Fig. 3

the authors, after carrying out some further analysis, conclude that the satic critical crack length
for the US Manned Module of the International Space Station is :

( Assumed Data: R=83in, h=0.190 in, K = 74 ksi{i-r?)
2Ccn'ﬁcal = ].6.4 ln. . ( 7 )

It turns out that there are orbital debris impact scenarios that can produce crack sizes of this
magnitude in the Space Station module. Although they are very rare and of very low measure of
probability of its occurrence, nevertheless the subject warrants careful investigation of the possible
risks to the astronauts on board.
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APPENDIX A

Summary of 2219-T87 Fracture Toughness K Experimental Test Data by Roy Foreman.

Spec. No. Thick. Spec. Width  Initial Crack  Failure Stress K
h(in.) W (in.) 2¢ (in.) (ksi.) (in.)
1A 0.19 20.05 8.11 18.52 73.69
2A ' 0.19 "~ 20.05 8.11 18.91 75.18
3A 0.19 20.04 8.07 20.04 79.29
4A 0.19 20.05 8.22 17.85 7172
5A 0.19 20.05 8.11 17.92 71.29
IB 0.19 9.93 1.04 40.24 51.77
2B 0.19 10.03 1.04 39.78 53.68
3B 0.19 9.97 1.11 42.96 57.11
1C 0.19 10.04 2.15 33.11 62.53
2C 0.19 9.98 2.18 32.21 61.49
3C 0.19 9.98 2.17 32.86 62.48
1D 0.19 10.03 3.64 26.71 69.53
2D 0.19 9.98 3.65 25.41 66.41
3D 0.19 10.02 3.59 25.51 65.86
1E 0.19 9.98 5. 13 17.96 61.26
Z2E 0.19 10.02 5.09 18.49 62.59
3E 0.19 10.04 5.12 18.91 64.24
1F 0.19 3.91 0.65 44,96 46.05
2F 0.19 3.91 0.64 46.01 47.01
3F 0.19 3.91 0.65 43.82 45.01
1G 0.19 391 1.16 35.01 49.94
2G 0.19 3.91 1.16 35.01 49.94
3G 0.19 3.91 1.18 35.62 51.36
1H 0.19 3.91 2.16 21.23 48.81
2H 0.19 3.91 2,17 21.29 48.95
3H 0.19 3.91 2.11 21.81 48.92




APPENDIX B

Spec. No.

2]
2K
2L

Thick. Spec. Width  Initial Crack  Failure Stress

h(in.) W (in.) 2¢ (in.) (ksi.)
0.08 10.06 2.08 29.71
0.08 10.01 3.61 21.71
0.08 10,01 5.08 14.61

(in.)

68.52
67.58
60.19




APPENDIX C

FRACTURE TOUGHNESS
( Test Data by Roy Foreman )

test h/c K 2¢c/2w
A 0.05 74 0.41
B 0.34 54 0.11
C 0.18 62 0.22
D 0.1 67 0.36
E 0.08 63 0.51
F 0.6 46 0.16
G 0.33 ~ 51 0.3
H 0.18 49 0.56
2] 0.08 69 0.21
2K 0.05 68 0.36
2L 0.03 60 0.51
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APPENDIX D

FAILURE CRITERION :

Shoop VTC {fe(2) + F(MX(W)} =K ; A <8, (Eq 1)
where :

A= 12(1-v3) (S

G bendi ¢« 1
X(A) = o = 53517

Fortest#1, fo(A)=4.00-0.12x(A), fo(A)=(-0.12~0.22x(A))3.33

Fortest#2, fo(A)=3.21-0.11x(A), f=(0.02~0.23x(1))3.33

REMARK :

When no bending is present, the criterion may be approximated by the simple relation:

Choop/TCJ1+0.31702 =K - A <8. (Eq.2)

REFERENCE :

Folias, E. S. 1974 " Thin Shell Structures " editors Y. C. Fung and E. E. Sechler, Prentice
‘Hall
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APPENDIX E

ESTIMATE OF LOAD CARRIED BY RUBBER SEAL.

Aluminum

Py f A \ 1

p, = internal pressure

p* = normal pressure between rubber and aluminum vessel
Equilibrium of rubber segment implies :

o—P" Y R-A
po__(pp—)():o

A >
or
p* = (1-2)I(1 - &)po = (1 - H)po+ O(8?)
For A=0.50in., R =10.40in.
p* — (1 _ 050

10.40)'00 =0.95p,,

hence the aluminum vessel experiences, locally, a pressure equal to 0.95p, , and
prar =32 =3280 psi.
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Fig. 1. Fracture toughness versus specimen thickness.
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Fig. 2. Strain-energy release rate versus specimen thickness for 7075-Té6 aluminum alloy
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STRESS CONCENTRATION FACTOR

a/h radius/ half thickness

Fig. 4. Maximum stress concentration factor versus diameter to thickness ratio.
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