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Abstract. In this investigation, the 3D stress field of a single cylindrical fiber, which is embedded into a plate matrix, is examined. 
The composite body is subjected to an axial loading and both perfect imperfect bonding conditions at the interface are 
considered. The analysis, which is based on analytical considerations, reveals the load transfer characteristics from the fiber to 
the matrix and vice versa. Numerical results for the displacement and stress fields are given and shown to be sensitive to the 
diameter to thickness ratio, the respective material properties and the applied load ratio between the fiber and the matrix. 
Comparisons with available experimental data shows a very good agreement. 

1 Introduction 

It is well recognized that the mechanism of load transfer at the fiber/matrix interphase plays a 
major role in the mechanical and physical properties of composites. For this reason, a fundamental 
understanding and knowledge of the stress distribution induced by the applied load is essential, 
if one is to utilize these materials effectively. The subject has been investigated by a number of 
researchers and the results are reported in the literature. For example, two-dimensional solutions 
(plane stress and plane strain) for plates with perfectly bonded circular inclusions can be found in 
the papers of Sendeckyj (1970) and of Yu and Sendeckyj (1974). A general representation of the 
solution of an elastic curvilinear inclusion problem is presented by Sendeckyj. As an example, the 
authors consider an elliptical inclusion for discussion. The discussion is limited to the case of an 
infinite matrix. Later, the problem of an unbounded elastic matrix containing any number of elastic 
inclusions is solved by Yu et al. In both of these papers the use of a complex variable formulation 
is adopted. A more practical model for the mechanical behavior of unidirectional fiber-reinforced 
materials subjected to an axial loading is examined by Bloom (1967), where a hexagonal array of 
perfectly bonded filaments is assumed. Since these solutions are based on two-dimensional con- 
siderations, the effect of the thickness of the plate on the stress distributions could not be 
examined. 

Three dimensional solutions to similar problems are not fully investigated due to the mathe- 
matical difficulties involved. Muki and Sternberg in 1970 investigated the diffusion of an axial 
load from a bar of arbitrary uniform cross-section that is immersed in, up to a finite depth, 
and bounded to a semi-infinite solid with distinct elastic properties. Their approximate method 
requires the radius of the rod to be small in comparison to its length. Luk and Keer in 1979 
investigated a very similar problem. The rod bar at this time is assumed to be rigid. Many plots 
of the stresses based on numerical calculations are given. The authors have also examined what 
effect different parameters of the problem have on the stress field. It is important to note that all 
of the above works deal with one perfect isolated inclusion. On the other hand, in a fiber-reinforced 
composite thousands of fibers may be used to construct one layer of the laminate. Similar to the 
geometry of the problem examined by Bloom (1967), a three-dimensional solution is achieved by 
using the Boussinesq-Papkovitch potentials by Haener (1967). However, only few numerical 
results are presented in the paper. Perhaps the reason for this is the numerical complexity en- 
countered as a result of the double summation. Folias in 1975 developed a method for constructing 
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solutions to some three-dimensional mixed boundary-value problems and applied it to the 
problem of a uniform extension of an infinite plate containing a through the thickness line crack. 
The general solution was, subsequently, used to investigate some related problems. In Penado and 
Folias (1989), the stress field around a cylindrical inclusion in a plate of arbitrary thickness is 
investigated, where a uniform tension is applied in the plane of the plate at points far remote from 
the inclusion. Since the thickness of the plate is no longer assumed to be infinite or semi-infinite, 
the results allow the examination of very thick and very thin plates and bridge the gap in between. 

While all of the above discussions are restricted to the case where a perfect bonding condition 
prevails at the interface, there are few analytical models which deal with the imperfect bonding 
problem. The first model assumes that the inclusion and the plate are connected at the interface 
by an elastic spring. Tractions and displacements u and v are continuous across the interface, but 
the vertical displacement w may now be allowed to be discontinuous and the difference Aw is 
assumed to be proportional to the shear stress zrz at the interface. Papers by Lawrence (1972) 
and Banbaji (1988) approach the problem based on shear lag analysis and the results are, therefore, 
approximate. Most recent work done by Steif and Hoysan (1986) approaches the problem based 
on 2D considerations and the case in which the fiber and the matrix have identical elastic properties 
is solved. Numerical solutions for cases in which the fiber and the matrix have different elastic 
properties are obtained by a finite element method. The second model developed by Dollar and 
Steif (1988) assumes that the transfer of load at the interface is described by Coulomb friction. The 
mathematical models for stick, slip and separation conditions are given and the residual stress % 
is introduced into the discussion. Recently, Hutchinson and Jensen (1990) also considered models 
for possible debonding under the assumption of a (i) constant and (ii) Coulomb friction law. Their 
analysis is based on a cylinder model and approximate closed form solutions are presented. Haritos 
and Keer (1985) considered the problem of a finite, rigid insert partially embedded into and 
adhesively bonded to an elastic half space. The problem is then formulated in terms of a singular 
integral equation which is solved numerically. The fiber/matrix debonding problem with friction 
was also considered by Gao et al. (1988) based on an energy balance for fracture initiation. The 
interfacial friction is shown to have a significant effect on the debonded load. A similar work was 
also carried out later by Penn and Lee (1989). Shear lag models are used in both of these two 
papers in order to calculate the stress and the displacement fields. Finally, an interesting 2D model 
adopted by Achenbach and Zhu (1989) requires that the continuity of tractions and a linear relation 
between displacement differences be satisfied across the interphase and the conjugate tractions. 
Their analysis shows that a variation of the interphase parameters causes pronounced changes in 
the stress fields. 

Some experimental work relating to the interface strength between a fiber and a matrix is 
presently available in the literature. For example, experiments carried out by Tyson and Davies 
(1965) on a two dimensional model of an aluminum alloy fiber into an Araldite resin provide 
photoelastic results for the interfacial shear stress. Also, pull-out experiments conducted by Chua 
and Piggott (1985) provided results for the interracial yield strength and the interracial work of 
fracture. Finally, some of the characteristics of load transfer and fracture in a single fiber/epoxy 
composite have been experimentally investigated by DiBenedetto et al. (1986). Their objective was 
to find a cumulative distribution of critical fiber lengths that may be used to calculate the interracial 
shear strength. 

