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1. Intrdutin

It is well recognized that laminated composite plates exhibit extraordinary strength

per weight ratio characteristics. Consequently, their use in aerospace structures is the way

of the future. However, in order to be able to predict their failing characteristics

particularly in the neighborhood of free surfaces such as straight edges, holes edges, cracks

etc., it is necessary to know the local stress behavior particularly from a 3D point of view.

Thus, if rational designs using fiber reinforced-resin matrix composite laminates are to be

made, their performance under static, dynamic and fatigue loads need to be predictable.

The first step towards this goal is the realization that the ultimate failure, as well as many

other aspects of the composite behavior, is the result of the growth and accumulation of

micro-damage to the fibers, matrix and their interfaces. Thus, it appears that any generally

successful model of performance and failure must incorporate the effects of this local

damage in some way. This certainly represents a challenge.

In this investigation, a systematic , 3D, micromechanics approach is used where

the fibers are assumed to be cylindrical inclusions which are embedded into a matrix plate.

A three dimensional analysis is used in order to capture any edge effects which may be

present. A set of fundamental key problems is identified and their respective solutions are

then used in order to provide some answers to the following fundamental questions:

(i ) UNIDIRECTIONAL COMPOSITE PLATE:

transverse strength

edge delamination

modeling of fiber matrix interface

longitudinal strength

residual stresses due to thermal expansion mismatch

The approach consists of first solving for the 3D stress field of one fiber only. The

solution is then extended to the case of a periodic array of fibers. The 3D results are then

used to first identify critical locations where failure, due to fracture, is most likely to initiate

and second to derive fracture criteria for crack initiation at the local level. The criteria reveal

the dependance of the transverse strength on the material properties, the local geometry and

the applied loads. Ultimately, a general criterion will be derived which incorporates all of

the above effects. In this phase of the research we are focusing on the process of crack

initiation and, as a result, the criteria will be valid only for crack lengths up to 30% or 40%



of the fiber radius. This is because the present analysis does not account for the interactions

between cracks and periodic fibers. It may be noted, however, that it is now possible to

indeed take into account such interactions at the local level, a subject which will be

investigated in the near future. Be that as it may, the identification of the critical areas for

possible failure and the prediction of the critical stress for crack initiation are of great

interest to the desingners.

(ii) BRIDGING THE GAP BETWEEN MICRO AND MACROMECHANICS

Our investigation shows that it is now possible to relate results based on

macromechanical considerations with results based on micromechanical considerations via

certain correlation functions which are obtained in part (i). As a practical matter, once these

correlation functions have been established, then results based on macromechanical

considerations (eg. finite ellements etc.) may then be used to also answer questions of

damage at the local level. Thus, one of the important findings in part (i) is the identification

of the regions of applicability of the results which are based on macromechanical

considerations.

(iii) LAMINATED COMPOSITE PLATE BASED ON MICROMECHANICS

The above work will next be extended to the more general case of a laminated

composite plate of different ply orientations. The cylindrical fibers in this case have two

different fiber orientations , thus modeling from a micromechanics point of view the

consept of an interface.

2a. Effects of Transverse Load on a Fiber/Matrix Interface Failure

The low transverse tensile strength of unidirectional laminae presents a major

problem in the design of composite laminate structures. Although the fibers can be oriented

so that they are parallel to the external loads, it is almost impossible to avoid transverse

stresses which may lead to premature failure of the laminate. An excellent example of this

is in the design of a filament wound pipe or pressure vessel.

There is no simple relation for predicting the transverse strength. Unlike the

longitudinal tensile strength which is determined almost entirely by a single factor, i.e. the

fiber strength, the transverse strength is governed by many factors including the properties



of the fiber and matrix, the interface bond strength, the presence and distribution of voids,

and the internal stress and strain distribution due to the interactions between fibers, voids

etc.

Recently, we were able to investigate what effect if any does a transverse load have

on the failure characteristics of a fiber/matrix interface. To establish this, we carried out

an analysis based on 3D analytical considerations . ( For more details see Part I). The

analysis shows the stresses off and aee for ratios of (a/h) _ 0.05, to be almost constant in

the interior of the laminate and that as one approaches the free edges of the laminate, i.e. the

region where the fiber intersects the free surface, a boundary layer effect is shown to

prevail. A separate local asymptotic analysis carried out by the author shows that the stress

field there is indeed singular. For example, for a glass fiber/ epoxy matrix the stress

singularity is 0.25 ( Folias 1989), while for the case of a carbon fiber/epoxy matrix it is

0.31 (for more details see Part II) .This neighborhood, therefore, is an area with potential

for a fiber/matrix interface failure due to the relatively high stress levels which are present.

It may, furthermore, be noted that for ratios of (a/h) > 0.3 the stress profiles along the

fiber length is very much non uniform. The model, however, is still applicable and it does

provide us with accurate results.

The results may now be used to derive failure criteria based on micromechanical

considerations. For example, such a criterion due to the presence of an interface crack has

been derived and the details may be found in PART 1I (see eq.34 and fig 12). Similarly a

failure criterion due to the presence of a 0 - type of crack has also been derived.

Finally, in the limit , if one allows all the fibers to debond completely one arrives at

a local lower bound for the overall matrix strength of the material system..

2b. Effect of Fiber Coating on the Strength Characteristics

The properties of fiber reinforced composites are very much dependendent upon the

interfacial region between the matrix and the fiber. This is because the primary function of

this interface region is to transmit a portion of the load from the matrix to the reinforcing

fibers and vise versa. This ability to transmit stress across the phase boundary must,

ultimately, depend upon the mechanical properties of the matrix, the load bearing capacity

of the fibers as well as the strength of the fiber matrix interface. It is natural, therefore, to

seek the relationship between the overall composite strength and the above variables.



Based on 3D considerations the subject was recently investigated by Folias and Liu ( see

PART IV ) for transverse loads and by Zhong and Folias ( see PART VI ) for axial loads.

In the case of a glass fiber/ epoxy matrix the effect of a fiber coating is shown to

have a minimal effect on the stress field. For other type of material systems, however, this

effect can be substantial. Our 3D model does provide us with accurate results. For more

details see PART IV. Finaly, as a practical matter, if one has a functionally gradient

property matrix then the singular stress at the fiber edge may also be eliminated.

3. The Effect of Thermal Stresses and Curing Stresses

Shrinkage stresses during cure and thermal stresses due to differences between the

thermal expansion coefficients of the matrix and fiber may have a major effect on the

microstresses within a composite material and as a result their contributions should be

added to the stresses introduced by the mechanical loads. It may also be noted that these

microstresses are often sufficient to produce microcracking even in the absence of external

loads.

As it was noted previously, the stress field in the neighborhood where a fiber meets

a free surface is singular. Thus, all things being equal, small cracks are more likely to

develop at such neighborhoods and subsequently propagate into the interior of the matrix.

The condition, as expected, is further aggravated when a temperature change takes place

because of the difference in the thermal expansion coefficients between matrix and fibers.

The problem is of particular concern to ceramic type of composites.

The objective of this investigation was to study the 3D stress field of a periodic

array of fibers embedded into a matrix plate and subjected to a temperature change DTI', e.g.

during the curing process. Particular emphasis is placed in the neighborhood of the free

surface as well in the interior of the fiber length. The analysis reveals the influence that

each individual ratio, fiber radius to fiber length , fiber volume fraction, material properties

Gf/Gm, cooling temperature, and thermal expansion coefficients have on the residual

stresses field which is induced within the material system during the process of

manufacturing for example. The model identifies the critical locations where possible

failures are most likely to initiate. In general, the location dependents on the material

properties as well as the other ratios previously mentioned. For more details, see PART V.

Fracture criteria for crack initiation have also been derived and the results will be reported



soon. It may be noted that the model is applicable to intermetalic, ceramic and organic

composites. The applications are numerous, e.g. jet engine technology, automobile

engines, thermal fatigue for high performance aircraft, etc.

4. Zone of Influence of a Break in one Fiber

Unidirectional fiber composites are important structural elements of many modem

composite materials. Their tensile strength frequently determines the possibility of using

them in various structures. Due to various technological reasons, breakage of individual

fibers long before fracture of the entire specimen is absolutely unavoidable. For example,

in glass-reinforced plastics, some individual fibers break at loads of only one-tenth of the
maximum load for the material. Actually, all fibers used in composites usually have high

mean statistical strength, but an extremely low fracture toughness, and as a result, they are
quite sensitive to tiny cracks, which unavoidably arise in the process of manufacture of the

fibers. Therefore, a certain number of these fibers always break at extremely low tensile

loads.

In view of the above, the following questions come to mind: (i) Is there an optimal
placement of fibers in a matrix and (ii) is there a lower limit of the volumetric fraction of

fibers for which the failure of a composite will be ideally ductile so that the influence of the
breakage of individual fibers may be ignored? In order to give a partial answer to these
important questions, we investigated the following problem.

We consider a cylindrical fiber which is embedded into a matrix binder. Both fiber

and matrix materials were assumed to be homogeneous and isotropic but of different
material constants. As to loading, the fiber and matrix were subjected to uniform loads oO
and al respectively ( for more details see PART VI). The analysis revealed the load transfer
characteristics from the matrix to the fiber and vise versa. Theanalysis was subsequently

extended to the periodic case and the results may be found in PART VII. Suppose now at a
certain moment in time, because of the applied loads, a plane crack perpendicular to the axis
of the cylinder is formed. It is now possible to estimate tht 3D stress field due to the
presence of the crack (static considerations) and thus establish the zone of influence of a

break in one fiber. These results can then be extended to also include an infinite periodic

array of fibers. The results are presently being used to study the effect of briging inl
cracked composite systems. -.



5. Adhesive Butt Joints.

Finally, the problem of an adhesive butt joint has been investigated and the results

are given in PART VIn.

6. Generalized Failure Criteria

The results may now be combined in order to derive failure criteria for crack

initiation applicable to unidirectional composite systems based on 3D micromechanical

considerations. Much of this work has already been carried out and the results will be

reported in a separate report. But most importantly the results are essential for a better

understanding of the damage evolution process in critical neighborhoods such as holes,

cracks, joints, edges etc.

For example, the results of parts I, II, III, IV, V, VI, and VII may now be used to

address the phenomenon of bridging in ceramic and intermetalic composites and thus

develop a relationship between fracture toughness, fiber volume fraction and combined

mechanical thermal loads.
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ON THE THREE-DIMENSIONAL STRESS FIELD OF A PERIODIC
ARRAY OF FIBERS

EMBEDDED INTO A PLATE MATRIX

by
E.S. Folias and J.H. Liu

Department of Mathematics
University of Utah

Salt Lake City, Utah 84112



Abstract

A 3D micromechanical model has been developed to represent a

undirectional composite plate which is subjected to a uniform trans-

verse load ,o,. The model assumes the fibers to be cylindrical inclu-

sions which are periodically embedded into an epoxy matrix. The

materials of both fibers and matrix are assumed to be linear, elastic,

and isotropic. The analytical solution shows the radial stress a,, to

decrease as the fiber volume fraction V1 increases. The stress profile

along a fiber length is shown to be constant except in the neighbor-

hood of the fiber edge where a boundary layer is shown to prevail. In

this region, the analytical solution shows the stress field to be singu-

lar which is a departure from the results given by macromechanical

theories.
In the limit, as G -- 0+ the 3D stress field of a plate weakened

by a periodic array of holes is recovered.

1 INTRODUCTION

It is well recognized that fiber composite materials axe very attractive for

use in aerospace, automotive and other applications. These composites

consist of relatively stiff fibers which are embedded into a lower stiffness

matrix. Although in most designs the fibers are aligned so that they are

parallel to the direction -of the external loads, it is almost impossible to

avoid induced transverse stresses which may lead to premature failure of

the laminate. An excellent example of this is the case of a filament wound

pressure vessel in which the presence of curvature induces bending as well

as transverse stresses (Folias, 1965). However, in order to be able to predict

their failing characteristics, particularly in the neighborhood of free surfaces

such as holes, edges etc., it is necessary to know the local stress behavior

from a 3D point of view.

An overall summary of some of the results, which are based on 2D

elasticity considerations can be found in the books by Hull (1981) and by

Chamis (1975). In their pioneering work, Adams and Doner (1967) used

finite differences to solve the problem of a doubly periodic array of elastic

fibers contained in an elastic matrix and subjected to a transverse load.

Their results reveal the dependence of the maximum principal stress versus

the constituent stiffness ratio (EI/E,) for various fiber volume ratios. A



few years later, Yu and Sendeckyj (1974) used a complex variable approach
to solve the problem of multiple inclusions embedded into an infinite ma-
trix. Their results were subsequently specialized to cases of two and three
inclusions thus providing us with further insight into the strength of the
composite.

In this paper, we will construct an analytical solution for the 3D stress
field of a matrix which has been reinforced in one of the directions with
cylindrical fibers.

2 Formulation of the problem

Consider the equilibrium of a body which occupies the space IxI < 00, IyI <
00, IzI _< h and contains a periodic array of cylindrical inclusions of radius
a, whose generators are parallel to the z-axis (see Fig. 1). The physical
situation depicted here is that of a uniderectional composite plate that
consists of a matrix where fibers are embedded into. For convenience, all
quanties with the script (m) will refer to the matrix while quanties the with
script f will refer to the fibers. The materials of both matrix and fibers
will be assumed to be homogeneous, isotropic and linear elastic. At the
interface, i.e. at r = a, perfect bonding will be assumed to prevail. As
to loading, a uniform tensile stress ao is applied on the composite plate
(see Fig. 1) which is in a direction perpendicular to the axis of the fibers.
Furthermore, the surface fzj = h, for both regions, matrix and inclusion,
will be assumed to be free of stress and constraints.

In the absence of body forces, the coupled differential equations govern-
ing the displacement functions u~j' are:

1 -v i +V2Uij =-0; i=1,2,3; j m,f (1)
1 -2v 3 &r,

where V2 is the Laplacian operator, vj is Poisson's ratio, uý"' and uV)
represent the displacement functions in the matrix and fibers respectively,
and

e(j) i=1,2,3 ; j=m,f. (2)
ax2

2



The stress-displacement relations are given by Hooke's law as
U) .(j)+2G -- e-() (3)
• "- Ajel! i lji 3

where Aj and Gj are the Lame constants describing the material properties
of the matrix and of the inclusions.

As to boundary conditions, one must require that (see Fig. 2 for cell
configuration)

at Iz= h: = r.) = 0; j = m,f. (4)

at r a : u()-U U(M ) -UM U(m) - UM = -o.

rr -'Jr 'rO 'TO r rz(6)

Moreover, at r = 0 we require that all stresses and displacements be fi-
nite. the cell configuration boundaries AB and CD will be taken as planes
of symmetry, thus satisfying the respective boundary conditions automati-
cally. It remains, therefore, for us to satisfy only the continuity boundary
conditions along the segment BC, i.e.

u(")(9) - (r) U- + u(') (7)
4 24

I. (i) 7ri

U()(01 -- U -,)•C ) = -,,u()( - ) + u0-n ,) (8)
V Y 11 2 V 4()

(- 6) (9)

M•) = -6). (10)

Fianily, in order to complete the formulation of the problem, one must also
require the resultant forces

JE F.,ds =0 (11)

3



B Fds = ba?0. (12)

It is found convenient at this stage to seek the solution to equation (1) in
the form:

(j) _(p)(j,) u(c)(j)Uj = Uý,,U + ;ý)U i = 1,2,3; j=m, f (13)

where the first term represents the particular solution and the second term
the complementary solution.

3 Method of Solution

A generalized analytical solution to a class of three-dimensional problems
which arise in elastostatics has been constructed by Folias (1975 , 1990a).
The solution was subsequently used, Folias and Wang (1990b), to solve for
the 3D stress field in a plate which has been weakened by a hole. This work
was later extended to the solution of an isotropic inclusion embedded into
a matrix, Penado and Folias (1989). On the bases of these results, one may
now assume the solution to system (1), which automatically satisfies the
boundary conditions at the plate faces eq. (4), in the form 2:

1 v- = H/(•) {2(m, - 1)fl(,z) + mjf2(0. z)I

+0 1- +{ 2H(•) cos (ah) cos (az) (14)
n=1

+A(') 1 ~ 2A3j
ax Mj + 1 2  19Y

VC(cjJ 0 0___ & H) {2(mi - 1)fl(#,z) + mjf 2(•,,z)1

2Note that because of symmetry in the present problem, one needs only to consider the
region 0 < 8 _< 12.
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00 a2H8x 'Oy cs (an h) cos (an z) (

3mi - 1 \U 1 &a)j
MA -3 _ Z2-

W(c)(t) Z 1. 00 (__ - 2)' f3 (.Z - Mif4j*0f 1) - zI+ a-2=I ax {m 3 ~
(16)

From which the stresses can easily be obtained as:

l axJ~

+ .3 2(mj - 1)fi(#,Z) + Mif2(.z)I} (17)

+ 00 ___ + a2 lll) }COS (anh) cos (anZ)

a43 +¾' 2 2 1 3\3
ax Yi9m2+1 ay + m,+lX 2Oy

1W)=- 1 00 J~ 2#28H9tf(#.

2G-, orvy- M. l+axa1YZ

-ax
3 )[2(m- 1)fi(#.z) + mif2(03&z)]} (18)

00j r8 3H') 2 8H~') "3

4 1m +¾' 8AV + 1 3
m j+ 1 ~y ax a. ~2 M + 1 Ox2Oa
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1 ~ ~ = 7 3 0 (19)

--()j 1 00--- {P,,j 2(mi - I)fi(O,,z) + mjf2(0.z)}
2Gj - mj - 2 2- 1 0X20y

0 { mH,(,) 1 OH:
a2 'H P cos (a.h) cos (anz) (20)- &20o~y 2 n

mj1 { iH0J) 1 82OHA'
- 3 + 2 '\ 3(j) 2 83A 3

m, + (9x OX OXOy m + 1 OX3

"..m,)) 0 MH * {f 3 (fl.,Z) + f 4(_.,Z)}

20G "" m-- 2 1 OxOy

100 aHU
+-2 E-In aXa- cos (Onh) sin (anz) (21)

n%1

= j -0 &2 00030Z +f("2Gi mj - 1 E•1 Ox 2 i. {f3(fiz) + f4(/3&.z)}

+1 00 2 O(2 Q cos (a,,h) sin (az), (22)

ii=l

where
nTr

On w, = -- n = 1, 2,3,..., 1(23)
h

are the roots of the equation

sin (20,,h) = -(20,,h), (24)

HI ) and Hn3j) are functions of x and y which satisfy the reduced wave

equation:

L2 + -t -02 (25)

aX2  8 y2  O

6



a a2 alH€i)
( + a2 ) = (26)

A•j), A.4) and A(') are two dimensional harmonic functions, and

fl(8,z) - cos (03,h) cos (03,z) (27)

f2(1z) - Oh sin (#3,h) cos (O3.z) - O,z cos (Oh) sin (0,,z) (28)

f 3(Q3z) = cos (O,,h) sin (0,,z) (29)

f4 (,3z) h h sin (3,8,h) sin (0,,z) + #,,z cos (&3,h) cos (/S,,z). (30)

Examining the nature of the boundary conditions, we furthermore con-
struct the solution to equations (25) and (26) in the form:

r =00H = akKk(/,3r) cos (2kM) (31)
k=0

(i) 00Hjm) - , {akK2K(i3Yr) + akI 2k($r)1 cos (2kM) (31)
k=O

HY) = = bkI2h,(Br) cos (2kM) (32)

Hn) 00
H( = r {cKiK2((ar) + 2I2k(a~r)} sin (2kM) (33)

k-o

HI V dI,4,(*.r) sin (2kM). (34)
k-c

oAm = A i ,k+}
1- t Lr + 2k+I sin (2k +-1)0 (35)

A~)= {0 All + ,,.,,÷,
2") = r•ko ( + }coi (2k + 1)0 (36)

A 0) = Bk + 2k+} cos (2k + 1)8 (37)

7



S-- (--1)k Er sin (2k + 1)9 (38)
k=O

2 • (-1)kEkr cos (2k + 1)0 (39)
k=O

3 F (-1)'Gr cos (2k + 1)0 (40)
k=O

where Ik(O3r) and Kk(I0r)represent the modified Bessel functions of the first
and second kind and ak, bk, Ck, dk, Ak, Bk, Ek and Gk are arbitrary constants
to be determined from the remaining boundary conditions (5) - (12). Upon
substitution of equations (14) - (40) into equations (5) - (12) one arrives
at a system of twelve equations involving series in z. The system may
then be solved numerically for the unknown coefficients. Perhaps it may be
worth noting that in our numerical analysis we satisfied first the boundary
conditions at r = a by using well over 200 roots. The method of solution,
as well as the rate of convergence of these series, is similar to that found by
Penado and Folias (1989, see reference for details). The system is sensitive
to small changes and for this reason double precision was used throughout
the numerical analysis.

8



4 Numerical results

Once the coefficients have numerically been determined, the stresses and
displacements may then be calculated at any point in the body. Avoid-
ing the long and tedious numerical details, the behavior of the stresses a,
and age versus (z/h) and at r = a and 0 = 0 are given by figures 3 and
4 respectively. It is noted that the stresses along the interior length of
the fiber are essentially constant and that as one approaches the edge of
the fiber length, a boundary layer is shown to exist. This sudden change
suggests, therefore, the presence of a stress singularity at such regions. In-
deed, a separate asymptotic analysis for the investigation of the local stress
field, at such neighborhoods, shows the stresses to be proportional to p-0,
where a = 0.249 for a glass fiber/epoxy matrix interface (Folias 1989) and
a = 0.318 for a carbon fiber 3/ epoxy matrix interface (Li and Folias 1990).
It may also be noted that Figs 3 and 4 provide us with important infor-
mation concerning the regions of applicability of macromechanical theories.
The reader may recall that such theories predict the stress values at edges
to be finite, except in the vicinity of an interface where the singularity
strength is shown to be very weak (Wang and Choi, 1982; Folias, 1991).
Thus, they tend to underestimate the actual stress levels at such edges, e.g.
surface of a hole, surface of a crack etc. But, if one is to study damage
evolution at such regions, the knowledge of the local stress field is essen-
tial. Be that as it may, a closer examination of Figs 3 and 4 shows the
boundary layer region, for a transverse applied load, to be restricted to a
distance of one fiber diameter away from the fiber edge. On the other hand,
if the applied load is in the direction of the fiber axis, the boundary layer
is then spread out to a distance of six fiber diameters away from the edge
(Zhong and Folias 1991). Thus coupling between the macromechanical and
micromechanical results may be desirable in predicting local damage due
to fracture.

Returning to the stress profiles ,., and o~e (Fig. 3 and 4) we note that
the magnitude of the stresses decreases as the fiber volume fraction, Vf,
increases. The decrease, however, is only noticed when the spacing of the
fibers becomes less than four fiber diameters center to center. Figs 5 and
6 show typical stress profiles for a, and age as a function of G//G,,m. It

31n this analysis the mattrial of the carbon fiber is assumed to be transversely isotropic.

9



is interesting to note that the circumferencial stress age decreases rapidly
as the ratio (GI/Gm) increases. For glass fiber/epoxy matrix (GjIGm) =
16.67, which implies that the age stress is approximately zero. Thus, all
things being equal, the controlling stress for possible crack failure is the
radial stress a,, at the particular location of 0 = 0. For large (GI/Gm)
ratios, the radial stress reaches an asymptotic value. A similar result was
also obtained by other researchers based on 2D considerations (e.g. Adams
and Donen 1967). In Fig. 7, a plot of the radial stress on the interface
boundary is shown to decrease as the angle 9 increases. On the other
hand, the shear stress 're (See Fig. 8) vanishes at the two positions 0 = 0*
and 90* and attains its maximum value at 0 ;, 45*. The location of this
maximum shifts slightly to the right as the ratio of (a/b) increases. Similar
stress profiles also appear as one moves towards the free surface. At the
free surface, the question arises as to whether the strength of the stress
singularity is affected as the separation distance between fibers becomes
smaller and smaller. While initially the authors believed that this may be
the case, lately they believe that the singularity strength will not be altered
but that the function multiplying the singular term is expected to change.
Be that as it may, the subject is under further investigation.