The purpose of this investigation, is to examine the load transfer characteristics between a 
single fiber and a rectangular matrix based on 3D considerations. 3D elasticity will be used in 
order to capture any possible edge effects which may be present. At first, only the fiber will be 
allowed to carry an axial load. Subsequently, the matrix also will be allowed to carry a portion 
of the load. In both cases, perfect bonding will be assumed to prevail at the fiber/matrix interface. 
Finally, the interface will be assumed to be imperfectly bonded and will be allowed to slip. A 
fracture mechanics approach is beyond the scope of the present analysis. However, it is expected 
that the analysis will provide us with pertinent information relating to fracture. In order to simplify 
the mathematical complexities of our problem, the following assumptions will be made: (i). Both 
the plate and the inclusion are made of isotropic, homogeneous and linearly elastic materials, and 
(ii). Only one isolated inclusion is assumed to be embedded into the plate. 
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2 Formulation of  the problems 

2.1 Perfect bonding model 1 
Consider  a composi te  body consisting of a cylindrical fiber which is embedded  into a matrix plate. 
The matr ix plate occupies the space I xl < co, [Yl < oe, I zr < h and the fiber, or inclusion, has a 
radius r = a and runs th rough the entire thickness of the plate matrix (see Fig. 1). For  convenience, 
the region r > a (plate) and the region r < a (inclusion) are denoted by superscripts (1) and (2), 
respectively. As to loading, the fiber is assumed to carry a uniform tensile stress a 0 along the 
direction of its axis. All other boundaries  are assumed to be free of stress. 

Perhaps  it may  be appropria te  at this point  to state the reasons for using a rectangular plate 
matrix. Such a geometry certainly represents a departure  from the usual assumpt ion of a cylinder 
or a shear lag model.  Our  main  objective, however, it is to develop a me thod  for construct ing a 
3D solution to a composi te  lamina in which a doubly periodic array of cylindrical fibers is 
embedded into. The present solution will then serve, in principle, as a Green's function for the 
more  complex situation. F r o m  a mathemat ical  point  of view, the authors  believe that  it is extremely 
difficult to at tack the latter problem directly. However,  once the stress field due to one fiber has 
been recovered, it is "relatively" easy to extend the analysis to also include a periodic array of 
fibers. (It may  be noted  that  the use of a cylinder model  in this case satisfies the cell boundary  
condit ions approximately.)  Moreover,  3D theory of elasticity is used in order to recover any 
possible edge effects which may  be present. Knowledge of such edge effects is essential in studying 
damage at straight edges, whole edges, fiber-bridging cracks, etc. 

Returning next to the s tatement  of the problem, in the absence of body forces, the coupled 
differential equations governing the displacements u~ i) are: 

m i ~e (o t- V2u~ ~) = 0; (k = 1, 2, 3; i = 1, 2), (1) 
ml - 2 3xk 

where V 2 is the 3D Laplacian operator,  mz = 1/vi, v~ is Poisson's ratio and 

e (~ - OU(k0" k = 1, 2, 3. (2) 
~ X  k ' 

The stress-displacement relations are given by Hooke 's  law as: 

tT(ki]=2~i{mil~2e~i]t~ik4-e (i)~" - - ~ k J '  k , l = 1 , 2 , 3 ,  (3) 

where #~ are the respective shear moduli .  As to the boundary  condit ions one must  require that  as 
r--, oo; 

I- 
X 

Fig. 1. Perfect bonding model 1: only fiber is subjected to an axial load 
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( 7 ( 1 ) = ( 7 ( 1 ) = ( 7 ( 1 ) = 0 ;  
x x  yy z z  

at z = Ih[; 

T(1)=T(1)__--(7(1)_____0; 
xz yz zz 

at r = a; 

z (x ) : zO)=z (1 )=0 ,  
x y  y z  x z  

(4, 5) 

T(2) = Z(2) = 0 ;  _(2) (70, (6-8) XZ y Z  O Z Z  "~- 

if(l) _ (7(2) (1) _ z(2) _ T(1) _ _(2) ~_- 0;  U ( 1 ) .  (2) _ ,  (1) _ u(2) (1) _ U(2) = 0 .  (9, 10) 
rr r r  ~ T rO rO -- r z  L r z  r r  U r r  - -  t 400  ~*00 ~ U z z  z z  

In order to complete the formulation of the problem, one must also require that all stresses and 
displacements be finite at r = 0, i.e. 

lira al~ ) = finite, lim u~ i) = finite. (11) 
r ~ O  r~O 

It is found convenient at this stage to seek the solution in the form: 

u (o = u (p)(o + u(C)(~); v (o = v (p)(~ + v(C)(1); w (o = w (p)(o + w (c)(~ (12-14) 

where the component with the superscript (p) represents the particular solution, and the component 
with the superscript (c) represents the complementary solution. 

In general, the particular solution is relatively easy to obtain. It must satisfy the governing 
Eq. (1) as well as the boundary conditions far away from the inclusion. For  the problem under 
consideration, the particular solution in cylindrical coordinates is: 

(i) for the plate: 

u(P)(1)rr = v'00~l(P)(1) = /./(p)(1)zz = 0 ;  

(ii) for the inclusion: 

u(P)(2)rr ---- Car; -oo'J(P)(2) ~__ 0 ;  

a(P)(1),r = voo#")(1) = a(,)(1)= = 0; z (p)(1)ro = z(P)(z)r~ -- z(P)(z)o~ = 0, (15-17) 

u(P)(2) ~- I z z  0"~2 1--2V21 - -  V 2 12v2- V 2 C I l Z  (18-20) 

V 2 "-~ 2/12 1 + v 2 C 1 "  (7(p)(2) = f ro ,  Z (p)(2) - -  T (p)(2) - -  T (p)(2) -~- 0 ,  (21-23) 
- -  ' z z  rO - -  r z  - -  Oz  

GtP)(2) tr(P)(1) (70 1 
rr : v00 ~ - -  ~2 1 - -  V 2 

where C1 is a constant to be determined later from the boundary conditions of the complementary 
problem. 