5 Conclusions

A 3D micromechanical model has been developed to represent the response
of a unidirectional composite plate subject to a transverse load. In this
model, the fibers are considered to be cylindrical inclusions which are peri-
odically embedded into the matrix. The material of both fibers and matrix
is assumed to be linear, elastic and isotropic. The analysis has shown that,
as the fiber volume fraction V1 increases, the radial stress o,,, decreases by
30 to 40 percent. On the other hand, the circumferential stress age is almost
negligible. The stress profiles across the fiber length are almost constant
except in the neighborhood of the fiber edge, where a boundary layer is
shown to prevail. In this region, the stress field possesses a weak stress
singularity which for a glass fiber/epoxy matrix composite is of the order
0.25. This result represents a departure from the results predicted by a
macromechanical theory. This inconsistency is attributed to the fact that
macromechanical theories tend to average the local effects throughout each

10



layer thickness, and as a result all stresses at the edge are predicted to be
finite. Thus, the present analysis also provides us with important informa-
tion regarding the regions of applicability of macromechanical theories.

A closer examination of the stress field reveals that, in the presence
of a crack, the damaging stress for possible failure is the radial stress a,.,,
particularly at the location 0 = 0. Two types of failure immediately come
to mind: a fiber/matrix interface crack and a radial matrix crack. In
conjunction with this work, the former was recently considered by Folias
(1991) and the latter by Folias and Liu (1991).

It is well recognized that void nucleation occurs more readily in a triaxial
tensile stress field, a result which is consistent with experimental observa-
tions. Such a model for estimating the void nucleation stress may now 1e
obtained, if in our previous analysis we let Gi -* 0+. The physical situation
depicted here is that of a matrix which has been weakened by a uniformly
distributed periodic array of cylindrical voids or holes. Such an estimate
may then serve as a lower bound for the transverse strength of a unidirec-
tional composite plate. Without going into the numerical details, we plot
in Fig. 9 the stress concentration factor age through the thickness (z/h)
and for a typical ratio of (a/b) = 0.3. It is noted that the s.c.f. is relatively
constant throughout the interior and that it rises slightly as it reaches the
vicinity of the free surface whereby it begins to drop rather abruptly. The
characteristic stress profile is in agreement with that found by Folias and
Wang (1990) for the case of one hole. the variation of the s.c.f. as a func-
tion of the ratio (a/b) is given by Fig. 10, where it may be noted that the
void volume fraction in the matrix is given by

Vh= )) (41)

It is clear from this Fig. that the s.c.f. increases rather rapidly as the
void volume fraction ratio increases. The result is in agreement with our
physical expectations. A similar stress profile is also observed throughout
the thickness including the plane " z = h. (see Fig. 11). Finally, in Figs.
12a and 12b we plot the variation of the s.c.f. on the planes z = 0 and
z = h as a function of the position angle 0 and for different (a/b) ratios.

4Folias (1987) has shown that no stress singularity is present in the vicinity of the
intersection of the hole surface and the free of stress plane.

I1



It is noted that in the region 700 < 9 < 90* the s.c.f. is relatively flat.
This is the region where a crack is most likely to initiate and subsequently
propagate.

In closing, it may be appropriate here to note that the analysis may now
be extended to also include row of fibers with different fiber orientations,
which points to the concept of a laminated composite plate. This defines
the subject of a subsequent paper.
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Abstract

This paper investigates the free edge effect on the stress field of a carbon fiber,

which is embedded into an epoxy matrix. The fiber is assumed to possess cylindrical

symmetry and to be transversely isotropic. The matrix is assumed to be of an isotropic

material. The stress field is induced by a uniform tension applied on the matrix at points far

away from the fiber surface.

The displacement and stress fields are explicitly derived and a stress singularity is

shown to prevail. The singularity strength is shown to be a function of the material

constants of the fiber as well as those of the matrix. Finally, the displacement and stress

profiles are plotted as a function of the angle ý which is measured from the free surface.



1. Introduction

Quite often in engineering practice, structures are composed of two elastic materials with
different properties which are bonded together over some surface. Such type of problem
has been investigated from a 2D point of view by many researchers and the results can be
found in the literature. For example, Knein (1927) considered the plane strain problem of
an orthogonal elastic wedge bonded to a rigid base. Rongved (1955) investigated the
problem of two bonded elastic half-spaces subjected to a concentrated force in the interior.
Subsequently, Williams (1959) studied the stress field around a fault or a crack in
dissimilar media. The work was then generalized by Rice and Sih (1965) to also include
arbitrary angles.

It was not until 1968 that Bogy (1968) considered the general problem of two
bonded quarter-planes of dissimilar isotropic, elastic materials subjected to arbitrary
boundary tractions. The problem was solved by an application of the Mellin transform in
conjunction with the Airy stress function. The same author (1971) extended his work to
also include dissimilar wedges of arbitrary angles. Shortly thereafter, Hein and Erdogan
(1971), using the same method of solution, independently reproduced the results by Bogy.
Finally, Westmann (1975) studied the case of a wedge of an arbitrary angle which was
bonded along a finite length to a half-space. His analysis showed the presence of two
singularities close to each other. Thus, elimination of the first singular term does not lead
to a bounded stress field since the second singularity is still present.

Based on 3D consideration, Luk and Keer (1979) investigated the stress field in an
elastic half-space containing a partially embedded axially-loaded, rigid cylindrical rod. The
problem was formulated in terms of Hankel integral transforms and was finally cast into a
system of coupled singular integral equations the solution of which was sought
numerically. The authors were able, however, to extract in the limit from the integral
equations the characteristic equation governing the singular behavior at the intersection of
the free surface and that of the rigid inclusion. Their result was in agreement with that
obtained by Williams (1952) for a right-angle comer with fixed-free boundary conditions.

Haritos and Keer (1979) investigated the stress field in a half-space containing an
embedded rigid block under conditions of plane strain. The problem was formulated by
cleverly superimposing the solutions to the problem of horizontal and vertical line
inclusions beneath an elastic half-space. By isolating the pertinent terms, the authors were



able to extract directly from the integral equations the order of the stress singularity at both

comers. Both results art in agreement with the Williams solution. Moreover, the authors
point out the importance of the second singularity to the results of the load transfer

problems.

With the advancement of composites and their extensive use in the aerospace

industry, problems for the determination of the stress and displacement fields around
inclusions have drawn considerable attention. For instance, Goodier (1933) investigated
the disturbing effect of small spherical and cylindrical inclusions on an otherwise uniform

stress distribution plate. Numerical results were presented for flaws, perfectly-bonded
rigid inclusions and slag globules cases. Hardiman (1952) used the complex variable

method to treat the elliptic inclusion problem, he was the first to find that a uniform applied
load at infinity induces a constant state of stress within an elliptic inclusion. The work was
later generalized by Sendeckyj (1970) to include the solutions of the elastic curvilinear
inclusion problems. It was not until 1979 that Tirosh, Katz and Lifschuetz (1979) studied
the stress interaction of a single fiber, embedded in an elastic matrix, with a micro-crack
situated along or near the interface. They found that the radial tensile stress component Orr
is higher than the tangential component o00, and the location r at which the maximum stress

takes place is not on the interface but at a small distance ahead, depending on the Poisson's

ratio of the matrix. Dundurs(1989) noticed that the stresses in a body that contains rigid
inclusions and is subjected to a specified surface traction depend on the Poisson's ratio of

the materials. If the Poisson's ratio is set equal to one we recover the case of plane strain

while if it is set equal to infinity we recover the case of plane stress.

In the area of multiple or periodical inclusions problems, Adams and Doner (1967)
obtained a 2D numerical solution by a systematic overrelaxation procedure for a plate

containing a rectangular array of inclusions embedded in an elastic matrix and subjected to a

uniform normal transverse stress at infinity. At the same time, Goree (1967) presented a

solution for the stress and displacement distributions in an infinite elastic matrix containing

two perfectly-bonded rigid cylindrical inclusions of different radii. Subsequently, Haener

and Ashbaugh (1967) used the displacement potentials method to express the stress

distributions in a unidirectional multiple fibers composite plate under external and residual

loads. Marloff and Daniel (1969) used a standard stress-freezing technique to determine

the 3D stress distribution in the matrix of a unidrectional composite plate subjected to

matrix shrinkage and normal transverse load. Based on Sendeckjs previous work, Yu and

Sendeckj (1974) extended their study by means of the Schwarz alternating method to the

2



case of an infinite elastic matrix containing random number of elastic inclusions.

Moreover, Adams and Crane (1984) studied a microscopic region of a unidirectional
composite plate by the finite element micromechanical analysis using a generalized plane

strain formulation. Finally, Keer, Dundurs and Kiattikomol (1973) studied the phenomena

of the separation of a smooth circular inclusion from a matrix which is subjected to an

uniform load. Using finite integral transforms, the problem of finding the extension of

separation and the contact pressure is reduced to the solution of a Fredholm integral

equation with a weakly singular Kernel.

Recently, Folias (1989) examined the local stress field in the neighborhood where a

fiber embeddded into an epoxy matrix meets a free surface. In this analysis, Folias
assumed the fiber and the matrix to be isotropic but of different material constants. The

analysis showed that the stress field in this vicinity to be singular. Moreover, the 3D

analysis showed that for the case of a cylindrical inclusion, the order of the singularity
strength is precisely that which was reported by Bogy (1968) based on 2D consideration.

In the present paper the analysis is extended to also include a transversely isotropic fiber,

e.g. carbon fiber, and the explicit 3D displacement and stress fields are recovered.

2. Formulation of the problem

Consider the equilibrium of a cylindrical carbon fiber of radius a which is

embedded into a homogeneous, isotropic and linear elastic matrix that occupies the space

Ix I< -, I yI< - and I z 1< h. The fiber is assumed to be of a transversely isotropic
material with different material properties than those of the matrix. Moreover, the axis of

the fiber is assumed to intersect the bounding plane z;-- ±h perpendicularly and that the

matrix is subjected to a uniform tensile load co in the direction of the y-axis and parallel to

the xy-plane (see Fig. I). Perfect bonding at the interface is assumed to prevail.

In the absence of body forces, the equilibrium equations, in terms of the stresses
Oip are:

do. - 1 d•.e'-• -r (in) +. Cm)' - a,,€m) =0

dr r jO dz r (I)
dr•+ 1 =+ +=• 2____

dr rdO dz r (2)
()i 1 + + -(0) =

Or r dO az r (3)
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where superscript m=1 represents the material of the matrix and m=2 represents the

material of the fiber.

The stress-strain relations for a transversely isotropic1 , as well as an isotropic,

material are given by the constitutive relations

"a.Oift) C11 ) C12 'm) Cq3(i) 0 0 0 E-)

amn) W C12W C1, I) q3 W 0 0 0 EM W

a(T= C13(m) C13(m) C33(m) 0 0 0 E= W
(to) 0 0 0 C44(,) 0 0 Yo. W

(in) 0 0 0 0 C44 ) W 0 C=W=U
Tr@() 0 0 0 0 O Cll1m - C12(m Wi

2 (4)

where the Cij(m) represent the respective material constants.

As to boundary conditions, we require that (i) the stresses on the planes z= ±h must

vanish and (ii) that the displacements and stresses of the two materials must match at the

interface, i.e. at r=a.

3. Method of solution

The primary objective of this analysis is to derive an asymptotic solution which is

valid in the immediate vicinity of the corner points, i.e. the points where the interface meets

the free surface of the matrix. Thus following the same method of solution as that of Folias

(1989), one may write the equilibrium equations (1)-(3) in terms of the displacements uj(m)

as2
° a2w(=') •u 0

qm d(r -a)2 + (c,3 W + c44(iW)) d(r - a)&z + C44 W & 2  =0(5)

- W (c- q2'm) ) c *(- ) + C44(m u.(-, = -0
2 d(r-a)2  2 (6)

CW_ 2w (m) +- (m) + W

C d(r-a(r a)& 3 =0

iThe material of the fiber is assumed to possess a cylindrical symmetry.

2 In writing the following equations, we assumed that (r-a) << a.
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It is interesting to note that the stress field, at the vicinity of the fiber interface, leads
to two coupled equations (5) and (7) for the displacements ;(m) and w(m) and an additional

equation (6) for the displacement Ue(m).

Without going into the mathematical details, by direct substitution, one can show
that the following displacement field satisfies the governing equations (5)-(7):

u, (M) = -[C13-) + C (M)} H")
+44(1)(r-a)dz (8)I ~ 2 +

d(ra-ra)2 2J (9
ue =Rm) (10)

where the psudo-harmonic functions H and fi(') satisfy the equations:

,92 (M 192 If8() ()2 (M{d~~a2e1~~-H-+E mJ.H~3 =0
(r.- a)2 - zj (r-a)2  2 (11)

and

I 2 -0
d-77 (12)

with
e.. = ±•+4=;d

2 2 2 (13)

=2C44m
(C-11(o) - C12(i) (14)

dm -- ,,,
C,(=)(15)doC C ()

C .= - -ýý _ C "~) 2 r 13_ ...W

C44(M) CII(=)C'(M) C11(M) (16)

It is found convenient at this stage to introduce the local coorlinate system

(see Fig. 2),
r-a =pcos (17)
h- z psin# (18)

and to adopt the following definitions:
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Fig. 2 Definition of two local coordinate systems (a) and (b) at the comer
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p c o + sin2

A= p(19)

p20 +sin )J

=P +(20)

0=tAnI tano
{77 Wj (21)

*2 TEa71 tan (22)

in view of which, one may now construct asymptotic solutions for the functions IV* and
AW() in ascending powers of p, i.e.

H""' = pA acos(80){AI2 ') co4(a + 1)02] + B2 ""' sin[(a + )02]

+ 1 -y,"(-)(C)sin[(a + I)(02 - C)]d4 + O(Poa" 2)÷(a+l) 0(3

and

i•(M) = A a+] cOs(qO){A," co4(a + 1)01] + BI() sin[(a + 1)01

+O(o, a+2 (24)
where

= {A3()sco{ (a-1)tan-' .i,. tan K •1
J 1+tan2g

(25)
and a, A,(m), B(). A(m). B:,(), Am) and B,(m) a nknon consat to be dtmine

from the following boundary conditions:

at0 = 0 : On) =r. ,'() M 0 (26)

at x a,. (2) ( rt (2),,0 (27)
at .5 =r 0'u) = U 1(2), us 0) -- US(2),W(I) . W (2)

2 (28)

00 = 2),e(I) = r,(2),,,,,O = ,=.(2) (29)
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Substituting the previously constructed displacement field into the boundary

conditions (26)-(29), we arrive at a system of twelve algebraic equations, the determinant
of which must vanish. This latter condition leads to a transcendental equation for the

characteristic value c.

Without going into the mathematical details, these characteristic values a may easily

be determined with the aid of a computer. Although the transcendental equation has an

infinite number of real roots, only those values which lie in the interval 1< a < 2 are of

practical interest. Furthermore, in this interval there are no complex roots present. In

general a depends on the respective material properties of the matrix as well as of the fiber.

The displacement and stress fields may now be computed in terms of one unknown

constant which in turn is to be determined from the loading conditions far away firom the

fiber-matrix interface. Without going into the mathematical details, the explicit

displacement and stress fields are found to be:

(i) displacement field:

u,) 1 (C. (C,) +C,"')a(, + l)p2 -' cos(P6O)

{A 2(-~) sin[(a - 1)02] + B2(M) cos[(a - 1)02] + LIf ,)(
I-(a+ +1) 0

cos[(a - 1)02-(a + 1)C]dC - COS 02 sin (30)

w = a(a + 1)+ 2 -' cos1)3)

{(C 11,() - C("){A,(m)cos[(z - 1021 + B 2,() sin[(a - 1)02]

S(a +)I 'I "(Osin[(a - D)02 - (a + I)C•CI} L+ a(a++)
( cosa]0 .) +

+E4(m) a)0 )el (M) aa + (02 ()1 +)W
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=Om a(ca + I)p 1*-'cos(PO)

(Hi) strss field:[A()cqa-1#]+ 
,=si[a-)I)+Oa 

32

SC, 4(-)(a - 1)a(a + i)p2a-2 Cos(flo)

+(I EI"- ){A2 ~ sin[(a - 2)02] -B 2(M) co4(a - 2)021

(a + 1) lo'' (C)cos[( - 2)02 -(a + )C~dcl[C} +

+CS.I))sin20 2 cos 0,_ _ CII(m) £f02+ SL COS2 02sin 02]

el(a -1a(a + 1) + a (a~l - 1))a(a+ 1)

(m) 
(33) c(-

= 1(a-I)aa(a 1)p 2 cos(0) (-~~~~

LVm) (02ri) C W2a-) 33
M) ~ ~ a-2 ~ 1

sin[(a - 2)021 - B2'm cos[(a - 2)02]- W1 W (C
(a+1) 0

coq(a - 2)02 - (a + 1)C~dC) + {C12 ~(M) 3qs'= + C,44(o)) - C3m

C () 44 M))Isin 2#, cos 02_ + [_C 1 ( (Cm3)(1 -0 (-)] A (a T+1) I C3- 4()

+CIill 0MqI m + C13  COS ~2 #2 si V02 } (02)
a(a +1) el a(a +1)

+ -12 M)(CIM)+ C"=)+ c13(.)C1(m)] SM2 02 CO 0
11 (a -1)a(a + 1)

~ co' 0 } ~(m)(02) + W~2~1

zi (a -l)a(a+l1)1(4
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1(a - )a(a + I)p 2*-2 COS(pq)

{C3 (i) (Ci3(m) + c"W - c 33 (aI) (C 1Ih I 3m I)A2()

sin[(a -2)021- B2(m cos(a -2)02] - I V-)(o'
(a +1)

co4(a - 2)02 - (a + 1)C]dC1 + {[C,3(-)(1 3 ("') + C4() 3-)

cl (MC-(M sin 202 cos0,_ + [-C13(m)(q 3(m + C44"")) +
11 ] a(a + 1)

sin C3 40 + C33 ()C "(m) COS2 02 si 0511 02
C3a(a + 1) el() a(a + 1) J1

+1[C13m) C13m)+ C44 () )+C (=CSS,'C11 l sin 2 02 COS 02
(a - I)a(a +1)

ri (a - 1)a(a +Il(5

(M C44 M)(a - 1)a(a + I)p 2a-2 COS(ptq)

{C1~ + (m)+S3{-A2(mco4(a -2)021+ B2(n) sin[(a -2)021

+ 1 -- )j '~sin[(a - 2)02 - (a + I)C1d4
(a+ 1) 1 C

+ i ()+ C3(-) 1sin 20, sin 0,

511W in2 02 COS 02 Wm(2 +If C () Sin 3 02
a(a + 1)jrWJT~.1(a - I)a(a + 1)

4 1 -3(i) COS2 02 sin~ 02 v V)"(0 2 l + O(p2a-1) (6

e= - (a -aa+ 1)]~ 1)p 1  (36)l

{-AI(m) sm([(a - 1)01] + B,(m) co4(a - 1)01 1} + Cola-) (37)



= Ui) -c2  -(a - 1)a(a +l p 2 o ( O
2

{A,(-)co[(a - l)01I + B,(m"sin[(a - 1)0i1] + O(pl"') (38)

4. Discussion

As a practical matter, two different types of fibers embedded into an epoxy matrix

were considered, a carbon fiber and a glass fiber defined by the following elastic

properties (see Table I.):

Table 1. The Material Properties for Carbon Fiber, Glass Fiber and Epoxy Matrix

Carbon FiberGas ieMUMti

C11=20.40 MPa C11= 99.19 MPa C1 = 6.62 MPa
C12 -= 9.40 MPa C12= 27.69 MPa C12= 3.41 MPa

C13=10.50 MPa

C33=240.00 MPa

C44= 24.00 MPa

Omitting the long and tedious numerical details, the characteristic values of a were

found to be a=1.693 and a=1.737, respectively 3. The analysis suggests that the presence
of a carbon fiber induces a slightly higher singular stress field than that of a glass fiber and
consequently is more prone to failure. Moreover, in the limit, one recovers precisely the
corresponding isotropic solution derived by Folias (1989). In Figs. 3-6, the behaviors of
the local displacement and stress fields as a function of angular distribution * are depicted
for both fibers considered above. The reader may note that for simplicity we have adopted

the definition:
C(8) = A2 

2)a(a + 1)cos(80) (39)
which in the limit, as the material constants

C4 -+ Cm isotropic, (40)

3 It may be noted that a second real root exists within this interval, however it leads to a
slightly weaker stress singularity (see Westmann, 1975).
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the function C( ) - *( )( 1C(9) --) C'(9) (41 )

It is noteworthy to note that, although the displacement and stress profiles corresponding to
the two different fibers are very similar, their respective magnitudes are different. Similar

trends are also expected to prevail at locations further away from the free surface. Finally,

it remains for us to relate the unknown constant A2(2) to the applied load far away from the

vicinity of the fiber. This matter is presently under investigation, and the results will be

reported in a future paper where we will also take into account other effects such as stresses

due to a temperature mismatch, mechanical loads along and perpendicular to the fiber axis,

and a correction factor to account for the presence of a periodic army of fibers embedded

into a matrix. Finally, the variation of the exponent a as a function of the material ratio

C33(2)/C 33(1) is given by Fig. 7.
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ABSTRACT

This paper deals with the 3D stress field of a cylindrical fiber which is
embedded into a resin matrix. The composite is then subjected to a uniform
tensile load 0o. The strain energy release rate is computed and the criterion is
used to predict debonding initiation at the fiber/matrix interface. The
analysis shows that this failure is most likely to occur at the free surface, ie the
region where the fiber intersects a free surface for example a hole, an edge, or
a crack. Moreover, it will occur at approximately (1/10) the load value
required for the same failure to commense at the center of the fiber length.

The results are also extended to include a doubly periodic array of fibers
which are embedded into a matrix. Based on 3D considerations, the stiffness
matrix is shown to increase as the volume fraction of the fibers increases.
Similarly, the stress Orr in the matrix is shown to decrease as the volume
fraction of the fibers increases.
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INTRODUCTION

It is well recognized that fiber composite materials are very attractive

for use in aerospace, automotive and other applications. These composites

consist of relatively stiff fibers which are embedded into a lower stiffness
matrix. Although in most designs the fibers are aligned so that they are
parallel to the direction of the external loads, it is almost impossible to avoid

induced transverse stresses which may lead to premature failure of the

laminate. An excellent example of this is the case of a filament wound
pressure vessel in which the presence of a curvature induces bending as well

as transverse stresses (Folias, 1965). However, in order to be able to predict

their failing characteristics, particularly in the neighborhood of free surfaces

such as holes, edges etc., it is necessary to know the local stress b,,havior from

a 3D point of view.
An overall summary of some of the results, which are based on 2D

elasticity considerations can be found in the books by Hull (1981) and by

Chamis (1975). In their pioneering work, Adams and Doner (1967) used finite
differences to solve the problem of a doubly periodic array of elastic fibers

contained in an elastic matrix and subjected to a transverse load. Their
results reveal the dependence of the maximum principal stress versus the
constituent stiffness ratio (Ef/Em) for various fiber volume ratios. A few

years later, Yu and Sendeckyj (1974) used a complex variable approach to

solve the problem of multiple inclusions embedded into an infinite matrix.
Their results were subsequently specialized to cases of two and three

inclusions thus providing us with futher insight into the strength of the

composite. On the other hand, the separation of a smooth circular inclusion

from a matrix was investigated by Keer, Dundurs and Kiattikomol (1973). By
using finite integral transforms, they were able to reduce the problem to that
of a Fredholm integral equation with a weakly singular kernel. Thus,

extracting the singular part of the solution, they were able to reduce the
remaining problem to a simpler one which lends itself to an effective

numerical solution. Their results are very general and are applicable to

various combinations of material properties and loads.
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In this paper, use of the local, 3D, stress field will be made in order to

examine the dependence of the stress Orr, in the matrix, on the ratio (Gf/Gm).

The strain energy release rate will then be computed in order to predict crack

initiation at the fiber/matrix interface. Particular emphasis will be placed in

the region where fibers meet a free surface as well as at the center of a fiber's

length.

FORMULATION OF THE PROBLEM

Let us consider a cylindrical fiber of homogeneous and isotropic

material, e.g. a glass fiber, which is embedded into a matrix of also

homogeneous and isotropic material.

Futhermore, we assume the matrix to be a rectangular plate with finite

dimensions 2w, 2/, and 2h as defined by fig. 1. For simplicity, we assume
w /a > 8 and Z > 8. Such an assumption will guarantee that the boundary planes

a a
x = ± w, and y = ±4, will not effect the local stress field adjacent to the fiber.*

Thus, mathematically, one may consider the boundaries in the x and y

directions to extend to infinity. As to loading, the plate is subjected to a

uniform tensile load cro in the direction of the y-axis and parallel to the

bounding planes (see Fig. I).
In the absence of body forces, the coupled differential equations

governing the displacement functions uf ) are

1- v j ) + V2 . = 0, i = 1,2,3, j= 1,2, (1)

1-2 vj axi I =

where V2 is the Laplacian operator, vj is Poisson's ratio, upS) and u (2) represent

the displacement functions in media I (matrix) and 2 (fiber) respectively, and

Su$J)

e(J) = ' ; i = 1,2,3 ; j= 1,2. (2)

The stress-displacement relations are given by Hooke's law as

This can be seen from the results which were recently reported by (Penado and Folias (1989).
4



(j) (j) (j) (j)Xr i ekk 'i2G (3)

where Xj and Gj are the Lame' constants describing media 1 and 2.

THE SOLUTION FOR ONE FIBER

A. Region where fiber intersects the free edge

This problem was recently investigated by the author (Folias 1989) who

was able to recover, explicitly, the three dimensional stress field adjacent to
the surface of the fiber . Without going into the mathematical details, the

displacement and stress fields for the matrix are given in terms of the local

coordinate system (see fig. 2) by:

(i) displacement field:

u(1) =An pa-1 sine {B [2 (1-vl) cos (a-i)ý - (a-1) sino sin(a-2)¢] (4)

- (a+1) [(1-2vi) sin (a-I)ý + (a-1) sine cos ((a-2) €] } cos(2ne)

v(1) =An pOx-1 cosO [B [2 (1-vl) cos (a-l)4 - (a-1) sine sin(cx-2)0 ] (5)

- (a+l) [(1-2vi) sin (a-l) 4 + (a-i) sine cos (a-2)4] } cos(2nO)

w(1 ) = An pa-1 {B [- (1-2vl) sin (a-1)4, + (a-1) sine cos (a-2) 4 ] (6)

-(a+i) [ 2 (1-vl) cos (a-1)€ + (a-i) sine sin(a+2) 0 1) cos(2ne)

(ii) stress field:

(1) =2G() (a-1) An pa-2 {B [ 2 cos (a-2)€ - (a-2) sine sin(cx-3)0] (7)

- (a+l) [sin (a-2)4 + (a-2) sine cos (a-3)O] } cos(2ne)

(1) =pa2 {B (a-2)@ - (a+l) sin(a-2)0} cos(2n9) (8)
Gee = 4viG(1) (a-i) An cos -

"A similar analysis for a transversely isotropic fiber meeting a free surface has recently been
completed and the results will be reported soon.
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az -= 2G(1) (a-1) An p- 2 1B (a-2) sin0 sin(a-3)ý (9)

+ (a+1) [(a-2) sinO cos (a-3)# - sin(a-2)O ]) cos(2ne)
(1)r

•rz 2G(1) (a-i) An pa-2 {B [sin (a-2)ý + (cx-2) sinO cos ((x-3)0I (10)

- (a+l) (a-2) sinf sin(a-3)O }cos(2ne)

(1) (1)
"ore =ez = 0, (M11-02)

where n = 0,1,2,... and B is a function of the material constants and An is a

constant to be determined from the boundary conditions far away from the

fiber'. In general, the characteristic value of at depends on the material

constants of the fiber as well as of the matrix. A typical example is given in

fig. 3.

Upon examination of the stress field, the following remarks are worthy

of note. First, the stress field in the neighborhood where the fiber meets the
free surface is signular. Moreover, in the limiting case of a perfectly rigid

inclusion this singularity strength reaches the value of 0.2888. Second,bounary ond(1)n (1)~z (n )
boundary conditions () () andx (yz are satisfied as a consequence of the

odd functional behavior in ý, which points to the presence of a boundary

layer solution as one approaches the free surface. Third, on the free surface
the radial stress is (1/vI) times the circumpherential stress. This suggests,

therefore, that if a crack was to initiate, it would propagate along, (or very
very close to) the fiber/matrix interface. Clearly, the occurance of either

adhesive or cohesive failure will depend on the relative strengths of the

interface, of the fiber, and of the matrix. All things being equal, the analysis

shows the stresses to be highest at the interface, thus pointing to an adhesive

type of failure.

"for one fiber n=0,1., while for a periodic extension n=0,1,2,..
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B. Interior region

The, 3D, stress field for this region has also been recovered by Penado
and Folias (1989) and the results for various (a/h) and (G2/GI) ratios may be
found in the literature. The results have subsequently been extended (Folias
and Liu, 1990) to also include a layer of modified matrix around the fiber.

(1) (1)Thus for vj = 0.34, V2 = 0.22 and (G2/G1) = 16.67 the stresses a-r and a at r

a and for all I z 1 < h are given in figs 4 and 5 respectively. Finally, fig. 6 (for
(1)X=0) shows the variation of the stress ai as a function of the ratio (G2/G1).

INTERFACE FAILURE CLOSE TO THE FREE SURFACE

A closer inspection of the local stress field shows that a crack is most
likely to initiate at the location 9 = 0 and subsequently propagate along the
fiber/matrix interface until it reaches a nominal value of the arc length
beyond which it will advance into the matrix. Moreover, once the crack
begins to propagate, it will simultaneously propagate along the interface and
parallel to the axis of the fiber (mode III). Thus, crack propagation will be
governed initially by a mode I failure and subsequently by a combination of
mode I and mode III failure. It is now possible for us to examine the first
stage of the failing process and to obtain an estimate of the debonded arc
length as well as an estimate of the critical transverse stress for crack
initiation.

As a practical matter, we will consider the special case of a glass fiber
embedded into an epoxy matrix with the following properties

G1 = 2.10 GPa vj = 0.34 (13)
G2 = 35.00 GPa v2 = 0.22.

Without going into the numerical details, the constants a, A and B for this
example are found to be*:

The constant A has been determined by comparing the displacement w(l), as well as the
(1)

stress cn. at e = 0, at z = h and for (a/h) = 0.5 with the work of Penado and Folias (1989).

n
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a = 1.7511, G( 1) A aa-2 - 0.6349 co, B - 2.1302, (14)

where 0 o now has the units of GPa. Thus, from equations (7)-(12) one has

(i) at 0=0 and0=0:

(1) - 40633ao (r- 0o.2489 (15)

(1) (1) (6a•}=vl a.1, (16)

(i) at = n/2 and e = 0:

.r(1) 9(h-- 0.2489 (17)Clr ( 1.16 h) (7

(•1) _1() - 0.4844 (rr (18)

1(1) ((1)
rz " 0  rr . (19)

It is clear now from equations (15) and (16) that crack failure is most

likely to initiate and subsequently propagate along the fiber/matrix interface

rather than perpendicular to it. Similarly, equations (17) and (19) suggest that

failure in the direction parallel to the axis of the fiber is dominated first by a

mode I and second by a mode III type of failure. It may also be noted that
(1) attains a maximum at 0 = 0 and descreases as one travels along the

aUrr
surface of the fiber.

Finally, based on 3D considerations, the stress field away from the
edges, z = ±h, and in the interior of the plate was shown to be non-singular
(Penado and Folias 1989, Folias and Liu 1990) with*

S= 0.4090 = 0.4090 (1.4281 ao) = 0.5841 0 o , at 0 = 0 (20a)

These results are valid for a ratio of (a/h) a 0.05 and subject to the assumption that (a) > 8
a

and (//a) > 8 in which case the end boundaries in x and y have insignificant effects on the
local to the fiber stress field.
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at r = a and z = 0. Comparing this value with that of the corresponding plane
strain solution

o(1) V _1 )
(1) V = I =0.5152 ao, at 0 = 0 (20b)

one notices that it is approximately 13% higher in value due to the presence
of the stresses in the third dimension.

It is now possible for us to obtain an approximate criterion for de-
bonding along the fiber/matrix interface based on Griffith's theory of fracture.
Thus, following the work of Toya (1974), if one assumes the presence of an
interface crack of length 2aU3 and if futhermore takes into account the local 3D
stress field, then Toya's result may be written as

(1/16) (1.1337c;o)2 k a Al (1+4 e2) 7t No Nosin exp [2 E(ir-3)]= 2y12  (21)

where

1 +k2
k = l+k2 + (1+kl) (G2/G1) (22)

3-4vi for plane strain
ki = 3-v fori (23)13v for plane stress1 +vi

1 1 + k2 (G1 /G2)E = -TI A• kj + (G31/G2) (25)

1 2(1-k) 1+k2(G1/G2)No-Go-k - k ki + (Gi/G2) exp [(2e- i)] (26)

1- (cos P + 2E sin 13) exp [2. (xt-1)] + (1-k) (1 + 4E2) sin21 (27)
Go = 2-k-k (cos 3 + 2E sinj3) exp [2e (t- ( 3) (

9



where No is the complex conjugate of No, 112 is the specific surface energy of

the interface and 3 the angle of debonded interface (see Fig. 7). While it is
true that this type of approach does not provide results for the exact initiation
of an interface crack problem, ie from a condition of perfectly bonded interface
to that of a partially debonded interface, it does, however, provide a very good
first approximation to this complex phenomenon. The author is well aware
of that and is presently continuing his work along such lines and with some

promise.

Upon rearranging, equation (21) can be written in the form*

212 = (1.2853) F (viGi; 3 ), (28)

Goa

where F is a function of the material constants and the angle 0 of the
debonded interface. A plot of this equation for conditions of plane stress, as
well as of plane strain, is given in Fig. 8. In both cases the maximum occurs at

D3 = 600. Beyond this angle, the crack will gradually curve away from the
interface and into the matrix.

In order for us to obtain an estimate for the critical stress for crack
initiation we let 13 -+ 0+, ie very small but not zero. Thus, for our example

(Yo)cr NJ7aW -m 1.8186 Y12 GjI; atz=0. (29a)

On the other hand, in the neighborhood of the free surface, the applied stress
is much higher because of the singularity presence. In order to overcome this
difficulty, one may average the local stress over a distance equal to 10% of that
of the radius, ie.

It should be noted that at the crack ends the stress field oscillates and that some overlap of
the crack faces takes place. This matter is well recognized and has been documented by
Williams (1952), Rice et al. (1965) and England (1965). The region where this occurs, however,
is so small (less than a x 10"3) that eq. (28) provides a good approximation.

10



1 ".1a (4.0633 ao ) -0.2489 d4 (30)(OO)eff - (0.1a) f

-9.5958 oo.

Thus*

(9.5958 ao)cr T - 1.8146 .4¥12G1; at z ±h. (29b)

Combining next eqs. (29a) and (29b) one finds

('o)cr lat z=h (31)

(Oo)cr lat z=0

ie. the critical loading stress which may cause failure close to a free surface is
approximately (1/10) of the critical stress required to cause the same failure at
the center of the fiber's length. Thus, all things being equal, a crack will
initiate at the free surface and will propagate along the periphery of the
fiber/matrix interface as well as parallel to the axis of the fiber.

Focusing next our attention on the advancement of the crack along the
periphery of the fiber we conclude that the crack will advance itself to a
cricital angle of P3 - 600. Once the crack has reached* 8 = 601, the local
geometry is similar to that of a hole. This problem has also been investigated
for the, 3D, stress field dose to a free surface (Folias, 1987), as well as in the
interior of the plate (Folias and Wang 1986). Without going into the details,
at z=h, it was found that

(1)
o (1+Vl) -1.34, (32)

arr

suggesting, therefore, that the failure now is governed by the stress ob) which

attains its maximum value at 0 = x/2. Thus, the crack will begin to curve into

"The reader may notice that the right hand side of equation (29b) differs from (29a) because it
is based on plane stress.
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the matrix until its direction becomes perpendicular to that of the applied

load.

PERIODIC ARRAY OF FIBERS

The previous results were based on the presence of one fiber only. It is
now desirable to extend these results to also include a doubly periodic array of
fibers which are embedded into a matrix. For this reason, we assume, a
periodic arrangement of the type shown in fig. 9. Following the same method
of solution as that of Penado and Folias (1989), one finds* at z--O the stresses

W) and %19), for vl = 0.34, v2 = 0.22 and various (G2/GI) ratios, shown in figs.

6 and 10. Two observations are worthy of note. First, beyond a certain ratio of

(G2/Gi) the stress (7) reaches an asymptotic value. Such trend was alsorr

found by Adams (1967) based on 2D considerations. Second, as the volume of
fibers increases the stress o(I) decreases by as much as 40% (see fig. 11).rr

Returning next to the strain energy release rate, equation (21) is still a
good approximation provided that co is replaced by the following effective
load stress

(%)f..GiTn GO1) ' m% F(Vf) (o ; for z=O0. (33)
1 rr -o

Thus equation (29a) now becomes

(aro), = 1.8186F(VjJ• =w (34)

which is valid for small values of 0.

"The results are valid for all fibers which are at least four diameters away from the bounding
planes x - ± w and y - ±/ The solution and thedetail are similar to those discussed by Penado
and Folias (1989) except that one now has cos(2n9), na 0,1,2,..., where the remaining unknown
coefficients are determined from the boundary conditions of the geometrical cell
configuration. The present results, are based on n = 0,..., N - 20 terms which provide accurate
results in the region I z/h I< 1/2. However, many more terms are needed in order to obtain
accurate results particularly in the neighborhood of z a ± h. We are presently working on this
and the results for this problem, as well as for the problem of stresses due to temperature
missmatch, will be reported in the near future.
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Unfortunately, in order to obtain a similar expression for z=h, one needs to
establish whether the order of the singularity strength increases as adjacent

fibers approach the fiber in question. In view of some previous work the
author conjectures that this may very well be the case. Thus, the following
fundamental questions come to mind. How close must adjacent fibers be
before the order of the singularity strength is affected? Does a certain
separation distance or a certain periodic array of fibers exists which leads to an
optimal state of stress? Based on 3D considerations, Penado and Folias (1989)
have shown that when fibers are placed four fiber diameters apart, center to
center, practically all fiber interactions have subsided, including those at the
free surface z=h. The author suspects, however, that when fibers are placed
two diameters apart, center to center, the singularity strength will be affected.
Naturally, this is a conjecture that needs to be investigated.

As a practical matter, if one uses the approximation given by eq.
(30), the critical stress to failure at the fiber edge in a glass
fiber/epoxy matrix composite with the properties

G,, = 2.1OGPa v,,, = 0.34 af == iO-cm 0 = 60(
G= = 35.OOGPa u,1 = 0.22 2712 = 70J/m2 V1 = 0.70 (35)

becomes

(oo)cr = 20.582 F(Vf) Mpa.
= 2.985 F(Vf) ksi ; at the fiber edge (36)

a plot of which is given in Fig. 12. Edge delamination may now be
modeled as the progressive failure of a row of fibers.
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CONCLUSIONS

Based on a 3D analytical solution, we have shown that fiber/matrix

debonding is most likely to occur close to a free surface. Thus, regions where

fibers intersect free surfaces, eg. holes, cut outs, edges, cracks etc. are potential

trouble spots. Moreover, the strain energy release rate (eq. 28) may be used to

predict crack initiation in the center of the fiber length (eq. 29a), as well as at

the free surface (eq. 29b). Moreover, fiber/matrix debonding at a free surface

will occur at approximately (1/10) the load value required for the same type of

failure to occur at the center of the fiber length. Such information on crack

initiation is particularly important for the proper understanding of damage

evolution.

Alternatively, the strain energy release rate for a periodic array of fibers

of the type shown in fig. 9 may, at z-0, be approximated by eq. (28) in

conjunction with eq. (33). A similar expression applicable to the

neighborhood of the free surface requires that one must first establish
whether the strength of the singularity is indeed affected as the fiber volume

increases. For Vf S 0.05, however, it has been shown* that no such interaction

effects are present.
As a final remark, we note that if the bond at the interface does not fail

the analysis shows that there exists a stress magnification factor in the resin

which attains a maximum between the fibers. This maximum stress
magnification occurs along the line 0 =00 and at a distance r = 1.2a from the

center of the fiber".

"See Panado and Folias (1989).

"This condition is valid for all 0 S z < h-

14



REFERENCES

Adams, D.F. and Doner, D.R., 1967, "Transverse Normal Loading of a
Unidirectional Composite", J. of Composite Materials, Vol. 1, pp. 152-164.

Chamis, C.C., 1975, Edited, "Composite Materials", Academic Press, Vol. 1-8.
England, A.H., 1965, "A Crack Between Dissimilar Media", Journal of Applied

Mechanics pp. 400-402.
Folias, E.S., 1989, "The 3D Stress Singularities at the Intersection of a

Cylindrical Inclusion and a Free Surface", International Journal of

Fracture, Vol. 39, pp. 25-34.
Folias, E.S., 1987, "The 3D Stress Field at the Intersection of a Hole and a Free

Surface", International Journal of Fracture, Vol. 35, No. 3, pp. 187-194.
Folias, E.S., 1965, "An Axial Crack in a Pressurized Cylindrical Shell",

International Journal of Fracture, Vol. 1, pp. 20-46.
Folias, E.S. and Liu, J., 1990, "The 3D Stress Field of a Cylindrical Fiber

Embedded into a Matrix with a Layer of Modified Matrix Around the
Fiber" in preparation.

Folias, E.S. and Wang, J.J., 1986, "On the Three-Dimensional Stress Field
Around a Circular Hole in a Plate of an Arbitrary Thickness", University

of Utah Technical Report.
Hull, D., 1981, "An Introduction to Composite Materials", Cambridge

University Press.
Keer, L.M., Dundurs, J., Kiattikomol, k., 1973, "Separation of a Smooth

Cricular Inclusion from a Matrix", Int. Journal of Engineering Science,
Vol. 11, pp. 1221-1233.

Penalo, F.E., Folias, E.S., 1989, "The Three-Dimensional Stress Field Around a
Cylindrical Inclusion in a Plate of Arbitrary Thickness", International

Journal of Fracture, Vol. 39, pp. 129-146.
Rice, J.R. and Sih, G.C., 1965, Journal of Applied Mechanics, Transaction

ASME, Series E 32, p. 418.
Toya, M., 1974, "A Crack Along the Interface of a Circular Inclusion Embedded

in an Infinite Solid", Journal of Mechanics and Physics of Solids, Vol. 22,
pp. 325-348.

Williams, M.L., 1952, Journal of Applied Mechanics, Transactions ASME, 19,

p. 526.
Yu, I.W. and SendeckyA, G.P., 1974, "Multiple Circular Inclusion Problems in

Plane Elastostatics," pp. 215-220.

15



FIGURE CAPTIONS

Fig. 1. Geometrical and loading configuration.

Fig. 2. Definition of local coordinates.

Fig. 3. Singularity strength for isotropic fiber and isotropic matrix

versus G2/G1.

Fig. 4. Stress a(1)at r=a, 0=0 and for vj = 0.34, v2 = 0.22 and (G2/GI) =rr

16.67, accross the thickness.

Fig. 5 Stress a4" at r=a, 0=0 and for vi- 0.34, v2 = 0.22 and (G2/GI) =

16.67, across the thickness.

Fig. 6 Stress rr •at r=a, 0=0 and for vi = 0.34, v2 = 0.22, versus the ratiorr
(G2/Gi).

Fig. 7 Fiber/matrix interface crack under transverse loading.

Fig. 8 Strain energy release rate for plane stress and plane strain

conditions for vi = 0.34, v2 = 0.22 and (G2/G1) = 16.67.

Fig. 9 Periodic array of fibers of length 2h, embedded into a matrix.

Fig. 10 Stress Mat r=a, 0=0 and for vj = 0.34, V2 = 0.22, versus the ratioGrr
(G2/G1).

Fig. 1 Strss .(1)
Fig. 11 Stress at r=a, versus Vf, for (G2/G1) = 16.67 vj = 0.34, v2 =

0.22.

Fig. 12. Critical stress versus Vf for (G2/G1) = 16.67, vj = 0.34 and v2 =
0.22.
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Abstract

In this paper, the 3D stress field is derived for a cylindrical fiber consisting of a

radius a and surrounded by a modified cylindrical shell matrix of outside radius b. The

system is embedded into a plate matrix of arbitrary thickness 2h. All materials are assumed

to be isotropic and perfect bonding is assumed to prevail at their respective interfaces. As

to loading, a uniform tension is applied in the plane of the matrix plate and at points remote

from the interfaces.

The analysis shows that all stresses are sensitive to the radius to half thickness ratio

(a/b) as well as the material properties. In general, the effect that a modified shell matrix

has on the magnitude of the radial stress off is minimal (approximately 3%). However, the

location of its max. depends strongly on the respective shear moduli ratios (G2/G1 ) and

(G3/GI). The analysis also characterizes the type of fracture process to be primarily

cohesive. Moreover, the stresses are shown to be singular in the neighborhood of the

intersection of the interface curve with that of the edge plane.

All things being equal, a crack is most likely to originate at the free edge and will

propagate , along the interface and towards the interior of the composite ,up to

approximately one fiber radius. Whereby it will ,subsequently, curve into the matrix and

follow the locus of the max. arn. Approximate failure criteria are also suggested.



INTRODUCTION

The properties of fiber reinforced composites are very much dependent upon the

stability of the interfacial region between the matrix and the fiber. This is because the

primary function of this interface region is to transmit a portion of the load from the matrix

to the reinforcing fibers and vise versa. This ability to transmit stress across the phase

boundary must, ultimately, depend upon the mechanical properties of the matrix, the load

bearing capacity of the fibers as well as the strength of the fiber matrix interface. It is

natural ,therefore, to seek the relationship between the overall composite strength and the

above variables.

In a recent paper which was based on 3D considerations, Panado and Folias (1989)

studied the problem of a cylindrical (isotropic) fiber which is embedded into an epoxy

matrix. The interface between the fiber and the matrix was represented as a cylindrical

boundary. In reality, however, it should be an interface region rather than an interface

boundary the composition of which depends on the specific fiber/matrix combination

(Drzal, 1983). There are three reasons for this. First, there exist morphological variations

on the surface of the fiber. Second, there is a chemical reaction which takes place in such

regions. Third, in order to protect the fibers from mechanical damage and to promote high

matrix adhesion, mixtures of sizing and coupling agents are applied to the fiber surfaces

during the fiber manufacturing process. The question , therefore, arises as to what effect if

any does such an imperfect interface, or modified matrix layer, have on the strength

characteristics of the overall system. In order to provide a partial answer to this, Agarwal

and Bansal (1979) investigated the effects of such an 'imperfect interface' by considering a

thin layer of different material properties to represent the interface region. The analysis was

restricted to a load in the longitudinal direction of the fiber and was based on 2D

considerations. Subsequently, Tandon and Pagano (1988) developed an approximate

model that one may use to predict the overall moduli and coefficients of thermal expansion



of composites in the presence of imperfect bonding and subject to displacement and traction

boundary conditions.

The present paper investigates the effect that such a 'modified layer' has on the

strength characteristics of an isotopic fiber embedded into a matrix and subjected to a

uniform transverse load. Moreover, in order to extract the relevant edge effects the

analysis will be based on 3D considerations. It is hoped that this study will compliment

the previous investigations and perhaps offer some further insight on the possibilities of

cracking due to the external load.

FORMULATION OF THE PROBLEM

Consider the equilibrium of a body which occupies the space lxi < 0c, lyl < 0,

Izl 5 h and contains three regions with different elastic properties. Their common

boundaries consist of through-the-thickness cylindrical surfaces of radii r = a and r = b,

whose generators are parallel to the z- axis (see Figs 1 and 2). The situation described is

that of a fiber, denoted by superscript (3), which is embedded into a matrix, denoted by

superscript (1). Moreover, the fiber surface is coated with a thin layer of different material

properties, denoted by superscript (2). All three materials are assumed to be

homogeneous, isotropic and linear elastic. At the interfaces r = a and r = b perfect bonding

is assumed to prevail. As to loading, a uniform tensile stress a is applied at the matrix at

points remote from the fiber. In all three regions, the surfaces Izi = h are assumed to be free

of stress and contstrain.