In view of the particular solution, one needs to find six complementary displacements u (~ v (~ 
w (~ (i = 1, 2), such that they satisfy both the governing equations as well as the following boundary 
conditions: 
at [zl = h; 

z (c)(1) = z (c)(i) = a (c)(i) = 0 (24) 
xz yz zz 

at r = a; 

(7(c)(1) __ 0.~;)(2) o.(P)(1 ) ~_ (7(p)(2). .r(C)(1) __ z(r)(2) = __ Z(p)(1) + .~(p)(2), (25, 26) 
r r  -~" -- r r  r r  ' ~ r O  rO rO ~ r O  

T (c)(1) - -  T (c)(2) T (p)(1) T (p)(2)" U (c)(1) - -  U (c)(2) - -  U (p)(1) -~ ,1 (p)(2) (27, 28) 
r z  r z  = r z  - -  r z  ' r r  r r  ~--- r r  ~ r r  ' 

/~(c)(1) ,,(c)(2) . (p)(1) ~_ ,,(p)(2). / . /?(1)  __ u(c)(2) = __ u(p)(1 ) + .  (p)(2) (29, 30) 
O0 - -  - - 0 0  "~- - -  UO0 ~'00 ' zz zz Uzz " 

While it is well recognized that some academic liberty was taken in assuming that a uniform stress 
loading condition exists on the fiber surface, nevertheless the results are still expected to be valid 
outside the region of one fiber diameter away from the fiber edge (Folias 1991). The approximation, 
however, reduces the mathematical complexities of the problem considerably. Once the present 
solution has been obtained, it is then relatively easy to extend the analysis to also include other, 
physically, more realistic stress loading profiles of the type shown in Fig. 2. (At such edges, it has 
been shown that a weak stress singularity is present (see Folias (1991) for a glass fiber, Li and Folias, 
1991 for a carbon fiber).) This matter is presently under investigation and the results will be 
reported in a follow-up short note. 
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Stress concentration 
Edge r e g i ~  

Cut line 

Fig. 2. Perfect bonding model 1 with a stress riser effect ad edge region 

2 . 2  P e r f e c t  b o n d i n g  m o d e l  2 

In the previous section we discussed the case where only the fiber carries the load and where the 
surfaces of the matrix plate are free of stress. Such model,  is most  often used to illustrate the 
mechanics of load transfer f rom a fiber to a matrix. In other applications, however, bo th  fiber and 
matrix may  carry por t ions  of the external load (e.g., a unidirectional composi te  plate). For  this 
reason, we consider in Fig. 3 a modified model  which allows the matrix plate to carry also an axial 
load a~. F r o m  a practical point  of view, the magni tude  of a i will be less than no. 

Thus, most  of the formulas developed for perfect bonding model  1 are still valid with the 
exception of the following modifications to Eqs. (15-17). 

u(p)(i ) ai r; ,(p)(i) 0, (31, 32) 
r r  ~ ~ 0 0  

2#1(m 1 + 1) 

u(p)(1 ) _ m i  a i z; a(p)(i) _ ,r = 0, (33, 34) 
r r  - -  ~ 0 0  zz 2/~l(m i + 1) 

a (p)(~) = a i ;  z (p)(~) = z (p)(i) = z (p)(i) = O. (35, 36) 
z z  rO r z  Oz  

/ 
t r  i 

3 4 

�9 S S  

Figs. 3 and 4. 3 Perfect bonding model 2: both fiber and matrix are subjected to axial loads. 4 Imperfect bonding model: elastic 
spring present at the interface 
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2.3 Imperfect  bonding model 

Conditions of perfect bonding require that both displacements and stresses be continuous across 
the interface and throughout the thickness. Since both of the above models satisfy Eqs. (9) and 
(10), we define them as perfect bonding cases. As it was previously noted, imperfect bonding models 
which have been examined based on 2D considerations are basically of two types: in the first type 
the transfer of load across the interface is described by Coulomb friction, while in the second type, 
the transfer of load across the interface is described by a continuous elastic spring which connects 
the fiber and the matrix. In this analysis, we choose the latter for it is more suitable with the 
structure of our complementary solution. 

This particular model is shown schematically in Fig. 4. Crucial to the problem of interest is 
the bonding between the fiber and the matrix at r = a where the relevant stresses, as well as the 
displacements u and v, must be continuous. The vertical displacement w, however, is allowed to 
have a jump which is proportional to the shear stress i.e., at r = a: 

u (1) - u (2) - K z (1)" (i = 1 or 2) (37) 
ZZ 2 Z  - -  $ r Z  ' 

where 1/K~ denotes the shear stiffness at the interface. Mathematically, however, such a boundary 
condition is somewhat peculiar, at least in the neighborhood of z = h, where the displacement 
is non-singular while the shear stress is singular (Here it is assumed that insufficient slippage 
has taken place and that although the singularity strength has decreased, it has not totally been 
eliminated) see Folias 1989, 1991). Be that as it may, outside the boundary layer region (i.e., one 
fiber diameter away from the surface), the results are expected to be mathematically valid and it 
is hoped that they will provide us with some further insight on the question of friction. This matter 
will be discussed further in a later section. Finally, in terms of the complementary and particular 
solutions, the boundary condition (37) becomes 

u e)(n - u (c)(z) = - u (p)(t) + u (p)(2) + K z (~ (38) 
2Z ZZ ZZ ZZ S rZ ' 

while all other boundary conditions remain the same. It remains, therefore, for us to find a comple- 
mentary solution such that it satisfies Navier's equations and the appropriate boundary conditions. 