In the absence of body forces, the coupled differential equations governing the

displacement functions u 0i) are:k

mi De(i)
- ae + u (•ik = 0; i,k= 1,2,3 (1)mi-2 axkk



where V2 is the 3D Laplacian operator, m: -m , vi is Poisson's ratio andvi

e(i) k ; i,k= 1,2,3 (2)

k

The stress displacement relations are given by Hooke's law as:

y ()-=2 Gi e (2 e 8 +e (I); i,k, I1=1, 2, 3 (3)

where Gi are the respective shear moduli.

As to boundary conditions, we require that:

() (1) (1

aslxl---oo": a(1) =It It (1  0 (4)xx xy xz

asll-4 t(I) IT (I) 0, C(Iy O (5)
xy yz yy C

atz=h I(i) (i) = i 0 - i=1,2,3 (6)at zl= h 'xz = Z "y= zz= ,

atr=b: C (1) - (2) = (t - (2)t (1) It (- 0, (7)rr rr rO z

atr=b" u ()- u (2)= v(1)- v(2)= w(1)-w(2)=O, (8)
r r

atr=a: " (2) - (2) _ t = -_t ( =0, (9)
IT rr r0 o TZ r

atr=a" u (2)- Ur(3) (2) v (3) w(2 w(3= , (10)r r 0 0

Finally, at r = 0 we must require that all stresses and displacement be bounded.

METHOD OF SOLUTION

A general solution to a certain class of three dimensional boundary value problems

which arise in elastostatics, was developed by Folias (1976) and was subsequently put in a

much more convenient form (Folias 1990). The general solution was recently used to

solve for the 3D stress field of one cylindrical fiber embedded into an infinite matrix



(Penado and Folias 1989). The latter study may now be extended to also account for the

effects of a modified shell matrix surrounding the fiber.

The mathematical details, however, are long and tedious but similar to those

of the above reference, except that one now has to deal with two interfaces instead of one.

Thus for the sake of brevity, the details in the present analysis are omitted. In summary,

the displacement fields are expressed in terms of two infinite series, one with complex

eigenfunctions and the other with real eigenfunctions. By construction, the geneial

solution automatically satisfies the free of stress boundary conditions at Izi = h. The

unknown series coefficients are subsequently determined, numerically, from the remaining

boundary conditions at the two interfaces r = a and r = b. For more details, the reader is

referred to the work by Penado and Folias (1989).

NUMERICAL RESULTS

Once the series coefficients have been determined, the 3D displacement and stress

fields may then be recovered. Throughout the numerical work, we have used double

precision because the system is very sensitive to small changes. Furthermore, the rate of

convergence has been addressed in the work by Penado and Folias (1989). The present

numerical work also exhibits similar convergence characteristics. Thus, without going

into the numerical details, the displacement w , on the surface z = h , as a function of aa)

is shown in Figs. 3 and 4 for various G ratios. This particular displacement is of special

interest to the experimentalists for future comparisons.

The behavior of the radial stress off, as a function of the modified layer thickness

A = (b-a)/a, is shown in Figs 5 and 6 , at the position 0 = 0 and r = b. It is noted that for

the fixed ratios of (G3/G 1) = 16.67 and (G2/G1) = 12, the relative max. of the radial stress

occurs at A = 0.2 , for z = 0 and z = h. In fact, the same trend prevails throughout the

thickness z. In general, the locatioi. of the max. is a fun,:tion of the respective material
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properties. Moreover, the behavior of the radial stress off versus (z/h) is similar to that

found by Penado and Folias (1989). A typical plot is shown in Fig. 7. On the other hand,

the variation of the stress aoe as a function of A, at 0 = 0 and r = b , is given in Figs. 8

and 9 for z = 0 and z = h ,respectively. Thus as A increases, Y89 decreases slightly (by

approximately 3%).

Fig. 10, depicts the variation of the radial stress Orr as a function of the ratio

(G3/G2 ) for 0 = 0, z = 0, A = 0.2, r = b and (G3/GI) = 16.67. Similarly, Figs. 11 and 12

show the variation of cyrr, for (G2]Gl) <1 and for (G2/GI) > 1 ratios, respectively. Here

again the max. change is noted to be approximately 3%.

It is well recognized from experimental observations that debonding along a

fiber/matrix interface is a common occurrence in laminated composite plates due to

transverse loads. What is not clear, however, is whether the crack originates at the

fiber/matrix interface or in the matrix itself but close to the interface. Naturally, all things

being equal, a crack is most likely to originate at a location where the radial stress attains its

maximum. To provide us with some further insight on this matter, we plot in Fig. 13 the

radial stress arr versus the distance (r-a) , for various (G2/G1) ratios. The reader may

notice that, although the stress arrr is continuous at r = b, its derivative there is

discontinuous. This result meets our expectations for the material properties to zhe left and

to the right are distinct. Furthermore, it may be noted that for (G2/GI) < 2.5 ratios the

max. radial stress occurs within the modified shell matrix, while for 2.5 < (G2/G1) occurs

within the matrix, i.e. past the interface r = b. Thus the question as to whether one has

adhesive or cohesive fracture really depends on the respective material properties.* It

should be emphasized that this comment is applicable not only to the case of one fiber, but

also to the case of an infinite periodic array of fibers which are spaced by four (or more)

fiber diameters center to center. In the latter case, there exist no significant interactions

present between the adjacent fibers (see Figs. 3 and 4). This matter has also been

*From Fig. 13, it is noted that away from the edge, adhesive fracture only takes place at
one value which is between 1.7 < (G2/GI) <2.8.



discussed in a recent paper by Folias (1991) which is based on 3D considerations. In the

event that the fibers are closer together, Adams et .al. ( 1967 ) have shown, on the bases

of 2D considerations, that the max. radial stress Orr occurs at r = 1.2a, i.e. between the

fibers. The same result has subsequently been confirmed by other researchers in the field.

On the bases of 3D considerations and the given data , the authors also confirm this result

(Liu and Folias 1991) which is valid throughout the interior. In general, given a set of

material properties, the location of the maximum is a function of the ratio (a/b). Returning

next to the free edges, the stress field in the neighborhood of the intersection of the

interface boundary with that of the free surface was shown to be singular (Folias 1989, Li

and Folias 1991). The same result is expected to apply here too. In fact, the authors

believe that the strength of the stress singularity will increase slightly as the distance

between the adjacent fibers decreases and the interaction effects become stronger. Similar

trends are also expected to prevail in the case of the modified layer matrix.

CONCLUSIONS

The following conclusions may be drawn from the previous results:

(i) away from the free edge:

"* the effect of a modified shell matrix on the magnitude of the radial stress or, is
negligible, ie. approximately 3%

"* the max. value of the radial stress off is approximately the same for all
(G2/G1) ratios examined

"* the location of this max. occurs within the modified layer if 1< (G2/G1) < 2,
and within the matrix if 2 < (G2/Gl) < 16.67

"* characterization of the fracture process as adhesive or cohesive depends on the
material properties (see Fig. 13)

"* the modified layer thickness A which will make the radial stress Orr a relative
maximum is .20

(ii) within the vicinity of the free edge:

* the max. radial stress afr occurs at one of the two interfaces



In conclusion, all things being equal, a crack is most likely to originate in the

vicinity of the free edge and along one of the interface boundaries (that of the highest stress

singularity). Subsequently, the crack will propagate away from the edge and along the

interface up to a distance of one fiber radius at which point it will slowly curve into the J
matrix and follow the locus of the max. radial stress cyrr (see Fig. 13). Thus, it is now

possible to derive two separate failure criteria which will be applicable to the regions (i)

close to the free edge and (ii) away from the free edge. The first author has already derived

such a criterion for the prediction of failure at a free edge (see Folias, 1991). It remains,

therefore , for us to derive a criterion applicable to the latter region.



REFERENCES

I. Drzal, L.T. (1983), "Composite Interface Characterization," SAMPE J., 19, 5, pp.
7-13.

2. Tandon, G.P. and Pagano, N.J. (1988), "A Study of Fiber-Matrix Interfacial
Modeling" Proceedings of the fourth Japan - U.S. Conference on Composite
Materials, pp. 191-200.

3. Penado, F.E. and Folias, E.S. (1989), "The Three Dimensional Stress Field
Around a Cylindrical Inclusion in a Plate of an Arbitrary Thickness," International
Journal of Fracture, Vol. 39, pp. 129-146.

4. Folias, E.S. (1989), "On the Stress Singularities at the Intersection of a Cylindrical
Inclusion with the Free Surface of a Plate," International Journal of Fracture, Vol.
39, pp. 25-34.

5. Li, P.C. and Folias, E.S. (1970), "The 3D Stress Field of a Carbon Fiber
Intersecting a Free Surface and Under the Action of a Uniform Transverse Load,"
under review.

6. Adams, D.F. and Donner, D.R. (1967), "Transverse Normal Loading of a
Unidirectional Composite," Journal of Composite Materials, Vol. 1, pp. 152-164.

7. Folias, E.S. (1991), "On the Prediction of Failure at a Fiber/Matrix Interface in a
Composite Subjected to a Transverse Tensile Load," To appear Journal of
Composite Materials, 1991.

8. Folias, E.S. and Liu, J.H. (1991), "The 3D Stress Field of a Periodic Array of
Fibers Embedded into an Epoxy Matrix," in preparation.

9. Hull, D., (1981)," An Introduction to Composite Materials ,Cambridge
University Press.

10. Folias, E. S., (1974 ),Thin-Shell Structures , Edited by Fung and Sechler, Chapt.
21, pp. 483-518

11. Folias, E. S., and Reuter, W. G.,(1990), "On the Equilibrium of a Linear Elastic
Layer", Computational Mechanics, Vol. 5 , pp. 459-468.



Material I

a, 2a Mterial 2 ,

Qmateriol 
3

I--- 2b---

z

x 2h

Fig. I Geometrical configuration.



adhesive shell

fiber AOtrix

Fig. 2 Geometrical configuration at the free edge.



0

- ~~G 
I G_ t'I t I AN Al l

-GR1G2G1.2I a 111S---- 63/62/6I.4/2/i

----- C3/C2/GI1 17/12/I

0

2-

0/h =0.05 b/a =L.I z=h O= v/2
I 4

0 2 3 4
r/o

Fig. 3 The displacement w at the free surface z = h vs. (r/a) for (a/h) = 0.05.



0.00

GJ/G2/CGI2/I/II. I\ - -- C3/6.2/SI*42I
0.01 G/2/GI.I?/12/I

N
N 0

o-0.02-

Iolh=4 b/o=Ul z~h 8=7r/2
-004 I I I

""0 I 2 3 4
r/e

Fig. 4 The displacement w at the free surface z = h vs. (r/a) for (a/h) = 4.



1436

'.435-

1.434-

rG3/CIS1.T IG1w6.6T G2/GI-wI2 vIvO.34 v2wv3aO.'22
rob zoo O0D

A3 1 II II

.43 0.10 0.20 0.30 0.40 0.50
A=(bE-a)/a

Fig. 5 The radial stress vs. A at r--b and z= 0.



14520

1.4515

x; 14510

014505

GJ/GI.16.6T G21GIwI2 vi'O.34 v2mvJO022

rab z'h e.O
0.10 0.20 0.30 040 0.50

A (b -a)/a

Fig. 6 The radial stress vs. t• at r=b and z= h.



0M

CYC

00

41tu

(01),



0.57

G03G2"I6.67 G2/GINI2 v180.34 v2"v3"O.22
r .b zNO 80

0.56

0.55

0.54 0.10 0.20 0.30 040 0.50

A =(b-a)/a

Fig. 8 The max. circumferential stress vs. P at z= 0.



04801
GJI/GI16.67 G2/GI.I2 vI.O.34 v2-v3.O.22

rob z~h Ono
0475-

X'a
E 0 Q470

0.465

0.4601 0.10 0.20 0.30 040 0.50

A=(b-a)/a

Fig. 9 The max. circumferential stress vs. A at z= h.



iT
CY•

i ° -II
i..

A o

.40

aD -g>
c.o

Ca-

OD. .... ....



0

oe

4D C!

i 4i

E

15

LL

, , ,-D

o ~ a



C
I'
N

C

0.c�e a-.
I

0
N 0 _u � (N

q..'.. 0

S.-
0

0 * * 9-
S...

0 o4 t 5-

�
'U I I I :

u s u u :

S..

A
N 0
9-

C

a: �. U..
LI:

0

o

0*
9-
U

9- 0

C.)o -

o

(N

9- 9- 9- 9- 9- 9- 9- 9- 9-



C4

ci

(U,

OIDi
1ý D,-
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ABSTRACT

A three-dimensional (3-D) micromechanical model has been developed to represent a

unidirectional composite plate that is subjected to a residual stress load induced due to a

temperature mismatch. The model assumes the fibers to be cylindrical inclusions that are

periodically embedded into an epoxy matrix plate. At the fiber/matrix interface, perfect

bonding conditions are assumed to prevail. The method used in the thesis is based on a 3-D

analytic considerations.

The analytical solution shows the maximum stresses to occur at 0=0 for the case of a

graphite/epoxy composite plate. The location of the maximum of the stresses, however,

may change for other material systems, particularly, for small shear moduli ratios ji2/gl.

The solution also shows that the shear moduli ratio g2/gl (fiber to matrix), the geometric

ratios a/h (fiber radius to thickness of the plate) and a/b (fiber radius to separation distance

between adjacent fibers) effect greately the displacement and stress distributions. On the

other hand, the ratio of thermal expansion coefficients M2)/ao() (fiber to matrix) presents a

linear action to the displacement and stress fields. The stress profiles along a fiber length

are shown to be constant except in the neighborhood of the fiber edge where a boundary

layer is shown to prevail. In this region, a stress singularity is shown to prevail which is a

departure from the results obtained by macromechanical theories.

In the limit, as a/b--0, the result of one fiber model is recovered; as a/h-400, the plane

stress solution is recovered. Similarly, as g2/gl--ý0 the result of a plate with a periodic

array of holes is recovered.



CHAPTER 1

INTRODUCTION

It is well recognized that fiber-reinforced composite materials are very attractive for

their high strength and stiffness to weight ratios and for their excellent fatigue resistance

characteristics. With the advancement of composites and their extensive use in aerospace,

automotive and other industries, problems for the determination of the displacement and

stress fields have drawn considerable attention. However, the anisotropic behavior of

composite materials makes the stress field more complex than that of traditional engineering

materials. Many designers encounter difficulties in determining the stress field around the

interface of fiber and matrix and a free surface. Thus reliable prediction of the stress field

within a composite is an important research topic which needs further investigation.

Basically, there are two categories of factors that may induce materials failure, the first

one is due to the external loads and the second is due to localized stress fields, for example

residual stresses caused by the environment such as a temperature change. Upon the

application of external loads, regions of low toughness values may fail before the bulk of

the material does due to the presence of impurities, inclusions, grain boundaries, etc. On

the other hand, the residual stresses are present as a result of the manufacturing process of

the material. During the change of temperature, residual stresses are induced because of a

thermal expansion mismatch, thermal expansion anisotropy, or phase transformation.

Depending on the values of the thermal expansion coefficients, the residual stresses may be

tensile or compressive in nature and both types of stresses may induce microcracking.

In order to be able to predict the failing characteristics of composite materials,

particularly in the neighborhood of a free surface and particularly at the fiber/matrix
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interface, it is necessary to know the local stress field from a 3-D point of view. Numerous

researchers have focused on the effects which one inclusion has in a composite. In 1942,

Reissner [1] introduced a semi-direct variational method consisting of 3-D corrections to

the theory of plane stress. In 1948, Green [2] proposed a 3-D solution in terms of infinite

series of a very complicated nature. His solution satisfied the governing differential

equations, but the boundary conditions were satisfied by an approximate iterative

procedure. One year later, Green [31 developed a general method based on infinite series

for the solution of 3-D boundary value problems. However, the form of his solution is

rather complicated for practical use. Alblas [4], in 1957, used the general procedure

proposed by Green to construct an infinite series representation of the solution in a simple

form. He expressed the solution to Navier's equations in terms of a set of complex

eigenfunctions. In 1961, Reiss [5] sought the correction factor to the plane stress solution

on the basis of an asymptotic expansion of the stress field in powers of the thickness

parameter. Two years later, he applied his theory to find a 3-D correction to Kirch's

solution. The results, however, are valid only for relatively thin plates. Youngdahl et.

al.[6], in 1966, presented an integral form of the solution by means of a specially adapted

integral transform technique. Their solution, however, is only applicable to the case of a

half space. Later, in 1975, Folias [7] developed a method for solving 3D mixed-boundary-

value problems that arise in elastostatics. The method is applied to a plate of finite

thickness, which contains a finite, through the thickness, line crack. Based on Folias

previous work, Folias and Wang (1990) specialized the general solution to the equilibrium

of a linear elastic layer for the case of a plate of an arbitrary thickness that has been

weakened by a cylindrical hole [8]. The solution satisfied both Navier's equations as well

as the plate boundary conditions. Moreover, in 1989 Folias [9] investigated analytically the

stress field in the neighborhood of the intersection of a hole and a free surface. The analysis

shows the complementary solution to be proportional to pa, where p is the distance from

the point of intersection of the hole and the free surface of the plate. The analysis showed
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that no stress singularity was present in this vicinity. In 1989, Penado and Folias [101

extended the previous work to the case of a cylindrical inclusion. Both the plate and the

inclusion are assumed to be of homogeneous and isotropic materials with different material

properties. In the limit, as the ratio of shear moduli gt2/g±l = 0.00001, the results for a

cylindrical hole are recovered. At the same time, Folias [11 ] studied analytically the stress

field in the neighborhood of the intersection of the cylindrical inclusion and the free

surface. The displacement and stress fields were derived explicitly and the presence of a

stress singularity was shown to exist. Moreover, this stress singularity is shown to be a

function of the ratios of the shear moduli and Poisson's ratios. In 1990, Folias and Liu

[12] extended Penado and Folias' work to a more general case which includes a coating

layer between the fiber and the matrix. In 1991, Zhong and Folias [13] investigated the

loading transfer characteristics between a fiber and a matrix plate subjected to an axial

loading. Both perfect bonding and imperfect bonding conditions were examined.

As for periodical systems, Goree [14] in 1967 presented a solution for the

displacements and stresses in an infinite elastic matrix containing two perfectly bounded

rigid circular cylindrical inclusions of different radii, and of infinite length normal to the x-y

plane. In the same year, Hedgepeth [15] obtained a solution for two stress distribution

problems that resulted from breaking of the filaments in a composite material composed of

high modulus elements embedded in a low modulus matrix. Subsequently, Adams (1967)

presented two papers where the longitudinal shear loading [161 and transverse normal

loading [17] were discussed respectively. Using an analysis based on the theory of

elasticity , the problem of a doubly periodic rectangular array of elastic filaments in an

elastic matrix material was formulated in his papers where the effect of a uniform

temperature was also imposed. Later, Haener [18] used the displacement potential method

to express the 3-D stress distributions in a unidirectional multi-fiber composite under

external and residual loads. He assumed the geometric arrangement of the fibers was

hexagonal and the hexagon boundary remained regular under the load. In 1969, Marloff
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and Daniel [191 used a experimental method to determine the 3-D stress distribution in a

unidirectional composite plate subjected to matrix shrinkage and normal transverse load. In

1973, Keer et al. [201 used finite integral transforms to study the phenomena of the

separation of a smooth circular inclusion from a matrix that is subjected to a uniform load.

A 2-D solution for plates with perfectly bonded circular inclusions can be found in the

papers [21] of Sendeckyj (1970). Based on Sendeckyj's previous work, Yu and Sendeckyj

(1974) extended their study to the case of an infinite elastic matrix containing multiple

inclusions by using the Schwarz alternating method [22]. Their results were subsequently

specialized to cases of two and three inclusions. In 1984, Adams [23] used a finite element

method to analyze a microscopic region of a unidirectional composite plate in plane strain

case. In 1985, Evans et al. [241 analyzed matrix fracture in brittle-matrix fiber composites.

The numerical solution shows that matrix cracks initiate prior to fiber failure and the

influence of the fibers that bridge the matrix crack is represented at the crack surfaces. In

1990, based on 2-D consideration, Isida [25] used a complex series approach to solve the

problem of an array of periodic inclusions embedded into an infinite matrix subjected to a

uniform transverse load. Thus, his contribution provides us with further insight into the

strength of the composite plate. In 1991, Folias and Liu extended the previous works from

one fiber to an array of periodic fibers. Two investigations have been completed for the

model of a matrix plate embedded with a periodic array of fibers subject to different

loadings. One is subjected to a uniform transverse loading [26], the other is subjected to a

axial loadings [27]. The results show that the effect of the fiber volume fraction vf is an

important parameter that affects greatly the displacement and stress fields. In the limit, as

the ratio a/b--0 ( a/b is the ratio of the fiber radius to separation distance between adjacent

fibers), the results of Penado and the results of Zhong are recovered, respectively.

In the area of residual stress problems, however, most of the research is limited to a

macro-approach which accounts only for the macromechanical behavior of the laminates

and neglects the individual behavior of the fibers and of the matrix. Griffin [28] in 1983
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used a fully 3-D finite element analysis to predict thermal stress distributions in thick

graphite/epoxy laminates. The result shows that high interlaminar thermal tensile stresses

are present near the free edges. Later, in another paper [29], provided experimental

evidence with which he confirmed his numerical solution. Another practical model for

matrix microcracking present in graphite/epoxy composites was examined by Bowles

(1984) [30], where finite element analysis was used to predict the effect of different

thermal expansion coefficients. In 1987, Evans et al.[31] investigated the high-temperature

mechanical properties for a ceramic matrix composite. The change in mechanical behavior

has been attributed to a large variation in the shear resistance of the fiber/matrix interface. In

1988, Garg [321 studied the fracture behavior of graphite/epoxy composite effected by the

change of temperature with the experimental method. It proves that a temperature change

may induce failure in the material. Fang [33] in 1989 presented an experimental and

analytical investigation of thermally-induced cracking in graphite/epoxy composites, where

the thermal stresses will affect the extent and form of damage. However, his analysis is

based only on an approximate, 2-D micro-cracking model, which can not be used to predict

the stress distribution along the thickness. In 1985, Mikata et al. [34] calculated a stress

field in a coated continuous fiber composite subjected to thermomechanical loadings. The

investigation shows that the maximum stress occurs in the coating and it reduces as the

volume fraction of fibers and coating thickness increases. A prediction of thermal

expansion for unidirectional composites was investigated by Bowles et al. [35] in 1988,

where several analyses were compared with each other. Also a sensitivity analysis was

conducted to determine the relative influence of constituent properties. In 1988, an

investigation was carried out by Delale [36] where the microcracking of ceramic-matrix

composite due to residual stresses was studied. Starting with a model of single fiber

embedded in an infinite matrix, the critical fiber size was determined and the relationship

between critical fiber size and the parameters such as thermal expansion coefficients of fiber

and matrix, change of temperature was established. It is shown that a small difference of
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the thermal expansion coefficient leads to a large critical fiber size. In 1989, Evans [37]

investigated the debonding properties of brittle-matrix composite subjected to residual

stresses. The debonding behavior is shown to depend sensitively on the thermal expansion

mismatch. Later, in 1990, Evans (38] focused his research on the effect of the interface in

fiber-reinforced ceramics. It is shown that the residual stress arisen from thermal

contraction mismatch upon cooling has significant effects on both the interface sliding

stress and the matrix cracking stress, as well as the ultimate strength.

The purpose of this investigation is to provide a 3-D solution for the case of a

matrix plate which is embedded with a periodic array of fibers and is under the action of a

temperature change. In this study, a 3-D analytical solution developed by Folias will be

specialized to the problem at hand and will be extended to account for the presence of a

periodic extension of fibers by satisfying additional boundary conditions within the cell

configuration. The solution is subsequently reduced to a matrix system with a large

dimension. Our previous experience has shown that this type of system is very sensitive to

even small changes of the coefficients. The rate of convergence, however, will be

constantly monitored by how well the boundary conditions are satisfied. Sophisticated

numerical algorithms have been developed to handle the numerical analysis which will be

carried out in double precision. Thus, the 3-D effects including those at the boundary layer

close to the free edges will be recovered.

The analysis is expected to provide us with important information for the temperature

mismatch. The residual stress field along the three different directions respectively (r, 0 and

z) will be examined and the location of maximum stress will be established for the

subsequent failure analysis. Moreover, the relationship of the stresses versus different

ratios of the shear moduli (I2ugl), the fiber radius to separation distance between adjacent

fibers (a/b), the fiber radius to plate thickness (a/h), and the thermal expansion coefficients

(a( 2)/a(l) ) will be determined. Such information will not only help us understand the
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failure mechanism better but it will also reveal how the critical stress to failure is dependant

upon the respective material properties.