3 Method  o f  solution 

A general method for constructing solutions to some 3D mixed boundary-value problems has 
been developed by Folias (1975), and a general solution has been constructed and subsequently 
put in a more convenient form for use in practical applications (Folias and Reuter 1990). The 
latter reference also addresses the question of the completeness of the eigenfunctions. Thus, without 
going into the mathematical details, one may now write the complementary solution in the form: 

u(C)(i ) _ 1 ~o 02H(v/) aJ~ ) + 1 . 72 ~2/~(~) (39) 
~= ~ Ox ~ {2(m, - 1 ) f  ~( f l j )  + m, f 2(fl~z) } + 2(j ') -- y 

m i ~  8x mi + 1 g x g y '  

�9 92 (/) 1 z2 ~322~ ) _ 3mi -12~  ) 2 ~ ) _ y ~ y  v(O(O_ 1 ~ t 3 2 H ~ i ) { 2 ( m i _ l ) f l ( f l ~ z ) + m i f 2 ( f l j ) } +  - + 
m~ 2~=1  OxSy m i + l  

~ H  (o 2 02~ ) 
w,O<,,_ i ~ ~x {(m,-- 2)fa(fl~z)- m,f4(fl~z)} - -  z - -  

m i --  2 ~ = 1 ml + 1 c~x 

Furthermore the stresses are given by Hooke's law as: 

1 1 ( (~H (1) vt33H (I) ] oo 
tT(c)(i)_ ~)" ,{ 2/~2 v - -  x~ - -  ,.., ( -~ -~-x f l ( f l~ z) + ~ [2(mi-  1)fl(f l~z) + mif2(fl~z)] 

2#i m i - 2 v = x 

+02]  o 02),~ ) 2 32~ ) 1 z2 83)~ ) 
Ox -Y -S + + mi + l coy m~ + l ~?x 2 c~y' 

m i + 1 Ox 2 ' 

(4o) 

(41) 

(42) 
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1 
_ _  ff(c)(i) _ _ _  

2 #  i Yr  

i _ _  G(c)( i )  __ 

2 #  i z z  

1 
_ _  T(c)( i )  _ 

2#i y~ 

1 
_ _  z (c ) ( i )  _ 

2# i = 

where 

O~ n -- , 

h 

c~Hii) (t3aH{ i) c~H~')'~[2(mi - 1 ) f l ( f l :  ) 
1 ~ 2f lZ~-x f * ( f l v z ) - \  c?x a fl~ c~x ] 

m i - - 2 v = l  

1 z2 832~ ) 

m ~ + l  ~?x 28y' 

82)~ ) 2mi 82~ ) 82~ ~ + + -- 

c~x Y ~s 2 mi + 1 c~x 

m i  ~ ,  c 3 H ( i )  _ _ _  v 2 
m i -  2 ~=1 ~s f l~f2( f l : ) '  

l z(c)(i) - 1 i c ~ 3 H ~ i ) { 2 ( m i - 1 ) f l ( f l : ) + m i f E ( f l : ) }  
2# i xy m i - 2 ~ = 1 ~?x 2 8y 

+~2(~ ) ~722(~) m i -  1 82~ ) 1 ' 
c~x + Yc?xc~y + - -  z2 032(~) 

ml + 1 c?x mz + 1 c~x a ' 

_mi i 02H(i)v 
mi - 2 ~= a 8xSy  f i~{f  a(fl~z) + f 4.(flvz) }, 

_mi i ~2H(i)v 
m i -  2~=l c~x 2 f l~{ fa ( f l : )+  f4(flvz)}' 

+ mi f2 ( f l : ) ]  } 

(43) 

(44) 

(45) 

(46) 

(47) 

2#:(m: + 1) 
(60) 

COS 0 (U (c)(1) - -  U (c)(2)) - -  sin O(v (c)(1) - v (c)(2)) = 0 

w(C)(~)-w(C)(2)=[ a2~ 2 1--2re 2 v z c l ] z  - 
1 - -  v 2 1 - -  v 2 

m 1 o- i 
z. 

fly are the roots of the equation 

sin (2flvh) = - 2fl~h, (49) 

H (~ (i = 1, 2) are functions of x and y which satisfy the reduced wave equation: 

+ - - -  i-I O=o, (50) ~y2 

2(o 2(o and 2~ ) are two dimensional harmonic functions, and 1 ''~2 

f l ( f l : )  --- cos(fl~h)cos(fl:); f 2 ( f l : )  = fl~h sin(fl~h)cos(fl:) - fl~z cos(fl~h)sin(fl:), (51, 52) 

f a ( f l : )  = cos(fl~h)sin(fl:); f , , ( f l : )  = fl~h sin(flvh)sin(fl:) + fl~z cos(fl~h)cos(fl:). (53, 54) 

The reader may notice that the above complementary solution automatically satisfies the boundary 
conditions at I zl -- h and that only the boundary conditions at the interface r -- a remain to be 
satisfied. 

Taking advantage of the symmetry which the problem possesses, we write the extended 
boundary conditions in terms of the cylindrical coordinates r, 0 and z. Thus, Eqs. (25-30) may be 
written in the following form: 

sin2 0( ~ - -  o'(c)(2))xx. -'~ COS2 0(a (c)~ -- o -(c)(2)yy ) +  sin (20)(-cxy(c)(1) _ .c(c)(2))xy .=Oo l-raY2 + 2#2 11 --Y2 "~ V2 C1 (55) 

xx . i sin 20(a~ (1) - (c)(2) + COS(20)(z(c)(l) _ T(c)(2)) = 0 (56) �89176 ayr ) xy x r .  

sin O(z (c)(~)= - z (c)(2))= . + cos O('c (c)(1). v~ - ~:(~ . = 0 (57) 

sin O(u (~ - u (c)(2)) + cos O(v (c)~ - v (c)(2)) = C~ a + o-~ a (58) 
2#1(m x + 1) 

(59) 

n = 1, 2, 3 , . . . ,  (48) 
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Inasmuch as model 1 is a special case of model 2 where al = 0, from here on one only needs to 
concentrate on the construction of the solution to model 2. 

Taking into account the symmetry of the problem (0 independence), we let 

~n(:)~ - C:vKo(fl~r); ~n(~Z) = C2fio(fl~r) (61,62) 
~x ~x 

and all 2 = 0 except 

211, Asin0; 21:) A = = -- cos 0, (63, 64) 
r r 

where Io and Ko are, respectively, the modified Bessel functions of the first and second kind of 
order zero; Ca~ and C2~ are complex constants. The constants A and C a are to be determined in 
such a way that all remaining boundary conditions are satisfied. 

4 N u m e r i c a l  r e s u l t s  

Omitting the long and tedious numerical details, the problem is reduced to a system of six equations 
involving series in z, which are then solved numerically for the unknown coefficients. Perhaps it 
is noteworthy to note that the system is sensitive to small changes and for this reason double 
precision is used throughout  the numerical analysis. 

Once the coefficients have been determined, the displacement and stresses may then be calculated 
at any point of the composite body. 

4.1 Perfect bonding model 1 

Inasmuch as the interface is of greatest practical interest, plots at r = a are given for the displacements 
and stresses as functions of z. The case of perfect bonding (model 1) will be taken as the basis of 
our first discussion. Two different shear moduli ratios are chosen: these are #2/#1 = 2 and #2/#1 = 17 
corresponding to (a) and (b) respectively in each figure. The purpose of these plots is to examine 
how the shear moduli ratio affects the displacement and stress fields. Each plot consists of several 
curves which correspond to different a/h ratios. Superscripts are used to distinguish whether the 
stress or displacement is in the fiber or in the matrix as they have been defined early in the Fig. 1. 
However the superscripts are omitted if the stress or displacement is the same for both fiber and 
matrix at the interface. 

0.5 
0.4 

i::l 
 leo,i a / h : l ~  

a/h:O.01 

0.20. 

0.18] 

0.161 

0.14J 

I 0.12-' 
1O.lO! 

0.042 
o.o2-' 

0 '  

-0.02 ' 
0 

b 

-0.1 - , - , - , - , - 
0 d2 d4 d6 ~8 1.0 0.2 0.4 0.6 o.s 1.0 

z/h- - - - - - - , . -  z / h  . 

a/h=1.0 / ,,Jh--o c'v// 
alh=O.05 ",x// / 

F i g .  5 a a n d  b. S t r e s s  a , ,  vs z/h fo r  p e r f e c t  b o n d i n g  m o d e l  1 w h e r e  a c o r r e s p o n d s  to /~2 /#1  = 2 a n d  vx = v2 = 0 .33  b c o r r e s p o n d s  

t o  #2 /#1  = 17 a n d  v:  = v2 = 0 .33  



F. H. Z h o n g  and  E. S. Folias: The  3D stress field of  a fiber embedded  into a mat r ix  241 

0 

-0.10 - 
l -0.20 

-~-N I o " ~  I ~ -0.3o 

-0.40, 

-0.50 

0.10 

/a/h=O.01 ~176 

0.0 

-0.02. ~ ~  

a/h= 1.0 ~ , ~  I -O.eS.'~176 
12/5=0.05 A~ 

_ ~  -o.o8. a/h=O.01~ 

-0.12 
-0.14 
-0.16 

a -O.lS ~ b 
-0.20 ' 

0.2 0.4 0.6 0.8 1.0 0 012 0 1 4 0 1 6  " 018 " 
z/h ~ .~ z/h ~ =- 

1.0 

a b 

Fig. 6 a  and b. Stress z,., vs z/h for perfect bond i ng  mode l  1 where  a co r responds  to//2/]21 = 2 and  v2 = 0.33 b cor responds  to 
//2///1 = 17 a n d  v I = v2 = 0.33 

0.4- 

0.3 

I 0.2 

0.1. 

a/h--- 1.0 

~ / h = O . 0 1 . ~  
0.2 0.4 0.6 0,8 1.0 

z/h 

0.16. 

0"14 t b 

o.121 
l 0.10] 

I 0'081 

o o'.2 

a b 

a/h= l . 0 ~  

, . , . , . 

0.4 0.6 0.8 1.0 
z/h 

(1) Fig. 7 a  and b. Stress p=  vs z/h for perfect b o n d i n g  mode l  1 where a co r responds  to//2///1 = 2 and  vl = v2 = 0.33 b co r responds  
to//2///1 = 17 a n d  vl = v: = 0.33 

1.0 
a 

0.8. 

I 0.6. 

0.2- 

a/h = 1.0 / ~  

0 
0 0.2 0.4 0.6 0.8 1.0 

z/h  

a b 

1.0. 

0.8. 

0.6- 

0.4- 

&2- 

0 
0 

b a/h = 1.0 

. , - , . , . , - 

0.2 0.4 0.6 0. S 1.0 
z/h, ,~ 

Fig. 8 a and b. Stress (Tzz{2) vs z/h for perfect bond i ng  mode l  1 where  a co r responds  to//2/I/1 = 2 and  vt = v 2 = 0.33 b co r responds  
to//2///1 = 17 and  vl = vz = 0.33 



242 Computational Mechanics 9 (1992) 

0.5- 

I 0.3 

~'l ~ ~ 

O! . , . , . , . , . , 

0 1 2 3 4 5 

r/a .~ 

Fig. 9. Displacement uzz at z = h vs r/a for perfect bonding model 1 where 
vl = v2 = 0.33 and a/h = 0.05 

The radial stress profile is shown in Figs. 5a and b as a function of z/h. It is noted that, along 
the central region, the radial stress is almost constant and that it increases rather rapidly as one 
approaches the fiber edge. The results suggest, therefore, the presence of a boundary layer in which 
the stresses posses a weak singularity (Folias, 1989). The thickness of this boundary layer is approxi- 
mately five fiber diameter away from the edge. It is interesting to note that for small a/h ratios, 
the radial stress is slightly negative over a wide span across the central region. This suggests, there- 
fore, that in this region a small state of compression exists at the interface between the fiber and 
the matrix. Alternatively, for large a/h ratios, the radial stress is slightly positive and the interface 
is in a state of tension. 