CHAPTER 2

FORMULATION OF THE PROBLEMS

2.1 One Fiber Model

Consider the equilibrium of a body that occupies the space I x I <o-, I y I <-, I z I5h and

contains two different elastic materials (fibers and matrix) whose common boundary is

given by a through-the thickness cylindrical surface of radius r=-a whose generators are

parallel to the z-axis (see Figure 2.1). Both the matrix and the fibers are considered to be

made of homogeneous, isotropic and linearly elastic materials. At the interface perfect

bonding is assumed to prevail. The surfaces I z I =h for both regions are free of stresses

and constraints.

Considering the case of a temperature change, which is the same at any point of the

body, and considering the absence of body forces, the coupled differential equations

(Navier's equations) governing the displacement functions u0i), v(0), w() ( i= 1, 2, where

i= 1 applies to the region r>a and i= 2 to the region r<a) are:

Mi (i) 2 (i)

m ,-2 ax (2.1)

Mi a (i) 2(i)
_e+Vv =0

-2 y (2.2)

mi2 a e (i) + V2w(i) =0

we - 2 az (2.3)

where
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x 2h

Figure 2.1 One Fiber Model: Infinite Plate

of Arbitrary Thickness with One Cylindrical Inclusion
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V 2 02 a2

V 2= + a - Laplacian operator)
- aX 2  TY! +T 2  

(2.4)

I (i=1,2)Vi (2.5)

vi (i=1,2) = Poisson's ratio of matrix, fiber (2.6)

(i U(i) RVOi) aW(i) (i12

ax5T a+ y+az (2.7)

The stress-displacement relations including the thermal stresses are given by Hooke's law

as:

U(i) () 1+v.
Si) = 2 (i +-+ ) ' 2i(i) AT

1 1 (2.10)

o(i) aVu" ) a~) ~ i Xi)A

Y D (2.11)

av(D aw(O

T= (O + au )i
+ R (2.13)

where gi~ c~(j) (i= 1,2) are , respectively, the shear moduli and the thermal expansion

coefficients of the matrix and the fiber.

As to the boundary conditions, one must require that

as =xi -(oo:
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Ox = 3W • = U (2.14)

aslyl-+ oo:
S= •' = -0 (2.15)

at zl h:
za =z - 0 (2.16)

at r=a:
I(Tl) = (2.17)

~(1) ~(2)
rO r= (2.18)

1)rz rz (2.19)

(1) (2)
ur Ur (2.20)

u(1) u(2)
0 0 (2.21)

w(1) = (2) (2.22)

also the following continuity condition must hold:

at r=O : all stresses and displacements for the inclusion
must be bounded (2.23)

It will be convenient to seek the solution in the form

u- = u(P)0 + u(c)(0 (2.24)

Vo = v(P)0 + V(C)(0 (2.25)

wo = w(P)(0 + w(C)( (2.26)

where the component with the superscript (p) represents the particular solution whereas the

component with the superscript (c) represents the complementary solution, which is a

function of the x, y, and z coordinates.
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The particular solution is relatively easy to construct. In cylindrical coordinates, the

particular solution of the matrix (i=1) is of the form

0(p)(1) =AO
• =--2 (2.27)

G(p)(1) AO
go= -- (2.28)

((1)= (p)() = =(p)(1) - op(1)- 0 (2.29)
Ito %rz eýz - z(.9

Integration of equations (2.27)-(2.29) gives:

(p)(1) = 1 A0  (1) ATr
i 1 2r (2.30)

U(,X1)0u0 =0 (2.31)

w(p)(1) =c( 1) AT z (2.32)

For the fiber (i=2), the particular solution has the same form as the matrix. Thus:

= 2b0  (2.33)

0 = 2b (2.34)

T p)(2) =(p)2) = -(P)(2) = C()(2) = 0

TO8r z - I (2.35)
S1 l-v2 (2

up)(2) =- 12 b r+ (2)AT r
IF2 1+v2  (2.36)

(p)(2 )-0 (2.37)
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w(p)(2) 1 2v 2  ( 2 )- T_2 Tv b z + a()'T z
(2.38)

where A. and bo are constants to be determined later from the boundary conditions. Note

that the above particular solution for the fiber (i=2) satisfies the continuity conditions at

r=O-, i.e., equation (2.23).

In view of the particular solution, one needs to find six functions; u(c)(i), VW)(i),

w(CXi),(i=l,2) such that they satisfy simultaneously the partial differential equations (2.1)-

(2.3) and the following boundary conditions:

at 1A =h:

=•z =Z (2.39)

at r=a:
(c)(I) (c)(2)_ (p)(2) I(0)(T)'Uu ,Off - Orr Off°r (2.40)

(2.41)

(c() (c)(2) (p(2 _ PI
=z rz rz (2.42)

(cX() (c)(2) )(2) (p)(1)
"U7  - " (2.43)

(CXI) (cX2) u(p)(2)u (PX1)
u0  "u 0 - 0  (2.44)

w(c)(1) - (c)(2) = w(p)(2) _ w(PXl) (2.45)

as r --4 cc:.

all complementary displacements and stresses for the matrix

must vanish. (2.46)

at r=O:

all complementary displacements and stresses for the fiber

must be bounded. (2.47)
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2.2 Periodic Fibers Model

The above discussions are based on the assumption that the matrix plate is embedded

with one fiber only and that the entire system is subjected to a temperature change. Such a

model is often used to illustrate how the residual stresses between a fiber and a matrix

develop as a result of thermal expansion mismatch. In practice, however, numerous fibers

are embedded into a matrix plate. One may conjecture, therefore, that the residual stress in a

composite plate will depend strongly on the properties of the fiber/matrix interface as well

as on the fiber packing sequence. Consequently, this model must account for the presence

of a periodic array of fibers that are embedded into the matrix plate. This model is shown in

Figure 2.2.

Most of the formulas developed for the one fiber model are still applicable to the case of

periodic inclusions with the exception that additional boundary conditions need to be

satisfied within the cell configuration. Symmetric conditions may be used to simplify the

problem reflecting the periodic fibers model. From Figure 2.2, it is clear that lines O-B, 0-

C, and B-C are symmetric boundaries. Thus, one may consider the triangle OBC and

concentrate on how to deal with the continuity conditions on the fiber/matrix interface and

on the symmetric boundary line B-C.

For convenience, all displacements and stresses will be expressed in a form that

automatically satisfy the symmetric boundary conditions along the lines O-B and O-C. It

remains, therefore, for us to satisfy the symmetric boundary conditions along the line B-C.

In particular,

TOl) _
S-0 (2.48)

x(1)_0
1 -0 (2.49)

C

G=1 J( ) ds =0n (. 50n
B (2.50)
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r

* S

A

Figure 2.2 Periodic Fibers Model: Infinite Plate

of Arbitrary Thickness with Periodic Cylindrical Inclusions
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un= constant (2.51)

where n and t are the normal and parallel directions of the line B-C, respectively.

After separating the solution into a complementary and a particular part, one may write:

)= (2.52)

I(cX1) V ) (2.53)

C C
(c)(1) t)l __ (X) _FP)

F = ds f ds = - F

B B (2.54)

(CXI) (c)(1) - (p)(1)Q• - (pXI)
Un 4 1 (2.5 -) 4 4 (2.55)



CHAPTER 3

METHOD OF SOLUTION

3.1 Conmlementary Solution

A general method for constructing solutions to some 3-D mixed boundary-value

problems that arise in elastostatics was developed by Folias. Based upon these results, one

may assume the general form of the solution to system (2.1)-(2.3) which automatically

satisfies the boundary conditions at the plate faces, equation (2.39), to be of the form:

( i2 ax [(P2(m.- "1 (I3V z) + mi f2(0V z) ]

c)H(n' (0 "3 (0 a z2 X0
+ 2cos(az)+ -y (-.2)

m)( axaY (3. 1)

v =-(c) 0_H., [2(mi- 1) fl(jp3 z) + mi f2(P3 z)]

i I=(o
_n CSan€H) Z)m+-1 (•

a Z2 X3(

-y C'y m. 31 o
ay m 1 N (3.2)

w~ci Y 11 • • • (m.i- 2) f3(0,,Z) - m, f4([N•z)]

m.- ,---
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mi+1 aY (3.3)

Furthermore, the stresses are given by equations (2.8)-(2.13). These expressions,

however, do not include the thermal stress component

- 2 ()2 (2

1- )(i) 1 20, -. fl( z) + a -2 ' )f1(3z)+ mXf2(Pv z)] '2gti m, - 2 V--IC2 (" )+M

( (i) 3 (+ Y -) -a•-osoz +-

m1+ I y m1+1 ax Cay+ 2 1 23

+ m Z--'-TX2;

(3.4)
_2 (i

21g_ -a YY 1 { 2pvHl fl (OV Z) + -aH [2(m1I,) fl(O3v z)+Mf 2(Ii, z)]

2 (1) 2m X W

+ 2 Z2 3 0x~ 2 1l1ay20,

2g, z t.ý2 v 3 (- f2( 3)

i --f 1 (3.6)

(2_( 
i) 

(

"•i•ti = i•2 •d-lV~ ( 2(mi-l)f,(N)z)+mif2(N•z)}

2gi~ mm2i-lXY
(i ) rn-I ax0

ax2  2 M. } cos(nZ) + mi-- ax

S . . . ... ... ... ......... . . . . . . -V=1 n m
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ax ,xay m.+Z X (3.7)

@ 0

2g o m, rn- P"o 3 f f3(0, Z)÷+ f,1(0" Z)

n-- 1 (3.8)

1 (C) 0 O

IT1 11 1u f~l Z) +f4(I3 Z))
•- E(-1)-•y"an sin(P, z)

W-I (3.9)

where

Qn=- n=1,2,3 .........
(3.10)

and N• are the roots of the equation

sin(2,, h) = - (2N h) (3.11)

Hv(i) and Hn(i) are functions of x and y ( or r and 0 depending upon the system of

coordinates used) that satisfy the reduced wave equation:

(2 2 (0

ax2  PH(3.12)

( .132 

2
ax 2 ay2 H 0 (3.13)
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XI(i) , )12 (i), and X3(i) are functions of x and y ( or r and 0 depending upon the system of

coordinates used) that satisfy Laplace's equation:

(x-- + y ) 0 k=1,2,3.

x 2 y2  ='(3.14)

In addition, Xq(i) and X2(i) satisfy the relation:

1 _ 2

ax ay (3.15)

Finally,

fl([3 , z) cos(J3 , h) cos(D3• z) 
(3.16)

f2(0, z) -P, h sin(ft, h) cos(p3, z) - N z cos(N h) sin(p, z) (3.17)

f3(pv z) cos(Av h) sin(Av z) (3.18)

f4 (03, z) a 0, h sin(pv h) sin(p3, z) + P3, z cos(,1 , h) cos(jp, z) (3.19)

Because the above complementary solution satisfies the boundary conditions (2.39), all

that remains now is to satisfy the continuity conditions at the fiber/matrix interface,

equations (2.40)-(2.45), and for the periodic fibers model only, the additional symmetric

boundary conditions along the line B-C, equations (2.52)-(2.55), as well as continuity

conditions (2.46)-(2.47).

3.2 One Fiber Model

In the case of one fiber model, there is only one kind of boundary condition that needs

to be satisfied, that is the continuity condition at r=a . By using the coordinate

transformations of displacements and stresses, the complementary solution can be
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transformed from the rectangular to cylindrical coordinates in order to take advantage of the

symmetry. Thus, equations (2.40)-(2.45) may be written in the following form:

(c)(1) ~~ ~ ~ -- (-( _c()(c)(( c)1 (X)2)

sin2O (a•(1)- o'((2) + cosV (-(c)(l) - I•XZ)) + sin(2e)(t(c)(1) -,(

A
=2b°"" (3.20)

1 sin(20) ((c)(1) - (c)(2)), - sin(20) ( (c)(1) - o(c)(2) + cos(20) ( -xy " - )
2 x x 2 (t(C)(l) Y

=0 (3.21)

sine (c)(1) (c)(2)) + cosO (I(c)(1) (c)(2) = 0-in -, "XY -•y -Z lyz (3.22)

sinO (u(C)(l) - u(c)(2)) + cosO (v(c)(l - v(c)(2)

1 1-v 2 b 1 Ao (2) (1)1v r 20+ (a (2 -a ) AT r
I2 +v 2 0 I2r (3.23)

cos0 (u(C)() - u(c)(2) -sin0 ( v(C)() - v (c)(2)= 0 (3.24)

w(cX) w(c)(2) _1 2v2 a(2) (a)"- = 2 l~v2 b0 z+(a " )ATz(.5
T2 I +V2(3.25)

Taking into account the symmetry of the problem ( 0 independence ), one finds:

(1)
H,,= ao Ko(P1 r) (3.26)

(2)

HV = bo, Io0(r) (3.27)

(1)
Hn = c~hKO~anr (3.28)
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(2)doioar
Hn = dhI 0(aj) (3.29)

and all X=0, where 1o and Ko are, respectively, the modified Bessel functions of the first

and second kind of order zero; aov and bov are complex constants; and con , don are real

constants.

It is found convenient to nondimensionalize the expressions by introducing the

following definitions:

(1')= 1 2v o a

AT %,(1,AT a°a (3.30)

A 2) 1 bo [p2 Io(Pa)
o P) AT (3.31)

B = COn o• Ko(Oxna)
on ( ) AT (3.32)

B (2) 1 don a2 i0(ana)on a(,) AT (3.33)

1 A
A°* = IO -T t A2

0 a 1) T ga 2(3.34)

bo*= 1)1 bo

cc AT t2 (3.35)

Substituting equations (3.26)-(3.35) into (3.20)-(3.25), one has

1 A 2f,(Bz + 2(m, - fK(3a)
m -2 .=1. { 13z [ 1)fI([PvZ) + mlf2(Pvz)] 2 Ko(2va)

=1 (2) Kr(Pa) }2

1 A, I 2f(P3vz) + [2(m2 - 1)fl(ovz) + m2f2(Ipvz)] • )p 2

m2"2 =v=1
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+ A;--bo =0

2 T,~ (3.36)

On B0 (1 1 -0 a ) (-1Ifl cos(anz)
n=l 2 C&~ K0 (ana)

(2 K0 (otna) )L
+ ~ 2~ 10aa AA,

n~l (3.38)

m -2 AO a K0 (a 'f3OV) a)"Z

____ (2) 1 f0 (a) 2)

- S ~~~A0 I2m2 1)f(3Z) + n 2 f4(I3'z)

m2- I1- výv (2v)

On l (-1)8

I= K'a K0(a)a

1 (2) 1 Ir(aOa)

2 X ~ 2B0 a~ aa)(-1) csa)=(3.40)

1 ~ 0 -'- (in- 1)f 3O(I3nZ) -mf(3z

On2 2" J3~an
n vl anI(.0
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A = --L- [(m2- 2)f3(O,,z) - m2f4(3z) ]
m 2-2 v=1 Oj3Pa

+2v2 *. (X(2) z

-+v bo a ( ) a•"
2 4P (3.41)

3.3 Periodic Fibers Model

For the periodic fibers model, one needs to consider the additional boundary condition

along the line B-C. From Figure 2.2, it is noted that the displacement and stress

distributions are now 0-dependent. In order to satisfy the symmetric conditions at 0=0 and

0=it/2 respectively (see Fig.2.2), one needs to chose the solution in the form of a

summation of cos(2k0) or sin(2k0). Thus, the symmetric conditions along lines O-B and

O-C will be satisfied automatically. Moreover, the summation provides a sufficient number

of coefficients so that the symmetric condition along the line B-C may be satisfied. Thus,

the complementary solution may be chosen in the form:

(1)_
H 1 _) aL, KYZ(JAr) cos(2ke)

V =t -:~-kOo (3.42)

Hv = bk 12k(Ipr) cos(2k0)
k=O (3.43)

Hn= t ckn K2k(anr) sin(2k0)
k=O (3.44)

Hn(2= 2 d. lI (anr) sin(2ke)
k=O (3.45)

= sin[(2k+1)0] + fk r• 1 sin[(2k-1)6]
=1(3.46)
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~(1 = -~-5-cos[(2k+1)0] -j fr~ 1 cos[(2k -1)0]X2 k- I_ k' = (3.47)

() = I kcos[(Ek+1)0]
3 k=O 

(3.48)

h,, r= -r 1 sin[(2k-l1)]
=- 1  sn(3.49)

- hkrk'cos[(2k-l)0]
k=-1 (3.50)

3 k l2+l cos[(2k+1)0]
k=O (3.51)

where I and Kk are, respectively, the modified Bessel functions of the first and second

kind of order 2k, and akv, bk,, ckn, dkn ( k=0,1,2...M; v,n=1,2,3 .... ), ek , fk, gk, hk, ik

are arbitrary constants that are to be deterniined later.

For numerical calculations, it is found convenient at this stage to nondimensionalize the

expressions by introducing the following definitions:

1T akT P I 2k(pa) (3.52)

(2) 2____

Ak2) 1 bkv P, ik(Ia)
a) AT (3.53)

Bkn = a 1)AT kn • K2 k(atna)
(3.54)

B(2) = I dk (X2n 12(0una)
Bkn •()AT i n2k(3.55)

kI e)
a AT a 2++e (3.56)
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a2k-2 f
1 AT (3.57)

gk= a(1) AT a2k+2 gk (3.58)

h*k a2k 2 h
al) AT (3.59)

., a kIk a(,) AT k ( .0

Now the solutions of both particular and complementary parts have been found. The

only problem remaining is to determine the unknown coefficients. Thus one needs to

concentrate on how to deal with both the continuity conditions at the fiber/matrix interface

(r=a) and the symmetric boundary conditions along the line B-C (see Fig.2.2) For the first

boundary, one can use a Fourier expansion in order to eliminate the z-dependency and thus

recover a set of simultaneous linear equations of the unknown coefficients. For the second

boundary (line B-C), one can use an appropriate numerical scheme, which may match the

symmetric condition.



CHAPTER 4

NUMERICAL CALCULATIONS

4.1 Fourier Expansions for One Fiber Model

In order to simplify the numerical calculations, one must first eliminate the z-dependence

at the boundary r=a and thus recover a set of simultaneous linear equations with the

coefficients as the unknowns. It is quite interesting to note that BonO() and Bon(2) are not

coupled in the system (3.36)-(3.41). That means equations (3.37) and (3.40) may be

treated separately from the remaining four boundary conditions and the following solution

is obvious:

(1) (2,)
Bon = Bon = 0 (4.1)

In view of equation (4.1), two of the boundary conditions are now automatically

satisfied and only four are remaining. The relative balance between unknowns and number

of equations does not change because two group of constants are satisfied by (4.1) and

these two relative group of equations are automatically satisfied.

The technique for solving such a system is given by Folias. More specifically, one

expands the functions fl(N z), f2(N z), and (z/a)2 in terms of cos(an z) and the function

f3(I z), f4 (N3 z) and (z/a) in terms of sin(an z). Equating next the coefficients of similar

functions of z , one arrives at the following equations, which may then be used directly for

the numerical calculations. The reader may note that for convenience, the following

notation is introduced:
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2

1Wv 2 2

AV- an2 (4.2)

2 ý' 1 (a) 2 A[- + 0 (La
m~ 1X~~1 2 m12-2 2 gI( ,) ~

I- V=1 AV. K,0(Pv~a) jO o( a

Jl o+ b * '2
2 0 i~Il (4.3)

2~ A 0 1 K0 (Pva) 2~ (2) 1 f0(J3va)
2 A, 2 K (J3a) m XAý 2 10(fa)

vI- I3j a "=1 Nav

A~, +1-v 2 b* ~(2)-

2 1+v 2  a ()(4.4)

1 00' (1) r KF K(ova)
mý -2n (

1I A~ (2) (-r 1mF I(I~a) 0

M-2 Lund Ova (4.5)

X A~ ~ (1)an -1-l~rnv)rnv

a (4.6)

- ~K (P3a)
1~n 1~A~ -1+( -ml+l+m1 Fnv). 20

m1-2 V=1Pud(va
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-I.., A L2 -1+(0-m2+l+m2Fnv) ) 2 -
p2- (-+-M++Mr" 12 0(ova) 9

I ~(4.7)

h Ig s i it of 1. Kteyma)
m;2 ,--2 V2n Ko([Dva)

=1 OV.(){n 0•)•
•-• 2)i~ Iý o(Nva) 92=

v=1 v OV T,(D) F1(4.8)

This linear system can be solved by a modified Gaussian elimination method with

pivoting. Double precision is used throughout the computational analysis because of the

high sensitivity of the system.

The reader can show that the solution, by virtue of its construction, satisfies (i) Navier's

equations (2.1)-(2.3), (ii) all the boundary conditions and (iii) all the continuity conditions.

Moreover, the following three special cases will serve as a limit check of the numerical

results. The three special limit cases are a continuous plate; a thin plate; and a plate with a

cylindrical hole.

(1) Continuous plate. If vI = v2 , l = p2 and a(l) = aE( 2). Then:

A(1) _M (1) (4

A =A =Bh =B• = A*= =(4.9)

So the solutions reduce to the particular solutions and all of the residual stresses go to zero

and the displacements reduce to the linear forms along the different directions.

).(2TliiaR . If h/a 0 0, then the right hand side of equation (4.6) will be:

1____ L_ h l= h h
ana anh a nx a ' a (4.10)

from equations (4.3)-(4.8), one has:
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( 2) _(1) (2)
A = Ah =o=Ba =o0 (4.11)

It is seen that one recovers precisely the particular solution, that is the plane stress solution

given by Delale.

(3) Cylindrical hole. In the case of JL2/tj±=0, which is numerically represented by a very

very soft inclusion, i.e., It2/gl=0.00001. One can see from equations (4.7)-(4.8) and from

equation (4.3) that:

(1)

Aov (4.12)

A;-- 0 (4.13)

which suggests, therefore, that in the case of a matrix plate with a cylindrical hole there is

no residual stress present as a result of a change in temperature.