The interface shear stress exhibits a similar stress profile and is given in Figs. 6a and b. The 
sign for the shear stress is negative because the shear stress will always be opposing the direction 
of the external stress a 0 applied at the edge of the fiber. The variation of the magnitude of the shear 
stress "Crz seems more complicated in the case where/~2/#1 = 17, than in the case where 1~2/#1 = 2. 
The former (Fig. 6b) shows the shear stress to reverse as a/h increases beyond a certain value. It 
appears that both "very thick" and "very thin" matrix plates will induce a very small shear stress 
along the center region. The matrix stress a m at the interface is plotted in Figs. 7a and b. Note ZZ 

that the stress increases as the ratio of a/h increases and that a large load may cause the fiber/matrix 
interface to debond at the fiber end. For  most cases, the stress a (2) shown in Figs. 8a and b decays z z  

as one moves from the fiber end (z = h) to the fiber center (z = 0). However for all cases where 
a/h = 1.0, the analysis shows that the stress increases as one reaches the fiber center. It is also noted 
that the tensile stress at the matrix will decrease as #2/#1 increases by comparing Fig. 7b with 
Fig. 7a while the tensile stress at the fiber will increase by comparing Fig. 8b with Fig. 8a. This 
suggests that the load diffusion from the fiber to the matrix will decrease as the fiber becomes 
stiffer. Finally, the displacement uzz at z = h vs the radial distance is given in Fig. 9 where it is seen 
that a softer fiber (#2/#1 = 2) gives a smoother connection of the displacement at r = a, while a 
stiffer fiber (#2/Pl -- 17) gives a sharper connection of the displacement at the interface. 

4.2 Perfect bondin9 model 2 

Inasmuch as, in practice, the matrix also carries a small portion of the applied load, it is desirable 
now to extend our model to the case where the matrix may also carry part  of the load in the direc- 
tion of the fiber length. Thus, perfect bonding model 2 allows us to examine how the load is being 
transferred from the fiber to the matrix and vice versa. In order to examine the effect of the matrix 
load 0- i on the stress field (see Fig. 3), the shear moduli ratio is chosen as/~2/#1 = 17 and the geo- 
metric parameter a/h is fixed at a/h = 0.05. Three curves are plotted in each figure, which correspond 
to o'i/o" o = 0.0, 0.05 and 0.1, respectively. It should be emphasized that the ratio o-i/% is not an 
independent parameter. Actually this ratio will depend on the shear moduli ratio #2/# 1, if a uniform 
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strain is assumed at the surface of the fiber and of the matrix. Thus, for the parameters chosen, a 
more realistic ratio of ai/ao should be around 1/17. 

In Figs. 10 and 11 we plot the radial and shear stresses as a function of z/h. Notice the reversal 
of the sign, as the ratio of a~/ao increases from 0 to 0.1. Such sign reversal will most likely have 
implications to the process of debonding at the fiber/matrix interface. Finally, Fig. 12 shows the 
stress profile a <2) at the interface to dramatically increase as the ratio of ai/tr o increases. =z 

4.3 Imperfect bonding case 

Once the interface has been allowed to slip, the magnitude of the stresses in the matrix will be 
expected to decrease while the stresses in the fiber will be expected to increase slightly. In order 
to show the effect of stiffness of the interface, two parameters are fixed: they are a/h = 0.05 and 
# 2 / / . / 1  = 17. Three curves, which correspond to the reciprocal of the spring constants K e = 0.0, 0.1 
and 1.0, are plotted (The reader may note that o- i = 0 for this case). 

The radial stress o-,, shown in Fig. 13 increases slightly as the interface becomes softer (note 
Ke = 0 corresponds to perfect bonding case, or, the rigid interface). This indicates that a softer 
interface will increase the chance of interracial debonding. On the other hand, the shear stress zr= 
shown in Fig. 14 exhibits a dramatic decrease of the magnitude of the stress along the interface. 
Similarly, the fiber tensile stress o -<a) (Fig. 15) increases as slippage is allowed to increase. This zz 
suggests, therefore, that a lesser load will be transferred from the fiber to the matrix when the 
interface is softer, a result which is compatible with our expectation. As a practical matter, the 
spring constant may now be calculated by the equations given by Stief and Hoysan (1986), where 
a coated fiber model and a interfacial crack model are considered. Moreover, they point out that 
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a significant change on the stress field can only occur when the coated material is very soft. This 
suggests, therefore, that the stress field calculated from the physical parameters may be quite closer 
to that calculated from the perfect bonding model. 

Perhaps it is appropriate here to note that the authors are well aware of the shortcomings of 
this type of condition. However, this part of the investigation was of secondary importance relative 
to the main objectives of the study. The analysis, however, does provide us with further insight on 
the phenomenon of fiber/matrix interface friction. Moreover, other friction models too are not 
immune to shortcomings. For example, Hutchinson and Jenson (1990) recently examined fiber/ 
matrix debonding with two different types of frictions (i) constant friction and (ii) Coulomb friction. 
Their analysis was based on a 1D cylinder model. However, as one can see from Fig. 6, of the 
present analysis, the interfacial shear stress, in general, is not constant. If, on the other hand, the 
matrix is allowed to carry some of the load, which is usually the case, the shear stress does become 
approximately constant (i.e., zero) as it may be seen in Fig. 11, for o-i/o-0 = 0.05. Moreover, as the 
fiber is allowed to slip more and more, the stress singularity at the edge may ultimately be eliminated 
in which case the boundary layer region will disappear. Thus, the use of a constant friction law, 
once slippage has initiated, will be justifiable. But then the spring model also enjoyes the same 
advantages. The Coulomb friction law also presents some mathematical difficulties. More speci- 
fically, the shear stress is an odd function of z while the radial stress is an even function of z. Thus, 
at z = 0, the shear stress vanishes while the radial stress does not! Moreover, at the fiber edge the 
shear stress vanishes while the radial stress does not. Mathematically, therefore, such a friction 
law is also peculiar in representing fiber/matrix interface friction prior to slippage. The reader may 
note, however, that for certain ratios of #2//~t, the radial stress, as well as the shear stress, are 
almost zero (see Figs. 10 and 11 for tr~/cr o = 0.05) and the power law in that case is satisfied (Except 
in the boundary layer region). It is hoped that the above discussion will give the reader a better 
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understanding of the reasons why we have chosen the use of a spring model in order to obtain 
some preliminary results on slippage. Be that it may, the subject of friction and sliding is certainly 
not a trivial one and that further investigation is warranted. Finally, the authors concur with the 
observation made by Hutchinson and Jenson that the correct characterization of friction sliding 
of a fiber embedded into a matrix remains an open issue. 