4.2 Fourier Expansions for Periodic Fibers Model

As for periodic fibers model, there are two different kinds of boundary conditions that

need to be satisfied. Similarly, for the continuity conditions at r=a, Fourier expansions are

used to recover sets of linear equations with unknown coefficients. Without going into

mathematical details, the following equations can be used as the boundary conditions at

r---.a:

_ -1 I_. o(a) (2)1 l1(Na)

m -2 OV 1 K 0ýýa)00,a
v=i 2va o(a m2 "O = Io(1a)

3mi-l I3m 2 -1

2 m+l ÷ l+l l

A+ 1-v+ , (2(2)
+- --vb + -- 1

2 +v2 a)(4.14)
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2_ _______ 2 (2 r(N3a) 92Yn- XAo [-1+ K0 A3a __ H+ [-1 --I(~a I
Iv=1 J3K(f~) n2

m(rn i 91 (4.15)

lA ()rflv (-I +lr K0(j3a)

m -2 1 OJ3Oa II 0(jva) (416

(2) r opa
An2hj I3m21+~rva

m 2 1 v 2. 1 (2)aaar2 + 10l Ova1~- (4.17)

I v~ Ova3~a

+__2_ A(2)1 I(Jta ____)

m2r-2 ov -2 (M2 -1+( -r 2 ++nvnv) 0 I 1 a '

an 2+ i n a l (4.17)
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m =2 v ~ 0(0,,a) A,- (4.19)

2 Aki K KN(a) 2 A0(2 1 r2 k (ova)

v= 2~ K2 (ova) m2-2 ,= 2 I2k(pva)

f Vj oa Kk vl Oa m

2 m1 +1I 3m- h2k +0 g 2 41 i 2k -1)g -i4. ) % (k~)(2k) g.ý

+ -3-1i< -2k- 1) 1k + mi 1 )l)+ #(I') 2 i(2k+l)(2k)

2 mi2+1 21k Mn2+1 -2+ 1  3a M12+1

+ fp- ek(4.20)

m4 - 2 k + 4A (2 k
MI2 v=1 (0,,a)2 m272 v=1 A v(Joa)2

1.-(+2k+1)g-2L- -~+2k-~i) k- 1)2)2k

2 3mi-+1 I m1-i-1 13h2a fm+1)rk)i

1 23ým 2+1 +2k+1 i 2k -1)i1 i )---(1 2k
k 1+1 3 M12+1 )k

fk- k (4.21)

1 =~1) 2K' (f3a) 1 (2) __ P_ a)

m TY (k -2+- 2 'V - 2 L2k(pVa)

1~ +k=i g13v 2k-)klI h~La. ~2 I(3a

= (2+1)(~L~ k+1)g+(2-1)(+1) ~ a) J-Qi)L-{(2k-1)(2k)(2k+1) gk_
kj~ 3a- mj+1

Mi 112+1 1k- I
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%2kl)(k-)i2 - (1-2k)f

+ (1 +2k) eý + (1 -2k) ý ,(4.22)

4 k1 K~k(p3 a) k
m -2 ~2 K2k(l3 va) +p,)

-0 2_ -(k 1kJva) k ... 2

mf2221Oa 2

rn-i I i
-(2k+1)( I -+k+1)g*+(2k-1)k + 3ý; a m 2-)(k(ki)e

rn1+1 k* J.() 2 .I2-)2k(k1 +k

+ (2k+1)k 1* !- - (2k-i1)( -k+i1) ikIkgn 2+1 g,1

1 ( 2 1 (2k+l)(2k-1)(2k) 1 2_(kl

+ (2k+i) qe+ (2k-i1) h-* 9
kgl (4.23)

2 '? Ar)# I -rn--Mr 2~ K'k(P va)

A +B~-K...... 21
m 0 I-2 2 2 1 +1 2k-i( 2k, ) k

2 aa (2) a (ama 1ýkpa

2 1 (2k+i)(2k) 1i* = 0
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mXA2 k 2 (_M1 +1+mlfn,1rn,
I-v=1 (Pva)'

n'2 -1 Aý (-M2 +1+M2rnv)rn,

1 Ký(Qnja) (2) 1 Ik(ana)
4na~a Rk~((a) B a~ a Ia(ana)

4 1 (2k-)(2k ek 4 1 .(2k- 1)(2k) 1*O+(a na) 2 1lj j (a na) 2  n2+1 (4.25)

1k XA7~ m1 M-1 +m1Fnv) mnv
m-2 v=1

M2v=1 3l
1 (2k 1) I--I (2k+l)i=0

a n a M ~ l a a m 2 1 ' k( 4 .2 6 )

2 00 (1) -1[m+1mr~ K*k(f3va)
m -2 '1: ýr,11[M++ln 2 2OaI I3 P K2k(I3 a

2 (2 rnv k(pva) ) ý2

___2_K 2 Im -ýa 2k~naan a 2k(an a) (an a) n~ ~aa

-2 2 1 1 (2k-1)(2k)(2k+1) gk_
(an a)2MI+I

- 2 +1 (2k+1)(2k-1)(2k) i* 92-
(ana) g,(4.27)
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(1) 2k--2k(liva) 2k
AkI rn, [-m1+l+mFrnv ] 1-2 K2(•va)

1 vv la 2k(va (a) 2 0

m2-2 A nvn [-m2+1+ m2rnv }-2k Ik(Ova) + 2k
V=1 [2a 12k(1Ova) ([ v)2 ý11

(B) (1) a K a(ana) 4k2  1

K- ' (ctn a)2  2

+ B (2) 1 I•n(aa) 4k2  1 2

Sa2n a Ik(ana) (cxna) 2  2 1.1

4 1 (2k-1)(2k)(2k+l)

(ana)2 mlTl 4-1

S4 1 (2k+1)(2k-1)(2k) "* 2

(ana)2 M2+ 1 (4.28)

4m, • 1 t Kk(3a 4M2 .(2) +
= k(pv -a) 2 \ (2) ' I42 k( va)

-- Akv--

1"2 V=l K2 k(liva) + m2-2 2 nv 12k('va) 91

+(1) k (2) k t2 0
I'MWa kn Caa JT, (4.29)

As for another group of boundary conditions at line B-C, Fourier expansions are also used

to eliminate the z-dependency. Then the collocation method is used to force the conditions

(2.52)-(2.55) to be satisfied. Without going into mathematical details, the following

equations can be used directly in the numerical calculations where the following definitions

have been used:

b
sin(0.?+cos(0.? (4.30)
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b (4.31)

80- (P is the number of points along B-C line)
2P' (4.32)

Ia sin(20.+80)+cos(80) 
(4.33)

at B-C line:

1 X1 A(I rFlv( -m, 1++m K ý) 4 - 21+4MI- k=O v=1 kv Kl(i3,a 23+ 2 K~k(I3a)

(j+ 1)2! ka(fka) ) cos[(2k+2)0.]

1P k=O 2 i K~( 2a)j 3  2 Kvk1)a

+ Nkk1 K (1)KO3j 14 104-M --2 +o[2-)~

~~k= v=1 2 2~aa -(a 2+4K(a)Jcs2K+)

+ ~B~ k-.5 ~ -fjkl-K)-j 2k(Pa,) Ov Ov ct20ka)0

4kk )K2(2k-1)o(2k-(k1 ~~~2gcs(k2)0)1=
mp 1+ (~)2 k-IOva

(1) ,k+0.52k( n4)(4.34)k
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rn2M K' 1)

F2 y4" (M -m+1+m~r~ 2k(Pv3 A) 2k K 20AI~)
k=O,-- =1:Ak 2 1 1rv nI K2 k(ova) k= ~.P, K2 k(f3,a)

(cos[(2k+1)Oý1 + sin[(2k+1)Oý1

mn-2 My 2 1( 4, K 2 k(J3 a)

1 k=O v=l I3vaVKk(i a .K(3a

(cos[(2k-1)0)j - sin[(2k-1)OJ).

4 lyXXA c~I(m+1 +mlrnv ) rn Ký(I3va cos(yx)

k=O v~ Q va K~~pa 2~c~) aa

+F2B (1) 1 (2k~CnR +
4=O lot an2a ~.K~(ana) K~k(ana)

(cos[(2k-1)0)] + sin[(2k-1)Oý1

+2 2I B( 1 (k(2k2k(~Z +
4mk+1 k (cx~a k ,=1 ~ ca) Kk~ca

f cos[(2k+1)0)I + sin[(2k+1)0)1]

1= k 2 a ý* cos(.an) =0

1 4 ~(2k-1)(2k)(-..)2+ g' o1 kc
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2 mrnv2K2k(vki + (- -m+1+m1 7)
M12k=O v1l I= 2kVv

_______ 4. 1. 1 -ýP . 4k2  Kak~v 4) 1 )8S, cos(2k0?)

2k Ka~k~ a) p2 4i K~( a) (p t)2 Kak(ova)

m o (1) ________ 1+4

+ n - J j: ý rnv(-M ,+1+mnjr v) (j: 2 2~~) -1 4

1 k=O v~li=i1o K2k(p3va) Dk

Ký(I3v 4. + 4k(k+1) K2k(Iv tý? ] 8S sin[(2k+2)0~).

1 0 ( .1) _ _

rn7-2 hd - 1 1mP){ ."2kV~i

+1-k4k. K3 (D, Q - 4k(k- 1) K2k(I, k) 8S, sinfU2k-2)0 11J
2 K'k(va ovt2 Kkpa

+ BI k+0 .5 Ký3Qan k(l +2k) K~k(on~

k0-i i=1 a 2 4 K~k(an) (~ 2 K (a a)

1 K2k(czn 4.) .1S. sin[(2k+2)9j).

k=O 3=1 a2 4, K~(czna) (c ~2 K2kjana)

1K2k(an t S sn(2-)8J
+4 K~k(ana) s i[2-0)

+1 24~ (2k-1)(2k)(2k+1) g~1 ( I ý2 A)~ 2 ss
I (a na) k-1 I=
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sin[(2k+2)0jI ) 0 (4.36)

M (1) K"k~~)+14 K k(Jov~i)

2m2iv 2 2. K ov~a)
I- k=O V=I 0, K,(O3,a) Ov 2k(

4k(k+1) K~k(o3 4?~ cos[(2k+2)0)J

+ LJ.(I K~k(IV)+ 1-4k 20AIv~)

2I- k=O v=l ov K2k(ova) o2 4 ~i3a

rn-i 4c2 2 k(Oa

"+ t (2k+1)(m~l- I+k+l) (A.-)M ek cos[(2k+2)0)I
k--O m 1 +1 4

+(2k-1)k (-!-)2k g*1 cos[(2k+2)0)I

3 m 1 (2k-1)(2k)(2k+1) ) k_, cos[(2k+2)0)J

+I 2k,)a __2. [2k20

+1 a(2k-1) k cos[(2k2)J

I A*!a) cos(20O. = 0
2 (437
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T2- 1 PON' 0  K~k~~)2 K 2 k(Ipvti)

2 m-2 L. v. 4,K(3~)~ K~k(f3a)
;1k-O v=1 l

{cos[(2k+1)Oj1 + sin[(2k+1)OjI)

MJ2 (1) 1 ý K vkvi) + 2kKk(v)
1 i- k=O v=l 1 ~v) Kkoa

(cos[(2k-I1)IOj1 - sin[(2k- 1)OjI )

2 m A0 (1 Ký k(pv' k
mr1 -72 k=O v~l kvT, K2k(pva) 2o(-

~4 3m1  +2k+l] (a)2k+1 cs(k1O +sn(k1O

M, (2-):A) 1 g 1 -)cos[ os(2ki-1)O] + sin[(k+1)OII Oj
k= 1

+ Q~1 A..)~1 g 1 ( cos[(2k-1)O~j - sin[(2k-1)Oj1

6 E2 i- a h (2k- 1)(2k) (-!L) 2k+ e 1(cos[(2k+1)6.I+sinf(2k+1 )O.J)

1 -1 (!;laa)

11 +2k+l) (a kl.
2 ~ I -) g~cos(--)

k1 3,ia2k *

1. 1 (_t)2 (2-1(2)( 2k+1l
3 m1 + a 2.-I (C-)(k (2. k cs-

k--
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+ 2 k'd l r (cos[(2k+1)0) +sn(k1o]

F2 (-ý2).'fo( cos[(2k-1)e0 - sin[(2k-1)Oj1
k~l

(a) 2 k+le ccS'rX + .)k

e. 2o(~i + fk (i) os(TX)

+ 0_ jL2 A' 2 iIcosO. + sine.

Ao*

2 a

(4.38)

1l XTA (1, ( -[2 + - L..1  + K20f34)m -2k=O vi il (Ova) 2  K2k(j3va) 72KkF 3 Va

1+4 K2k(O~va)
11L~AA, 4 (- SS kl'~

2 1  2 k=0vai i=os~ ( 2 kM ýa 32 .3a

-v 4ki+)~f~)8.sn(k2e1

2 m1 -2 k=0 voi K2k(ov a) - v~ K2k(O va)

4k(k~1) _K2 0jf41,
K~k(f3 a) i sin[(2k-2O())l

2(mi --2 k CkM)14 ý04
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- (2k-i) ge1  a 2k ~Sicos(2kO) 4

k=1

t (2 mk- 1) (a)2k2 8S.- ÷kn[(k+2)0)

(2k-1)(2k)(2k+1). gS1  ( sin[(2k+2)9

S(2k+l1) eý { si a 2kk+2 •S

" 1 2 ( ki)i2.

+ (2k-i) rk [j (•,2k-2 8Si sin[(2k-2)0.j I
k=-Ii1

+A*

A~ (a)2 sin(20). =0
(4.39)

These two linear systems (2.14)-(2.39) can be dealt with by a modified Gaussian

elimination method with pivoting. Also double precision is used throughout the numerical

analysis because of the high sensitivity of the system.

4.3 Convergence of the Fourier EVpansions

The convergence of the Fourier expansions obtained above determines whether the

solution approach is a success or a failure. In general, including the problem under

consideration, the convergence of the solution is constantly monitored by (i) how well the

series coefficients converge and (ii) how well the boundary conditions are satisfied within

the specified allowable error.
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Many calculations for various parameter combinations have been completed in this

thesis. Theoretically speaking, the large linear system (4.14)-(4.39) can be solved by the

use of a general numerical scheme with pivoting. However, because in some systems the

rate of convergence may be slow, the weighted residual method is also used to eliminate

possible ill conditions.

A typical example of the convergent coefficients for three different sets of roots is given

in Table 4.1. From the table, it is observed that the coefficients converge slowly and that

200 or 300 roots are sufficient to provide us a solution with the desired accuracy. Figures

4.1 and 4.2 show how well the boundary conditions for the displacement ur and the stress

off are satisfied, at the interface r-a, for three different sets of roots. It is noted that as the

number of roots increases, the error on the boundary conditions decreases accordingly.



Table 4.1 The convergence of coefficients with different roots

(v1=0.34, v2--0.22, g.tt2/l=16.67 and a/h--0.05)

The real part of the coefficients A,(')

v 200 roots case 100 roots case 50 roots case

I - 1.670072099D-3 -1.668732365D-3 -1.664213512D-3

3 -6.191873001D-4 -6.188071283D-4 -6.163917258D-4

5 -3.247367113D-4 -3.245851946D-4 -3.225395566D-4

7 -1.963034675D-4 -1.962027912D-4 -1.941973547D-4

9 -1.298964396D-4 -1.297835499D-4 -1.277112265D-4

11 -9.167471579D-5 -9.152634067D-5 -8.934720024D-5

13 -6.7900337122D-5 -6.770911603D-5 -6.540784728D-5

15 -5.220702888D-5 -5.197208492D-5 -4.954277114D-5

17 -4.134962215D-5 -4.107248438D-5 -3.851230089D-5
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0.01-

0.00-

0

I;!

2200 roots
LU -0.01-i

---•01- 100 roots
....... 50 roots

1

-0.02,,,,

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 4.1. Error of boundary condition at r--a for ur

where v1=0.34, v2--0.22, jt2/Pg= 16 .6 7 and a/h--0.05
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0.03-

0.02-____ 200 roots

- -.... 100 roots

- 0.01 50 roots
0

0
0.00'

S!-2

-0.01

-0.02 , • , *

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 4.2. Error of boundary condition at r=a for aj,

where vi=0.3 4 , V2=0.22, g2/j4=16.67 and a/h--0.05



CHAPTER 5

RESULTS AND DISCUSSION

5.1 One Fiber Model

Once the coefficients have numerically been determined from equations (4.3)-(4.8), the

displacements and stresses may then be computed at any point in the plate. In the case of

one fiber, the displacement and stress fields are independent of 0 because of symmetry.

Thus, the displacement u0 and stresses Tro, rez will be automatically zero. On the other

hand, because the ratio of thermal expansion coefficients ot(2)/a(l) presents a linear action

to the displacement and stress field, the ratio cz(2)/a(l)=0.075 is fixed throughout the

discussion in this thesis. It is assumed in the thesis that the residual stresses arose from

thermal contraction mismatch upon cooling.

Because the residual stresses are induced by the mismatch of the different material

properties of the fiber and matrix, such as the differences of the thermal expansion

coefficients, the shear moduli and Poisson's ratios, the interface of fiber and matrix is of

greatest practical interest. Plots at r=a are given from Fig.5.1 to Fig.5.18 for the

displacements and stresses as functions of z. In order to examine how the material

properties affect the field of displacement and stress, two different ratios of shear moduli

and Poisson's ratios are chosen to represent two practical composite materials. One is the

glass fiber/epoxy matrix composite with a shear moduli ratio of g2/jtl=16.67 and

Poisson's ratios of vl--0.34, v2=0.22. The other is boron fiber/aluminum matrix composite

with the shear moduli ratio of t2/911=6.3 and Poisson's ratios v1=0.2, v2=0.33. Each plot

here consists of three curves corresponding to different geometrical ratios a/h. Superscripts

areusedtodistinguish
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0.6

0.4

a/h=0.01

S 0.2I0.a/h=0.05

0.0- a/h=O.3

-0.2

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 5.1. Displacement Ur at r-a vs z/h for one fiber model

where v1 =0.34,v2=0.22,92/91= 16.67



49

0.3
• • a/h=O.01

0.2 a/h=O.05 •

O 0 .1

,. ['-'a/h=0.3

S0.0

-0.1

-0.2

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 5.2. Displacement Ur at r=a vs z/h for one fiber model

where vj =0.2,v2=0.33,42/A1=6.3
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20

a/h=0.3

0- -o ,_oo

< -40

-60

-80

-100 ,,,,

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 5.3. Displacement w at r=a vs z/h for one fiber model

where vi=0.34,v 2=0.22,l±2/1.t=16.67
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20
20 

a/h=O.3

0
a/h=O.05

-20

• -40

-60

-80

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 5.4. Displacement w at r=-a vs z/h for one fiber model

where vj=0.2,v 2--0.33,p. 2/9j=6.3
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Figure 5.5. Stress a, at r=a vs z/h for one fiber model

where vj=0.34,v2=0.22,g 2/gj=l 6.67
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Figure 5.6. Stress arr at r-a vs z/h for one fiber model

where v1=0.2,v2=0.33,jt 2/Aj=6.3
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Figure 5.7. Stresscree(l) at r-a vs z,/h for one fiber model
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Figure 5.8. Stress a(TO) at r=-a vs z/h for one fiber model

where v1=0.2,v2=O.33,92/91=6.3
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Figure 5.9. Stress az,(1 ) at r=-a vs z/h for one fiber model

where vl=0.34,V2=0.22,I42/1=l16.67
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Figure 5.10. Stress cy,(') at r--a vs z/h for one fiber model

where v=0.2,V2 a=O.0533,92/9=6.3
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Figure 5.11. Stress Tr at r-a vs zib for one fiber model

where v1 =O.34,V2=O0.22,Ai2/A1 =I 6.67
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Figure 5.12. Stress T,, at r=-a vs z/h for one fiber model

where v---O.2,v 2--O.33,9.2/it=6.3
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Figure 5.14. Stress azz(2) at r=a vs z/h for one fiber model

where v1=0.2,v2=0.33,4 2/9l=6.3
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Figure 5.15. The ratio of stress frr (3D/2D) at r=-a vs z/h for one fiber model

where vx=0.34,v2=0.22,9t2/t1=16.67
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Figure 5.16. The ratio of stress Orr (3D/2D) at r=a vs z'h for one fiber model
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Figure 5.17. The ratio of stress Yee( 1) (3D/2D) at r=a vs z/h for one fiber model

where vl=O.34,v2=O.22,P±2/9l=16.67
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whether the displacement or stress is in the fiber or in the matrix. If the displacement or the

stress is the same at the interface r=a, then the superscripts will be omitted.

Figs. 5.1-5.2 show the displacement Ur vs z/h for two different composites. The

positive value of Ur in most of the center region indicates that as the plate cools down, both

fiber and matrix will shrink in the radial direction, which implies a negative displacement

Ur. On the other hand, the thermal expansion mismatch between fiber and matrix will

induce a large compressive stress a,,(2) in the fiber, which forces the fiber to expand in the

radial direction. For most thick plates, this effect plays a much more important role than

the radial shrinkage of the fiber itself. It is interesting to note that in the case of a thin plate

(large ratio of a/h), the displacement presents a negative value at the center region of the

plate (see Fig. 5.1 for a/h--0.3 case). This result seems reasonable if one more closely

examines the limit case. Suppose the plate is very thin (i.e., large a/h case). A lesser

compressive stress a.(2) will be induced in the fiber to expand it in the radial direction and

the shrinkage itself in the radial direction due to the decrease of the temperature will be the

governing factor, which leads the displacement to be a negative value over a wide span of

the center region. In the vicinity of the free surface, the slope of each curve increases

rapidly because of the presence of a stress singularity at z=h, which will be discussed later.

It is also interesting to note that as the a/h increases (the thin plate case), the curve around

the free surface tends to smooth. Because as the plate tends to be thinner, the interaction of

the fiber and the matrix in the axial direction tends to be weaker, which implies that the

displacement ur tends to be a constant along the thickness.

Displacement w is shown in Figs. 5.3 and 5.4. These curves start from zero (center

layer must be zero because of the symmetry in z) and they are almost the linear functions of

z. Only in the vicinity of the free surface, these curves present nonlinear properties. As the

ratio of a/h decreases (thick plate case), the value of w becomes much larger in comparison

to those obtained for large a/h ratios. In the case of a/h=0.01, for instance, suppose the

inclusion is made of the same material as the matrix (continuous plate). No mismatch
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occurs under the change of temperature and the value of this displacement w at free

surface

z=h will be found easily as -100. From Fig 5.3, however, the curve of a/h=0.01 attains the

value of -90. This difference suggests, therefore, that the inclusion tries to resist matrix

shrinkage along the axial direction.

The plot of the stress an in Fig. 5.5 shows that each curve looks parallel at a wide span

of the center region and there is only a slight change in the magnitude of the stress. Near

the surface of the plate, the stress jumps suddenly to a large value. In view of some

previous work (Folias, 1989), a stress singularity is present in the neighborhood of the

intersection of the fiber and the free surface, i.e., at r=-a and z=h. Therefore the numerical

results shown in Fig. 5.5 may not be reliable near z=h because the presence of

singularities slows down the convergence of the series representation of the stresses near

the singularity point. Be that as it may, the curves show the trend of the stress at z=h and

confirm Folias's conclusions [11]. It may also be noted that as the shear moduli ratio

changes from 1i2/91=16.67 to 92/91=6.3 (see Fig. 5.6) the radial stress becomes negative

over a wide span of the center region and the curves no longer appear to be parallel, but

mix together at about four-fifths the span of the thickness. The reason for this may be

explained as the following: the radial stress an induced by thermal contraction mismatch

consists of two different parts. First, in the radial direction, it is observed that the inclusion

presents a resistance to the shrinkage of the matrix, which leads to a negative part of the

radial stress. On the other hand, the inclusion also functions as a resistance to the

shrinkage of the matrix in the axial direction, which induces a positive part of the radial

stress in the matrix. The final sign of the radial stress arr depends on which part of the

effects is larger. From Figs. 5.5 and 5.6 one can see that as the case of shear moduli ratio

9t2/•.1 increased or the ratio of a/h decreased, the second effect will be the controlling

factor to the radial stress aff.
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The profiles of the stress oo0(l in the matrix (see Fig. 5.7) are very close at the center

region for different ratios of a/h. Then they increase rapidly near the free surface due to the

presence of a stress singularity. Fig. 5.8 shows another case representing a different

material. Both plots show that the stress aoe(l) attains positive values for various a/h and

Ig2/gl ratios. This result is expected because both kinds of effects explained for the radial

stress cr, above are also valid for the stress a 0 0('). The only difference for the

circumferential stress o0e(') is that both parts of the effects lead to positive values.

Perhaps it may be appropriate here to note that previous research by Delale (1988)

focused on a 2-D consideration [36). As for the plane stress case, the stress aoe(1) presents

a positive value and the stress (Y,, presents the same magnitude but negative value as the

stress oo0(0) in his paper. Both the stresses are constants along the thickness of the plate.

So the conclusion is clear, that is, a through the thickness crack will initiate at the

fiber/matrix interface in the radial direction as the temperature cools down to a certain

degree. Based on his solution, if the plate is thick enough, here a real important fact has

been neglected, that is the effect of mismatch of the fiber and matrix in the axial direction.

On the basis of 3-D considerations as discussed in this thesis, a crack will most likely

initiate at the stress singularity point near the free surface and compare the plots of stress q,

with the plots of stress aoe(') from Figs. 5.5 to 5.7, it is difficult to conclude which stress

is the maximum because it depends on the ratios of a/h and I±2/gj. One may focus on the

central region of the plate, in the case of a/h=0.01 and g2/g 1=16.67, the stress a, is larger

than the stress oog{|). In the case of a/h=0.05 and the case of a/h=0.3, however, the stress

aee(l) becomes the maximum stress. This means that the direction of the crack initiation is

a function of the ratio a/h and of the shear moduli --'2/g 1.

The plots seen in Fig. 5.9 and Fig. 5.10 show a sharp increase of the stress Ozz(') for

the plate in the vicinity of z=h. As the ratio of a/h decreases, the central region of the plate

may not take vertical load (see curves with a/h=0.01). As the ratio of a/h increases, the

stress level also increases. In addition, after comparing the plot of Fig. 5.9 with the plot of
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Fig. 5.10, one can note that the curves corresponding to gt2/Itl=16.67 show a higher stress

level than those corresponding to , 2/g.l--6.3. The implication of this is that a higher ratio

of.2/1.t 1 will induce higher mismatch and as a result it will translate a larger vertical stress to

the plate.

The shear stress •rz (see Fig. 5.11- 5.12) starts from zero at the center of the plate and

then increases in absolute value as one travels along the interface. A sudden jump of this

stress near the point z=h is also observed and may very well suggest why a crack is most

likely to initiate at such regions. The negative sign means that the shear stress will always

be opposing the direction of the axial stress 2zz(2) of the inclusion in order to satisfy the

equilibrium in the axial direction for the fiber.

The vertical stress Yzz(2) in the fiber presents a negative value in any circumstance

because the shrinkage of the matrix in the axial direction is much larger than the shrinkage

of the fiber and it will pull the fiber down in order to satisfy the perfect boundary condition

at the interface. The small ratio of a/h will induce a large axial compressive stress in the

fiber, which increases further as the ratio of 42/9L, also increases. The maximum

compressive axial stress is located at the center of the fiber length (i.e., z--0). It is

interesting to compare the curves of OzYG,) with the curves of ozz(2), which will show us a

dramatic situation: as the thickness of the plate increases (i.e., small a/h), the axial stress in

the matrix decreases while the axial stress in the fiber increases rapidly, which suggests,

therefore, that the gap of the stress discontinuity at the interface will increase. Thus, the

ratio of a/h may be used to control the stress distribution between the fiber and the matrix.

The comparisons of current solutions with the solutions of Delade [361 (based on 2D

plane stress consideration) are shown in Fig.5.15 to Fig. 5.18. One is able to extract

directly from those plots that as the thickness of the plate decreases (i.e., a/h increases), the

2-D solution is recovered for both radial stress and circumferential stress. This conclusion

can be proved easily from the equations (4.3)-(4.8). Readers may note that as the thickness
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of plate increases, the ratio of radial stress qW(3D)/Arn(2D) decreases (<I) whereas the ratio

of circumferential stress aqe(3D)/doe(2D) increases (>1).
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5.2 Periodic Fibers Model

In as much as, in practice, the composite plate is not embedded with only one fiber, it is

desirable now to extend the model to a more general case where an array of periodic fibers

is introduced to embed into the matrix. As for this periodic fibers model, all the

displacements and stresses will be 6-dependent due to the interaction of adjacent fibers. A

new ratio a/b (the ratio of fiber radius to separation distance between adjacent fibers) is

introduced here to correspond to the fiber volume fraction vf The displacement ue and the

stresses xe0 , Toz are no longer zero here but they are still not the important factors

compared with the other ones. Therefore, they will not be discussed in this thesis.

The shear moduli ratio 92/91 used here is fixed at 16.67 throughout the discussion.

Several different geometrical ratios a/b are chosen: they are a/b=0.55, a/b=0.45, a/b=0.32

or a/b=0.2. Another geometrical ratio a/h is taken as before, that is, 0.01, 0.05 and 0.3.

The plots are presented in six stages. In the first stage, the displacement and stress fields

are shown as the function of 0 and are compared with different ratios of a/b. In the second

stage, the effect of different plate thickness is investigated where the displacement and

stress fields are functions of z. In the third part, the stresses vs a/b are examined. Again,

the stress field is presented as a function of z in the fourth part, but here it is used to

compare with different ratios of a/b instead of the different ratios of a/h. In the fifth stage,

the displacement and stress fields are examined as a function of the radial coordinate r.

Finally, the effect of different shear moduli g2/gl is investigated.

Fig. 5.19 shows the displacement Ur vs 0 at the interface and along the center of the

plate. The maximum deformation occurs at 0=0. It is interesting to note that as the ratio a/b

increases, the value of the displacement increases at 0=0 and decreases at 0=45. As the

ratio a/b decreases (the distance of adjacent fibers increases), the curve tends to be constant

in the 0 direction, which seems reasonable if one thinks of a limit case a/b--0, the result of

the one fiber model is recovered (0-independence).
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Figure 5.19. Displacement ur at r=-a,z=O vs 0 for periodic fibers model

where v---0.34,v2=0.22,JA2/j=16.67 and a/h--0.05
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The displacement w at the free surface is shown in Fig. 5.20. The curves are close at

0--0, then separate in the other side (0=45). The maximum value in magnitude is also at

0--0 and as the ratio a/b decreases, the displacement also tends to be independent of 0.

The value of radial stress a; (Fig. 5.21) increases at one side (0=0) and decreases at the

other side (0=45) as a/b increases. The circumferential stress a0 e(l) shown in Fig. 5.22

presents a similar condition. The maximum stress for both ayr and a; 0(1) is located at 0=0

for any different ratios of a/b. Fig.5.23 shows us the profiles of axial stress a2 O(1) vs 0.

All curves merge together at about 0=45. The maximum axial stress of az,(l) is also located

at 0=0 but the axial stress is small in comparison to the radial stress ar, and the

circumferential stress aoo(1).

Figs. 5.24 to 5.34 show the displacement and stress fields vs z/h at the interface of fiber

and matrix for both 0=0 and 0=45 cases where the ratio a/b is fixed at 0.55. As it has been

shown in Figs. 5.19 to 5.23, the maximum stress is located at 0=0. Thus in the subsequent

discussion, one need only concentrate on the case 0=0.

The plots of the displacement ur shown in Figs. 5.24 and 5.25 provide us different

profiles for the displacement at 0=0 and 0--45. The variation of the curves seems more

regular in the position of 0=0 than the curves of 0=45 because the curves of the former one

cross at about the same point (z/h=0.8) where the value of each curve is almost zero. As the

ratio a/h decreases, the value of the displacement increases at the central region

(0<z/h<0.8), and at the region of 0.8<z/h<l, it increases again but in a negative sense. It

may also be noted that for a large ratio of a/h (the case of a/h=0.3), the displacement u,

vanishes in a wide span from the central region and one is able to extract that this

displacement tends to be a negative value as the a/h increases again. The displacement w

(Figs. 5.26 and 5.27), on the other hand, looks more regular than other components

because it presents a linear relationship along the z direction except the values near the free

surface.

Figs. 5.28 and 5.29 show the curves of radial stress aF,, at the interface corresponding
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Figure 5.20. Displaceme-nt w at r--a, z=h vs 6 for periodic fibers model

where vi=-0.34,V2=O0.22,g 2/p.1 =16.67 and alh=-0.05
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Figure 5.22. Stress ree(l) at r=a,z=O vs 0 for periodic fibers model

where vj=0.34,v 2=0.22,1.2/Ij±=]6.67 and a/h=0.05
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Figure 5.23. Stress -(, -() at r=a, z--O vs 0 for periodic fibers model

where v1 =0.34,v2 =0.22,Ri2/9L=1 6.67 and a/h=0.05
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Figure 5.24. Displacement Ur at r=a,O=O vs z/h for periodic fibers model

where v1=0.34,v 2=0.22,t2/4=16.67 and a/b=0.55
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Figure 5.25. Displacement Ur at r=a,0=r/4 vs z/h for periodic fibers model

where vl=0.34,v2=0.22,Ri2/9.t=16.67 and a/b=0.55
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Figure 5.26. Displacement w at r=a,O=0 vs z/h for periodic fibers model

where v1 =0.34 ,V2=0.22,92/9l=16.67 and a/b=0.55
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Figure 5.27. Displacement w at r=a,O-i-/4 vs z/h for periodic fibers model

where v1 =0.34,v2=0.22,192/l1=16.67 and a/b--0.55
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Figure 5.28. Stress a,, at r=a,0=0 vs z/h for periodic fibers model
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Figure 5.29. Stress ar, at r=-a,O---/4 vs z/h for periodic fibers model

where v---O.34,v2=0.22,t2/1l=1 6.67 and a/b--0.55
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Figure 5.30. Stress aff(1) at r=a,0=0 vs z/h for periodic fibers model

where vi=0.34,v2=0.22,1R2/Alj=16.67 and a/b=0.55
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Figure 5.31. Stress aoo(l) at r=-a,O=n/4 vs z/h for periodic fibers model
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Figure 5.32. Stress azz(1) at r=-a,O--0 vs z/h for periodic fibers model

where vj--O.34,v2--O.22,I12/ALj=16.67 and a/b=0.55
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Figure 5.33. Stress T, at r=a,0=0 vs z/h for periodic fibers model

where vj=0.34,v2=0.22,j±2/glj=l 6.67 and a/b=0.55
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Figure 5.34. Stress azz(2 ) at r=a,O--O vs z/h for periodic fibers model
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to two different locations 0=0 and 0=45. The radial stress increases with the decrease of

a/h in both directions. Readers can note from Fig. 5.28 that as a/h reaches a certain value

(small a/h), all the curves tend to merge together at the central region of the plate, which

reveals that as the thickness of the plate increases to a certain degree, the radial stress will

stop increasing and reach a limit value in the central region of the plate.

The circumferential tress o00(l) is shown in Figs. 5.30 and 5.31, where there is only a

slight change of the magnitude at the central region. However, the circumferential stress

jumps suddenly to a large value near the plate surface. A special case is the curve of

a/h=0.01 at 0=0. In this case, the circumferential stress decreases suddenly from the point

of about z/h--0.7 then returns back rapidly from about z/h=0.95 to a large value. The axial

stress Oz(X) (Fig.5.32) for the case of a/h=0.01 has a phenomenon similar to e0e('). The

shear stress TT, (see Fig. 5.33) increases in magnitude almost linearly at the central region

for every ratio a/h then increases fast near the free surface where the stress singularity is

located. Finally, the vertical stress of the inclusion Czz(2) is examined in Fig. 5.34.

Comparing the plot with the plot in Fig. 5.13, one can note that both plots look similar,

which reveals that the effect of the ratio a/b to the stress azz(2) is negligible.

Figs. 5.35 to 5.37 show the variation of the stress profiles arr, 00e(l) and Ozz(1 ) vs

a/b for the case of a/h=0.01, respectively. Each of these plots contains two curves that

represent two different points at 80- and 0-45 in the center of the interface. In Fig. 5.35,

the radial stress or, decreases in both directions as the ratio a/b increases. On the other

hand, the curves of the circumferential stress shown in Fig. 5.36 are separated in different

directions with the increase of a/b. It is of interst to note that as the distance of the adjacent

fibers decreases, parts of the stress oee( 1) will transfer from 0=45 to 0=0 to add the

magnitude of the circumferential stress ao0(1) at 0=0. The axial stress azz(1 ) vs a/b is

attained in Fig.5.37. It is observed that this axial stress increases fast at 0--0 with the

increase of ratio a/b whereas it changes only slightly at 0=45.

Figs. 5.38 to 5.42 show the profiles of those normal stresses Orr, 0e0(1) and Ozz(1 )
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Figure 5.35. Stress crr at r=-a,z=O vs a/b for periodic fibers model

where v--0.34,v2=0.22,t2/9L=1 6.67 and a/h=0.01
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Figure 5.36. Stress ao(l) at r=a,z--O vs a/b for periodic fibers model

where vj=0.34,v 2=0.22,1 2/ Ji=1 6.67 and a/h=0.01
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Figure 5.37. Stress cy,,(') at r=a,z--O vs a/b for periodic fibers model

where vj=0.34,v 2=0.22,p. 2/9.1=16.67 and a/h=0.01
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Figure 5.38. Stress ar, at r--a, 0-=0 vs zlh for periodic fibers model

where v1 =0.34,V2=O.22,p. 2 /91= 16.67 and a/h=0.0 1
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Figure 5.39. Stress arr at r=a, "-- /4 vs z/h for periodic fibers model
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Figure 5.40. Stress ooe( 1) at r=a, 0--0 vs z/h for periodic fibers model

where v1=0.34,v 2=0.22,1. 2/j±1=16.67 and a/h--0.01



95

3.2

3.0

2.8 a/b=0.32

a/b=0.45

2.6-

S2.4

2.2 a/b=0.55

2.0-

1.8

0.0 0.2 0.4 0.6 0.8 1.0

z/h

Figure 5.41. Stress aeD(I) at r=a, O=n/4 vs z/h for periodic fibers model

where vj =0.34,v2--O.22,92/tL4=1 6.67 and a/h--0.01
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Figure 5.42. Stress a,,(I) at r=a, 0--0 vs z/h for periodic fibers model

where v---0.34,v2=0.22,92/l9=1 6.67 and a/h=0.01
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again but using different ratios of a/b instead of different ratios of a/h in order to observe

more clearly the effect of the ratio a/b on the stresses along the thickness and at the

interface. In the position of 0-0, the effect of ratio a/b is small to the radial stress in the

central region (see Fig. 5.38). In the position of 0:-45, however, the different ratios of a/b

separate the radial stress as a group of parallel curves (see Fig. 5.39). The same

phenomenon can also be seen in the profile of the circumferential stress (Figs. 5.40 and

5.41). On the other hand, the axial stress az(') with different ratios of a/b at "0- is shown

in Fig. 5.42. The stress is redistributed by different ratios a/b along the thickness. As a/b

increases, the stress in the central region increases but the stress near the free surface

decreases to a negative value, then goes back again to a big value.

So far, all of the plots discussed above are focused on the interface of the fiber and the

matrix (r=-a) where a maximum stress is presented. The displacement and stress distribution

along the radial direction is also important for us in order to understand the material

properties. For this reason, the plots (Figs.5.43 to 5.51) are made here to examine how

displacements and stresses will decay as a function of the radial distance. All of the curves

discussed here are within the region begining at the interface r=a and ending at the

symmetric line B-C (see Fig. 2.2).

The displacement w at the free surface z=h is shown in Figs. 5.43 and 5.44 as a

function of the radial coordinate r. At M0, the displacement looks more complicated than

the displacement at 0--45 because the curve at 0=0 changes from a concave shape to a

convex shape as the ratio a/b increases and the curves at 0=45 look more smooth and

regular. The values of the displacement at the interface r=a, which is smaller than 100 in

magnitude, reveal that the inclusion resists the shrinkage of the matrix.

The radial stress profiles on at the center of the plate (z=0) are shown in Figs. 5.45 and

5.46 along the two radial directions of 0--0 and 0=45, respectively, f-r different ratios of

a/b. The stress tends to decrease as the distance away from the interface increases. It may

also be noted that the stress along the direction 0--0 decays faster than the stress in the other
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Figure 5.43. Displacement w at z=h, 0=0 vs (r-a)/(b-a) for periodic fibers model

where vl=0.34,v2=0.22,1 2/9l=16.67 and a/h=0.01
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Figure 5.44. Displacement w at z=h, 0---n4 vs (r-a)I(0.707b-a) for periodic fibers model

where v1 =0.34,V2=O0.22,p. 2411 =1 6.67 and a/h=O.0 1



100

3

2

alb=O.55t5 a/b=O.45

a/b=0.2

0-
0.0 0.2 0.4 0.6 0.8 1.0

(r-a)/(b-a)

Figure 5.45. Stress a,, at z=0, 0M0 vs (r-a)/(b-a) for periodic fibers model

where v1=0.34,v2=0.22,A2/i=1 6.67 and a/h=0.01
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Figure 5.46. Stress a1 t at z=O, 0---n/4 vs (r-a)/(0.707b-a) for periodic fibers model

where v1=0.34,v2=O.22,t 21gjl=16.67 and a/h=0.01
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Figure 5.47.Stress cye(l) at z=-O, 08=0 vs (r-a)/(b-a) for periodic fibers model

where v1 =0.34,V2=0.22,p. 2/gj=1 6.67 and alh=0.0 1
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Figure 5.48.Stress aee(') at z=0, 0---n/4 vs (r-a)f(0.707b-a) for periodic fibers model

where vj=0.34,V2=0.224J.2/4j16.67 and a/h=0.01
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Figure 5.49.Stress ($zz(1) at z--O, 0=0 vs (r-a)/(b-a) for periodic fibers model

where v1 =0.34,v 2=0.22,9 2/p.1=16.67 and a/h--0.01
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direction (0=45). A similar trend also prevails for the circumferential stress aee(1 ) (see

Figs. 5.47 and 5.48). As for the stress azz() (see Figs. 5.49 and 5.50), on the other

hand, one can note that both groups of curves along different radial directions (i.e., 0=0

and 0=45) approach to the value of zero.

Fig. 5.51 shows the axial stress a;z(2) in the fibers vs r/a. At the interface r=-a, the

magnitude of the axial stress increases along 0=45 and decreases along 0=0. It seems

reasonable if one compares these curves with the curve of a/b--0.55 in Fig. 5.20. The

shrinkage in vertical direction at the interface is resisted much more at 0--45 than at 0--0 (if

without the resistance, the value of the shrinkage is -100), which induces a higher

compressive stress a;,( 2) at the point 0=45 than at the point of 0M0.

Finally, the stresses a, and ae0( 1 ), which are two of the most important stresses under

consideration, are shown again as a function of shear moduli ratio 9±2/9, in Figs. 5.52 and

5.53, respectively. Starting from gt2/tl =0.01, one can travel along the curves and note

that both radial stress q, and circumferential stress 0oe(') are close to zero in the region of

small shear moduli ratios. This result seems reasonable if one examines the limit case of a

plate with periodic holes. From Fig.5.52, the reader may note that the radial stress cyr

appears to be low for a wide span of the ratio j±t/p.j. Beyond the ratio of gt2 /4t =10, it

increases rapidly . From those four curves with different parameters, one is able to extract

directly that the effect of the ratio a/h to the radial stress is much higher than the effect of the

ratio a/b. The circumferential stress a9eo), on the other hand, has a large slope in the

region for small ratios of t2/g,, while the rate of increase slows down in the region of

high ratios of g-2/gt1 . A reverse condition appears for this circumferential stress (see Fig.

5.53), that is, the effect of the ratio a/b to this circumferential stress is higher than that of

the ratio a/h. Thus, the following conclusion may be drawn that in the case of small ratios

of gt2/gi , a radial crack is most likely to initiate frst, while in the case of large ratios of

9t2/4 1 a fiber-matrix interface crack is most most likely to develop.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In view of the numerical results discussed above, the following conclusions may be

made:

1. The thickness and distance of adjacent fibers of a plate , as well as the material

properties, play a fundamental role in the failure mechanism of a plate with one or periodic

cylindrical inclusions. More specifically, the geometric parameters a/h, a/b and the shear

moduli ratio 9 2 /9, are three important ratios that not only control the location where a

failure initiation may occur, but may also determine the direction where the crack

propagates.

2. The value of shear moduli ratio g2/gl may also be used to predict the direction of a

crack initiation. As for a small ratio of g2/gl (<10), a radial crack may initiate first whereas

for a large ratio of .2/9l (>15), a crack along the fiber-matrix interface may initiate first

then.

3. The ratio of thermal expansion coefficient a( 2)/a(l) presents a linear action to the

displacement and stress fields.

4. Under the cooling process as discussed in this thesis, the failure (debonding,

slippage and breakage) will most likely be induced by the effect of the radial stress cy, or

the circumferential stress aee(l) . One can predict, however, a conclusion based on the

information discussed in Chapter 5, if the plate is subjected to a high temperature. In the

case of an airplane with a high speed, a crack may initiate at the central region of the fiber
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because in this circumstance, the axial stress azz(2) in the fiber tends to be a large tensile

stress that will control the failure of the plate.

5. The comparison of the current result with the result of Delale (1988) indicates that the

current solution can predict the interfacial shear stress quite satisfactorily throughout the

interface, whereas the 2-D solution obtained by Delale [36] neglects the effect of the

mismatch along the axial direction, which has been proved to be a very important factor to

the stress field for a thick plate.

6. An edge effect is confirmed to exist in the vicinity of the intersection of the interface

(r=a) and the free surface (z=h) where the presence of a stress singularity may result in

crack initiation.

7. Finally, to avoid unnecessary damage induced by the residual stress, an optimal

design of fiber-reinforced composite material may be recommended to manufacturing

engineers:

(a). The shear moduli ratio It2/9±1 (fiber to matrix) is a factor that needs to be

optimized. A high value of this ratio may cause a fiber/matrix interface crack (see Fig.

5.52) and therefore should be avoided in most circumstances.

(b). The fiber volume fraction vf (i.e., the ratio of a/b) as well as the ratio a/h are

also factors that need to be optimized. The maximum stress may change between the radial

stress and the circumferential stress with the change of the ratios a/b and a/h. Thus, two

types of failure immediately come to mind: a fiber/matrix interface crack and a radial matrix

crack. One is able to deduce that the minimum critical residual stress occurs at the position

where the radial stress oar equals the circumferential stress e0 0(l). The ratios of a/b and

a/h may then be thought of as the optimal ratios to reduce the residual stress effect.

(c). The thermal expansion coefficients ratio a( 2)/a(l) presents a linear action to the

residual stresses. It is optimal to use the materials of fiber and matrix with close thermal

expansion coefficients to minimize the effect of the residual stresses.



113

6.2 Recommendations for Further Work

The present analysis does give some important information that can be used in the study

of composite materials. However, much work still remains to be done in the future.

General speaking, Folias' 3-D solution can be developed to solve more complicated

problems if one knows how to modify the program to remedy the ill conditions. Based on

the author's experience and knowledge, the following problems need to be addressed in the

future:

(1). Perfect bonding and isotropic material of both fiber and matrix were assumed to

prevail in this paper. However, a large mismatch has been found in the interface along the

thickness. A slip in the axial direction may occur. So a new model that relaxes the

assumption of perfect bonding to a partial debonding case must be dealt with. On the other

hand, anisotropic properties exist in some materials, such as the carbon fiber. So the

solution at hand may be developed to a more general case that is valid for an anisotropic

material.

(2). Some pre-existing cracks can be introduced to the investigation. The particular

solution in the method needs to be modified to handle the mixed condition at crack region.

(3). All of the previous research is limited to the "micro-approach," which considers the

micromechanical behavior of only one ply of laminate. In practice, the interaction of the

laminates and edge effect between the plies with different phases is also very important.

How to develop a model that can be used to solve the multiply composites is an important

consideration for future research.



APPENDIX A

THE SMALL CONTRIBUTIONS OF THE MODIFIED BESSEL

FUNCTION I TO THE STRESS FIELD IN THE MATRIX
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In this thesis, only the Bessel function K is used to match the stress field in the matrix (r

> a region). Because the residual stresses are induced by the mismatch of fiber/matrix

interface (r=a), the stresses in the matrix decrease along the radial direction r, which

matches the trend of the modified Bessel function K. The other modified Bessel function,

1, however, goes to infinity as r increases; therefore it is expected that the coefficient that

multiplies this function must decrease rather rapidly.

In order to confirm that the effect of adding the term of the modified Bessel function I to

the matrix can be neglected, an efficient procedure is as follows. Consider the linear system

of both the governing equations and boundary conditions, which may be expressed as

follows:

L [UP ) (governing equations) (A-I)

M [U] =0 (boundary conditions) (A-2)

Let:

U = u + u*, (A-3)

where u represents the part that is used in this thesis and u* represents the solution with

the modified Bessel function I. Then from equations (D- 1)-(D-3), one gets:

L [u+u* I = L [u] + L[u* I = 0 + L[u* ] = L [u*]= 0 (A-4)

M [u+u* ] = M [u] + M [u* ] = e + M [u* ] = 0 (A-5)

where £ is the error of the boundary conditions obtained before. It may be noted that

equation (D-4) is satisfied automatically and that the only problem remaining is to solve

equation (D-5), which may be expressed as a new linear system:

A* x = C = - c (A-6)
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Solving for the constants x and computing the additional stress field G*, one can see

clearly that the contribution of the modified Bessel function I to the stress field in the matrix

is negligible.