5 C o m p a r i s o n s  a n d  c o n c l u s i o n s  

Our present results are consistent with previous observations based on 1D and 2D considerations 
(Lawrence, 1972 and Banbaji, 1988) that %= and o-~ ) will attain their maximum values at the loaded 
end of the fiber. Although, our present model differs from previous 3D models (Muki et al. 1970; 
Luk et al. 1979; Haener et al. 1967), the stress profiles obtained are similar. For example, comparing 
the result of Haener (1965) to that of our perfect bonding model 1, one finds that the stresses a (1) zz  

and a ") obtained in these two different models both show a flat behavior in the center region rr 
(actually the value is rather small in this region for O'rr ) and then a sudden jump to a larger value 
near the edge. In addition, our present numerical results do confirm the presence of a stress 
singularity in the neighborhood of the fiber edge. 

A qualitative explanation of the fiber multiple crack phenomenon found in the Dogbone test 
samples (DiBenedetto et al. 1986 and Bascom et al. 1986) can be made by examining the fiber 
tensile stress along its length. Figure 16 shows two curves corresponding to two different geometric 
ratios a/h = 0.01 and a/h = 0.05, where 1-o-] denotes the tensile strength of the fiber. As we can see, 
the tensile strength in a longer fiber (a/h = 0.01) has passed the dash line and hence will break 
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while the shorter fiber (a/h = 0.05) will not break because the maximum tensile stress is below the 
dash line. However, if o- i increases, the dash line will move lower provided that the tensile strength 
of the fiber is independent of the ratio a/h. This may lead to the breakage of a shorter fiber. It 
becomes clear that the fiber tends to relax itself by having a shorter length. Another interesting 
phenomenon is that the non-dimensionalized tensile stress at the fiber center for the case a/h = 0.01 
is about 17, which is equal to the shear moduli ratio of the current problem. Cox (1952) has 
predicted that the maximum tensile stress of the fiber under this model will occur at the fiber center 
and that its value will be E2ai/E1. This will yield the value of 17o-~, if one assumes the Poisson 
ratio of the fiber and of the matrix to be the same. His prediction, however, becomes inaccurate 
as the fiber length decreases. This indicates that the Ezai/E 1 may only be taken as an upper bound 
of the fiber tensile stress. 

A quantitative comparison of the present results with the experimental results obtained by 
Tyson and Davies (1965) is shown in Fig. 17. The parameters of their 2D experimental model are 
taken to fit our current 3D model. The diameter of the fiber was taken as 4 mm and the half 
thickness of the plate h used was the experimentally determined distance from the fiber to the 
isotropic point (see Tyson and Davies). All other parameters are given in the paper and can be 
used directly. As seen from the figure, the present results predict the interfacial shear stress very 
well throughout the interface. A small deviation begins at x = 4 mm, i.e., at approximately one 
fiber diameter away from the fiber end. This deviation was to be expected for the present model 
does not account for the localized stress riser effect (instead of the uniform applied load) which is 
present at the vicinity of the fiber end. On the other hand, the experimental results substantiate 
our previous observation that such a stress riser effect is localized to within a one fiber diameter 
region. Alternatively, the result predicted by a shear lag analysis greatly underestimates the 
interracial shear stress especially in the vicinity of the fiber end. 

In view of the above, the following conclusions may now be reached: 

(1) The geometric parameter a/h, as well as the material properties, greatly affect the displacement 
and stress fields and for this reason play a fundamental role on the mechanism of failure. 
(2) As expected, a boundary layer effect is shown to prevail in the vicinity of the fiber edge where 
the presence of a stress singularity (Folias 1989; 1991) may ultimately induce crack initiation. 
(3) In general, a shear lag type of analysis may underestimate the magnitude of interfacial shear 
stress. 
(4) When o-~/o- 0 < #1/#2, interracial debonding, slippage and fiber breakage most likely will initiate 
at the edge region. 
(5) When o-~/o- 0 > #1/#2, interracial slippage will initiate at the edge region while interracial 
debonding and fiber breakage will initiate at the center region. 
(6) In applications where a stress riser effect is present at the fiber edge (see Fig. 2), the present 
model predicts accurately the interracial shear stress except in the vicinity of one fiber diameter 
away from the fiber edge (see Fig. 17). 
(7) If only the fiber is allowed to carry the applied load, then the interracial shear stress will not 
be a constant. 
(8) If both fiber and matrix are allowed to carry the applied load, then in general the shear stress 
will not be a constant. 
(9) Exception to (8) is the case where the ratio of o-~/o- o -~ #2/#1 in which case both the radial as 
well as the shear stress are approximately zero except in the vicinity of the fiber edge (see Figs. 10 
and 11 for adao = 0.05). 
(10) The substitution of the "interphase" with an elastic friction law leads to a stress relaxation. 
(11) The use of a modified layer (fiber coating) has a minimal effect on the magnitude of the stress 
field and a great effect on the characterization of the fracture process as adhesive or cohesive (see 
Zhong's Dissertation 1991). 

The analysis also provides some further insight on the subject of interface friction. The reader is 
referred to the section "Numerical Results". 

Next, our research activities are branching out along three different directions. First, we are 
extending the analysis to the case of a doubly periodic array of fibers. The work is almost completed 
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and the results will be reported in a follow up paper soon. Second, the fiber has next been allowed 
to break, at the location z = 0, and a fracture analysis based on 3D elasticity considerations is 
sought. The investigation is well on the way. This problem was recently investigated by Whitney 
and Drzal (1987) and an approximate closed form solution was developed. Their model provides 
a substantial improvement over the existing "shear lag" models. However, as the authors point 
out, in order to evaluate the interface and its role in the composite fracture process, or in 
determining composite toughness, the 3D stress distribution around the fiber is desired. The work 
provides important  and valuable guidance to our investigation. Third, the 3D consideration of 
debonding at the fiber/matrix interface is examined. Approximate solutions to this problem may 
be found in the literature, e.g., Gao et al. (1988), which serve as excellent bases on which to build 
upon and to complement. 

Acknowledgements 

This work was supported in part by the Air Force Office of Scientific Research Grant No. AFOSR-90-0351. The author wishes 
to thank Lt. Col. G. Haritos for this support and for various discussions. 

References 

Achenbach, J. D.; Zhu, H. (1989): Effect ofinterfacial zone on mechanical behavior and failure of fiber-reinforced composites. 
J. of'Mech. Phys. Solids, Vol. 37, No. 3, 381-393 

Banbaji, J. (1988): On a more generalized theory of the pull-out test from an elastic matrix. Composites Science and 
Technology 32, 183-193 

Bascom, W. D.; Jensen, R. M. (1986): Stress transfer in single fiber/resin tensile tests. J. Adhes. 19, 219-239 
Bloom, J. M. (1967): Axial loading of a unidirectional composite. J. Compos. Mater. 1,268-277 
Chua, P. S.; Piggott, M. R. (1985): The glass fiber-polymer interface: II - work of fracture and shear stress. Composites Science 

and Technology 22, 107-119 
Cox, H. L. (1952): The elasticity and strength of papers and other fiberous materials. Br. J. Appl. Phys. 3, 72-79 
DiBenedetto, A. T.; Nocolais, L.; Ambrosio, L.; Groeger, J. (1986): Stress transfer and fracture in single fiber/epoxy composites. 

Proceeding of the first International Conference on Composite Interface 47-54 
Dollar, A.; Steif, P. S. (1988): Load transfer in composites with a Coulumb friction interface. Int. J. Solids Struct. 24, 789-803 
Folias, E. S. (1975): On the three dimensional theory of cracked plates. J. Appl. Mech. 663-673 
Folias, E. S. (1989): On the stress singularities at the intersection of a cylindrical inclusion with the free surface of a plate. Int. 

J. Fract. 39, 25 
Folias, E. S.; Reuter, W. G. (1990): On the equilibrium of a linear elastic layer. Comput. Mech. 5, 459-468 
Folias, E. S. (1991): On the prediction of failure at a fiber/matrix interface in a composite subjected to a transverse tensile load. 

J. Comp. Mater. Vol. 25, 869-886 
Gao, Y. C.; Mai, Y. W.; CottereU, B. (1988): Fracture of fiber-reinforced materials. J. Appl. Math. Phys. Vol. 39, 550-572 
Haener, J.; Ashbaugh, N. (1967): Three-dimensional stress distribution in a unidirectional composite. J. Comp. Mater. 1, 54-63 
Haritos, G. K.; Keer, L. M. (1985): Pullout of a rigid insert adhesively bonded to an elastic half plane. J. Adhes. 18, 131-150 
Hutchinson, J. W.; Jensen, M. H. (1990): Models of fiber debonding and pullout in briltle composites with friction. Mech. 

Mater. 9, 139-163 
Lawrence, P. (1972): Some theoretical considerations of fiber pull-out from an elastic matrix. J. Mater. Science 7, 1-6 
Li, C. C.; Folias, E. S. (1991): Edge effect of a carbon fiber meeting a surface. J. Mech. Mater. to appear 
Luk, V. K.; Keer, L. M. (1979): Stress analysis for an elastic half space containing an axially-loaded rigid cylindrical rod. Int. 

J. Solids Struct. 15, 805-827 
Muki, R.; Sternberg, E. (1970): Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod. Int. J. 

Solids Struct. 6, 69 90 
Penado, F. E.; Folias, E. S. (1989): The three dimensional stress field around a cylindrical inclusion in a plate of arbitrary 

thickness. Int. J. Fract. 39, 129-145 
Penn, L. S.; Lee, S. M. (1989): Interpretation of experimental results in the single pull-out filament test. J. Composites Technology 

and Research 11, 23-30 
Sendeckyj, G. P. (1970): Elastic inclusion problems in plane elastostatic. Int. J. Solids Struct. 6, 1535-1543 
Steif, P. S.; Hoysan, S. F. (1986): On load transfer between imperfectly bonded interface. Mech. Mater. 5, 375-382 
Tyson, Davies, G. J. (1965): A photoelastic study of the shear stress associated with the transfer of stress during fiber 

reinforcement. Br. J. Appl. Phys. 16, 199-205 
Williams, M. L. (1952): Stress singularities resulting from various boundary conditions in angular corners of plates in extension. 

J. Appl. Mech. 74, 526 
Whitney, J. M.; Drzal, L. T. (1987): Axisymmetric stress distribution around an isolated fiber fragment. ASTM STP 937, 179-196 
Yu, I. W.; Sendeckyj, G. P. (1974): Multiple circular inclusion problems in plane elastostatic. J. Appl. Mech. 41,215-221 
Zhong, F. H. (1991): PhD dissertation, U. of Utah, Department of Mechanical Engineering 

Communicated by S. N. Atluri, October 21, 1991 