Figs.D.1 to D.4 show us the profiles of the ratio of this additional stress to the stresses

obtained before. Both the radial stress Tr, and the circumferential stress aoo are shown as

a function of r/a or z./h, respectively. Two different sets of roots are given in the plots to

show the difference of the value. It is noted from these plots that the contribution due to the

extra term is less than 0.5% of the stress field, which was obtained previously. This

confirms the assumption that the contributions due to the modified Bessel function I may be

neglected and still have accuracy up to 1%. By utilizing, however, both solutions, one

may calculate the stress field to within an error of less than 0.1%.
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Figure D. 1. The ratio of stress a,, at z=0, 0---n/4 vs (r-a)/(b-a) for periodic fibers model

where vl=0.34, v2=0.22,u±2/1l=16.67, a/b=0.55 and a/h--0.05
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Figure D.2. The ratio of stress (o; at z=O, 0--n/4 vs (r-a)/(b-a) for periodic fibers model

where v1=0.34, v2=0.22,g2/gl=16.67, a/b=0.55 and a/h=0.05
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Figure D.3. The ratio of stress yrr at r=a, 0=n/4 vs z/h for periodic fibers model

where vl=0.34, v2 =0.22,1 2411=16.67, a/b=0.55 and a/h=O.05
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Figure D.4. The ratio of stress oee at r=-a, 0---V4 vs z/h for periodic fibers model
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ABSTRACT

This paper presents several topics related to the 3D mechanics study of a single fiber

embedded into a matrix and subjected to axial loadings. Both the perfect bonding model

and the imperfect bonding model are formulated and numerically solved by a method

developed by Folias (1975, 1990). The numerical results show that the geometric ratio a/h

(fiber radius to plate half thickness) and shear moduli ratio gI2/g (fiber to matrix) have

great effect on the stress field. The failure mechanisms corresponding to these different

models are found in the paper. In addition, comparisons with the experimental results are

also made.



INTRODUCTION

The problem of determining the stress distribution induced by inclusions under load has

been a hot topic for about half a century. Two-dimensional solutions (plane stress and

plane strain) for plates with perfectly bonded circular inclusions can be found in the papers

of Sendeckyj (1970) and of Yu and Sendeckyj (1974). A general representation of the

solution of the elastic curvilinear inclusion problem is presented by Sendeckyj. As an

example, the elliptical shape of inclusion is discussed. The discussion is limited to the case

of an infinite matrix. Later, the problem of an unbounded elastic matrix containing any

number of elastic inclusions is solved by Yu et al.. Both of these use the complex variable

formulation. A more practical model for the mechanical behavior of unidirectional fiber-

reinforced materials subjected to axial loading is examined by Bloom (1967), where a

hexagonal array of perfectly bonded filaments is assumed. While these approaches are well

understood in two dimensions, they are less so in three. Since these solutions are based on

two-dimensional considerations, the effect of the thickness of the plate on the stress

distributions could not be examined.

Three dimensional solutions to similar problems are not fully investigated due to the

mathematical difficulties involved. Muli and Sternberg in '970 investigated the diffusion

of an axial load from a bar of arbitrary uniform cross-section that is immersed in, up to a

finite depth, and bounded to a semi-infinite solid of distinct elastic properties. Their

approximate method requires the radius of the rod to be small in comparison to its length.

Luk and Keer in 1979 investigated a very similar problem. The rod bar at this time is

assumed to be rigid. Many plots of the stresses based on numerical calculation are given.

The authors have also examined what effect different parameters of the problem have on the

stress field. It is important to note that all of the above works deal with one perfect isolated
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inclusion. On the other hand, in a fiber-reinforced composite thousands of fibers can be

used to construct one layer of the laminate. Similar to the geometry of the problem

examined by Bloom (1967), a three-dimensional solution is achieved by using Boussinesq-

Papkovitch potentials by Haener (1967). However, only few numerical results are

presented in the paper. Perhaps the reason for this is the numerical complexity encountered

because of the double summation. Folias in 1975 examined a method for constructing

solutions to some three-dimensional mixed boundary-value problems and applied it to the

problem of a uniform extension of an infinite plate containing a through the thickness line

crack. Subsequently the general solution is used to investigate some related problems. In

Penado and Folias (1989), the stress field around a cylindrical inclusion in a plate of

arbitrary thickness is investigated, where a uniform tension is applied in the plane of the

plate at points far remote from the inclusion. Since the thickness of the plate is no longer

assumed to be infinite or semi-infinite, the results allow the examination of very thick and

very thin plates and bridge the gap in between.

While all above discussions are restricted to the case of a perfect bonding condition at the

interface, there are few analytical models which deal with the imperfect bonding problem.

The first model assumes that the inclusion and the plate are connected by an elastic spring at

the interface. Tractions and displacements u and v are continuous across the interface, but

the vertical displacement w may not be continuous and the difference Aw is assumed to be

proportional to the shear stress zr at the interface. Papers by Lawrence (1972) and Banbaji

(1988) approach the problem based on shear lag analysis and the results are, therefore,

approximate. Most recent work done by Steif and Hoysan (1986) approaches the problem

based on 2D considerations and the case in which the fiber and the matrix have identical

elastic properties is solved. Numerical solutions for cases in which the fiber and the matrix

have different elastic properties are obtained by a finite element method. The second model
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developed by Dollar and Steif (1988) assumes that the transfer of load at the interface is

described by Coulomb friction. The mathematical models for stick, slip and separation

conditions are given and the residual stress ,r, is introduced into the discussion. These two

models have their deficiency which will be seen later. Haritos and Keer (1985) considered

the problem of a finite, rigid insert partially embedded in and adhesively bonded to an

elastic half plane. The problem is then formulated in terms of a singular integral equation

which is solved numerically. The fiber/matrix debonding problem is solved by Gao et al.

(1988) based on the fracture energy balance. The friction at the debonded interface and the

Poisson contraction of the fiber are included. Interfacial friction is shown to have a

significant effect on the debonded load. A similar work is also carried out later by Penn and

Lee (1989). Shear lag models are used both in these two papers to calculate the stress and

the displacement fields.

A boundary layer effect is expected to prevail in the neighborhood of the intersection of the

interface and of the plate surface. This matter has recently been investigated by Folias

(1989) based on 3D consideration, where by assuming a certain form of the solution he

was able to use an asymptotic expansion developed by Williams (1959) and to extract the

explicit displacement and stress fields. The stress field is shown to be proportional to p-0

where cc is a weak singularity which depends on the material properties and the angle of

intersection of the fiber with the free surface.

On the other hand, the experiments focusing on the interfacial strength have also been a hot

topic for quite a while. Experiments on a two dimensional model of an aluminium alloy

fiber in an Araldite resin are carried out by Tyson and Davies (1965), the interfacial shear

stress is obtained by photoelastic method. Experiments conducted by Chua and Piggott

(1985) have measured several important parameters, such as interfacial yield strength and



4

an interfacial work of fracture. The stress transfer and fracture in single fiber/epoxy

composites have been investigated by DiBenedetto et al. (1986) and Bascom et al. (1986).

Their main efforts is to find the cumulative distribution of critical fiber lengths, which can

be used to calculate the interfacial shear strength.

The purpose of this analysis is to consider a similar problem as that of Penado et al.

(1989), but the plate is now subjected to a uniform tensile load along the axis of the

cylindrical inclusion. As far as the authors know, no analytical work for the problem under

consideration has ever been carried out. The method which will be used in this analysis is

the same as that of Folias (1975, 1990). The problem will subsequently be extended to two

other cases: first the plate surface will also be allowed to carry a portion of the load and

second the interface will be assumed to be imperfectly bonded. A fracture mechanics

approach is beyond the scope of current analysis. It is expected, however, that the current

analysis will lead to the calculation of strain energy more accurately in the future. In order

to simplify the mathematical complexities of our problem, the following assumptions will

be made:

(1). Both the plate and the inclusion are made of isotropic, homogeneous and linearly

elastic materials.

(2). As a first step, only one isolated inclusion is assumed to be embedded into the plate.
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FORMULATION OF THE PROBLEMS

Perfect Bonding model 1

we consider a body which occupies the space IxW<e, lyl<a@, IzI:5h and contains two regions

with different elastic properties. The inclusion is a cylinder of radius r=a through the

thickness (see Fig.1). For convenience, the region r>a ( plate ) and the region r<a

(inclusion) are denoted by superscripts (I) and (2), respectively. Uniformly distributed

tensile stress co is applied both on the bottom and the top of the inclusion and all other

boundaries are assumed free of stress.

In the absence of body forces, the governing equation (Navier's equation) for the

displacements ), vi), w(i) (i=1,2) is

mi 3e(i) +V2u[)=O; (k=1,2,3) (2.1)mr-2 Z jk k

where V2 is the 3D Laplacian operator, mi=l/ti, Vi is Poisson's ratio and

au(i)
e(M = .I. k k=1,2,3 (2.2)

The stress-displacement relations are given by Hooke's law as:

o=2ýi{ 1.•_2) + e(')); k,1=1,2,3 (2.3)

where pi are the respective shear moduli.

As to the boundary conditions one must require that



6

as r -4oo;
(2.4)

()-' (2.5)

at z=IhI;

UXzX= ,= --t, (2.6)

-T Pz)--O (2.7)

tz•) =CFO (2.8)

at r=a; ~). _ •) C),(2)..,,.(i) ,,(2)
"YI to " =0 (2.9)

u) -u = UO) _u -- ,(2 ).=U u () =0 (2.10)
U1 -U = 0 0 U 00 zU z

also the following continuity condition must hold

at r=O; all stresses and displacements for

the inclusion must be bounded (2.11)

Our approach is to seek a solution in the form:

u(i)-11(PXi) + u(CXi) (2.12)

v(i)+/(Pxi) + V(cXi) (2.13)

wO()_-(pXi) + w(eXi) (2.14)

where the component with the superscript (p) represents the particular solution, and the

component with the superscript (c) represents the complementary solution.
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In general, the particular solution is relatively easy to obtain. It must satisfy the governing

equation (2.1) as well as the boundary condition far away from the inclusion. For the

problem under consideration, the particular solution in cylinduical coordinates is:

(1) for the plate:

0(•'XI)=•eXI'=o(P=XI)--O (2.15)

1 z We (2.17)

(2) for the inclusion:

4•X2)-Clr (2.18)

%9e_--O (2.19)

(p)2)=[ 1-2v2  2_v C]z (2.20)
21.122 1-v2  - V2

eX2)=cP. 1).v + -21Lp2C (2.21)

o o (2.22)
(pX2)_.-(PX2)_.l (pX2)=O (2.23)

where C1 is a constant to be determined later from the boundary conditions of the

complementary problem.

In view of the particular solution, one needs to find six complementary displacements u('),

(i), w(i) (i=l, 2), such that they satisfy both the governing equation and the boundary

conditions:



at _zJ=h; ?(cXi)(cXi)_a(cXi). (2.24)at Izcl)~(h;) (x2 y •- - (2.25)
G(cX0)_c)2) (pX1)?(PX2)at r=a; =C( (2.25)

"•0 =", "'•e(2.26)

1c)i) (cX2) (pX_ ) (pX2) (2
00 -•: -UV0 -,=-X, (2.27)

_cX1) (c)(2). (pXI) .(23X2)
u - ' - (2.28)
4 ,X1) cX.P ,pXl)..,(pX2)

U0 _Ueo g-o g'o (2.29)

U ( €)X ) , (c •) .(p X 1) I ..(p X 2 ) ( . 0
Z "UZ "U Z"ux

It may be appropriate at this stage to point out that a uniform tensile stress ao assumed in

Fig.1 has neglected the stress concentration effect existing at the edge region. Such a stress

concentration effect could be taken into account if one considers a non-uniform tensile

stress acting on the fiber surface as shown in Fig. 2. It will be shown later that the error

brought on by such a simplification is very localized (about one fiber diameter from the

fiber end). A follow-up paper on this matter is under preparation.

Perfect bonding model 2

The above discussions are based on the fact that only the inclusion is subject to an axial

load while the plate is free of any external loads. Such a model is often used to illustrate

how the load is being transferred from the fiber to the matrix, as we have reviewed in the

Introduction. But in reality in composites, both the fiber and the matrix carry portions of

the external load provided that the shear modulus gL of the matrix is not negligible. For this

reason in Fig. 3 we consider a modified model which allows the plate to carry an axial load

ai. The magnitude of ai may be different from that of o0 and in our subsequent numerical

calculations, the rado oa% o0 will be considered.
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Most of the formulas developed for perfect bonding model 1 still hold except some

modifications need to be made for expressions (2.15-2.17).

(i-" 2-L,(ml+l) r (2.31)

PXI)---0 (2.32)

u -x1)2 m1n ) (2.33)

1z 2,i(,,+1) z
GPXi)=AeXl)=O (2.34)

(PzXL)= (2.35)

To f- t -(2.36)

On the other hand, the particular solution for the inclusion is the same as that given in

(2.18-2.23).

Imperfect Bonding Model

Perfect bonding conditions require that the displacements and the stresses be continuous at

the interface throughout the thickness. Since both of the above models satisfy (2.9) to

(2.10), we define them as perfect bonding cases. As it was previously noted, imperfect

bonding models which have been examined based on 2D consideration are basically of two

types: in the first type the transfer of load across the interface is described by Coulomb

friction, while in the second the transfer of load across the interface is described by a

continuous elastic spring connecting the fiber and the matrix. In this analysis we choose the

latter for it is more suitable to the structure of our complementary solution given in the

subsequent analysis.

This model is shown schematically in Fig. 4. Crucial to the problem of interest is the

bonding between the fiber and the matrix at rfa where the relevant stresses as well as the
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displacements u and v must be continuous. The vertical displacement w, however, is

allowed to be discontinuous but its jump must be proportional to the shear stress. i.e.,

along r--:

'u= -M =1 or 2) (2.37)

where I/Ks is the inteface shear stiffness.

A boundary condition of the type (2.37) is inappropriate for the edge region (near z=h) for

the displacement field is non-singular while the stress field is singular (Folias, 1989).

However, except in the boundary layer region, the results are expected to be valid.

In view of this consideration, the last boundary condition in (2.14) becomes

u) (2 -Ks c( (i=l or 2) (2.38)

All other boundary conditions remain the same. Finally in terms of the complementary and

particular solutions, the boundary condition (2.38) becomes

u(CX) (cX) 402 (pXl) .W(pX2)+Ks I() (2.39)u2,"• 1 , -u Z "- +u7 _ -i-K(.9

All other boundary conditions are given by eq. (2.24-2.30).

It remains, therefore, for us to find a complementary solution such that it satisfies Navier's

equations and the appropriate boundary conditions.



METHOD OF SOLUTION

The general method for constructing solutions to some 31) mixed boundary-value problems

has been developed by Folias (1975, 1990). The solution may be written in the following

more convenient form by considering 0-independence of the problem:

00a2H(i)

v= 1

+~2 - j-T~ (3.2)

00 a2(i)
fi (Pvz)I+c[2(mi2 1i)fif((Pz) +mif2(Pvz)]

'-ri42 1=Ixl

3mi- )LO + L~i) c1) I 24)(3.4)+-f+ 2m l~ m-y-jj=+l Z X2 y

1w(CXi6-I Z(2I3i-)f3(IPVz) -mf(P )- 2mi(3.3) )
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1Xli a24) 2mi a4) 1 C130)

nxl 2 -ii+JT Crnj+ (3.5)

mi al(i)
21±i _2 (3.6)

v= 1

1 ,r~c3i) )

IpY V f3Pz + f4(P'vz)) (3.8)

1 ~(ci) 00 a2H(i)

v= 1

where
TCz ~~ n 2,3,..., (3.10)

P~v are the roots of the equation

sin(2Nvh)= - 2pvh (3.11)

Hý) (i=1, 2) are functions of x and y which satisfy the reduced wave equation:

- P* W2 - (3.12)

X(' and XT are two dimnensionai harmonic functions, and

fi (Ivz)=cos(pvh)cos(ovz) (3.13)

f2(Pvz)-Nhsin(Pvh)cos(Pvz) - Pvzcos(pvh)sin(ovz) (3.14)
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f3(iPvz)=cos(Pvh)sin(PVz) (3.15)

f4(Nz)=Dvhsin(pvh)sin(Nz) + Nvzcos(Nvh)cos((Nvz) (3.16)

The reader may notice that the above complementary solution auomatcally satisfies the

boundary conditions at IzI=h and that it only remains to satisfy the remaining boundary

conditions at the interface r=a.

In the case of perfect bonding (model I and model 2), we transform the complementary

solution into cylindrical coordinates in order to take advantage of the symmetry. Thus,

equations (2.25-2.30) may be written in the following form:

Sino(C",o(,cXl (,2))+ cos20(,o(YcXI) _CY (c).2)+i(2)rc _-- (cx)(

J7 + 2g l.+V (3.17)
I1-V2  I1-V2

~n2e(cy(?1) <~4.c2-sin2O(G (SCXl) 4cS ) +cos(20)('1(cX' -4c2ý (3.18)

sinO@,rc,') ]M_,()) + COSO('19 -(¶XI ) _ =0n (3.19)

sin6(u(cXl)-u(cx 2)) + cosO(v(cXl)-v(cX2))=Ci a + a (3.20)
2gL(ml+l)

cosO(u(cXl)-u(cX2)) - sinO(v(cX')-v(cX2))=0 (3.21)

w(cX.).W(cX2)=[ o0 1- 2v2_2V2  C]z - m!l(.2
2g2 l-v 2 - I-v 2 2gi(ml+l) z (3.22)
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In as much as model I is a special case of model 2 wth ai=O, from here on we will

concentrate on the recovery of the solution to model 2.

Taking into account the symmetry of the problem (0 independence), we let

= CtvKo(ovr) (3.24)

' = C2vlo(PVr) (3.25)

and all X=O except

A; sine (3.26)
1r

• "-A (3.27)

where I1 and Ko are, respectively, the modified Bessel functions of the first and second

kind of order zero; C1v and C2v are complex constants. The constants A and C1 are to be

determined in such a way that all remaining conditions are satisfied.

In the case of imperfect bonding, the boundary condition corresponding to (3.22) becomes

w(cXlkw(C)(2) =&,go) + [ 21-2V l-v 2v, " "2_ mql) z (3.28)
a 2112 1-V2  I -V2 g(ll

while all other boundary conditions are obtained from (3.17-3.21) by letting oi =0.
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RESULTS AND DISCUSSIONS

Perfect Bonding Model 1

In as much as the interface is of greatest practical interest, plots at r=a are given for the

displacements and stresses as functions of z. The case of perfect bonding (model 1) will be

taken as the basis of our first discussion. Two different shear moduli ratios are chosen:

these are t2/gl=2 and 4tt2l=17 corresponding to (a) and (b) respectively in each Figure.

The purpose of these plots is to examine how the shear moduli ratio affects the

displacement and the stress fields. Each plot consists of several curves which corresponds

to different a/h ratios. Superscripts are used to distinguish whether *he stress or

displacement is in the fiber or in the matrix as they have been defined early in the Figure 1.

However the superscripts are omitted if the stress or displacement is same for the fiber and

the matrix at the interface.

Stress q, (Fig.5 (a) (b) ) increases with z/h. At the center region, the Figure shows only a

slight change of the magnitude of the stress. However, it jumps suddenly to a large value

near the plate surface, suggesting, therefore, the presence of a singularity (Folias, 1989). It

is interesting to note that in the cases of small a/h ratios, %, is slightly negative over a wide

span of the center region. This suggests, therefore, that small compression exists at the

interface between the fiber and the matrix at this region. In the cases of large a/h ratios,

however, the positive value of O,, suggests that small tension exists at the interface. Our

analysis shows that the shear stress Tn (see Fig. 6 (a) (b)) starts from zero at z-0 and then

increases in absolute value along the interface. A sudden jump of the stress near the points

z=h is observed and may very well explain why a crack is most likely to initiate at this

region. The sign for the shear stress is negative because the shear stress will always be

opposing the direction of the external stress Yo applied at the face of the fiber. The variation

of the magnitude of the shear stress T, seems more complicated in the cases with g12&L1=17
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than in the cases with g2&/1=2 because the former one (Fig. 6 (b)) shows the shear stress

to return as a/h increases after it reaches a maximum absolute value at a certain a/h value. It

appears that both "very thick" and "very thin" plates will induce very small shear stress at
(2)

the center region. The matrix tensile stress o(, at the interface is plotted in Fig. 7(a) (b),

the stress increases as ratio a/h increases. A extremely high stress in the vicinity of fiber
end (2)

end may cause the matrix to break at this region. For most cases, the stress a shown in

Fig. 8 (a) (b) decays as z/h moves from the fiber end (z=h) to the fiber center (z=O). But

for the cases with a/h=l.0, the result shows that the stress bounces back slightly when it

reaches the fiber center. It is also noted that the tensile stress at the matrix will decrease as

1i2/411 increases by comparing Fig. 7(b) with Fig. 7(a) while the tensile stress at the fiber

will increase by comparing Fig. 8(b) with Fig. 8(a). This suggests that the load diffusion

from the fiber to the matrix will decrease when the fiber is stiffer.

The displacement u,, at z=h vs the radial direction is given in Fig. 9. It shows that a softer

fiber (t2/gI1=2) gives a smoother connection of the displacement at r--a while a stiffer fiber

( U2/tL= 17) gives a sharper connection of the displacement at the interface.

Perfect Bonding Model 2

In as much as, in practice, the matrix also carries a small portion of the applied load it is

desirable now to extend our model to the case where the matrix also carries part of the load

in the direction of the fiber length. Thus, perfect bonding model 2 allows us to examine

how the load is being transferred from the fiber to the matrix and vice versa. As it was

previously noted, the perfect bonding model I is taken as the basis of our discussion. To

obtain the effect of oi (recall Fig.3), the shear moduli ratio is chosen as g2z/pi=1 7 and the

geometric parameter a/h is fixed at a/h=0.05. Three curves are plotted in each figure, which

corresponds to o,/ao=0.0, 0.05 and 0.1, respectively. It is worth pointing out that ratio
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ai/ao is not an independent parameter. Actually this ratio will depend on the shear moduli

ratio 1•24• if a uniform strain is assumed on the surface of fiber and matrix. Thus, for the

parameters chosen, a realistic ratio of aio must be around 1/17.

Stress r shown in Fig. 10 will not be greatly influenced in the center region as oi/Oo

increases. However it may jump to the negative direction when -,/do passes a certain

critical value. The numerical calculations appears suggesting that the stresses (including

other stresses which will be discussed later) will change the direction of the singularity

when ado>t1 /pl 2. Such a change indicates that the debonding in the edge region becomes

less possible because of the negative value of the radial stress. Fig. 11 shows the shear

stress Trz vs z/h. Identical to ar, an increase of oJao beyond a certain value will also

change the sign of Tr.z, which implies that the shear stress now will be in the same direction

of external tensile stress. Moreover, this figure suggests the presence of a negligible shear

stress at the interface when a 0ao, pI2±land a/h are properly chosen. Fig. 12 shows c,, at

the interface. Notice that the magnitude of the stress dramatically increases as the ratio of

a/o increases ( see the curve with oddo=0.1). This figure also indicates that the stress

value at the center (z=O) may be the maximum value.

Imperfect Bonding Case

When the interface is allowed to slip, the magnitude of the stresses in the matrix will be

expected to decrease while in the fiber they are expected to increase slightly. In order to

show the effect of stiffness of the interface, two parameters are fixed: they are a/h=0.05

and g2/gli=17. Three curves, which corresponds to the reciprocal of the spring constants

K.=0,0, 0.1 and 1.0, are plotted.
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The radial stress aý, shown in Fig. 13 increases slightly as the interface becomes softer

(note IK.-0,0 corresponds to perfect bonding case, or, the rigid interface). This indicates

that the softer interface will increase the chance of interfacial debonding. The shear stress

Trz shown in Fig. 14, on the other hand, shows a dramatic decrease of the stress along the

interface. It appears that the interface is somehow relaxed by a softer interface. The fiber
(2)

tensile stress r,, (Fig. 15) increases as slippage is allowed to increase. This suggests that

less load will be transferred from the fiber to the matrix if the interface is softer, which also

substantiates our initial assumption.

The spring constant can be calculated by the equations given by Stief and Hoysan (1986),

where the coated fiber model and the interfacial crack model are considered. As pointed out

by them, a significant change of stress field can only happen when the coating material is

very soft. This means that the stress field calculated from the practical parameters may be

quite close to that calculated from the perfect bonding model.
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COMPARISONS AND CONCLUSIONS

Our present results are consistent with the previous observations based on ID and 2D
(2)

considerations (Lawrence, 1972 and Banbaji, 1988) that cn and o will attain their

maximum values at the loaded end of the fiber. Although, our present model differs from

previous 3D models ( Muki et al. 1970, Luk et al. 1979, Haener et al. 1967), the stress

profiles obtained are similar. For example, comparing the result of Haener (1965) to that of
(i) (i)

our perfect bonding model 1, one finds that the stresses a., and oa obtained in these two

different models both show a flat behavior in the center region (actually the value is rather

small in this region for a. ) and then a sudden jump to a larger value near the surface. In

addition, our present numerical results do confirm the presence of a stress singularity.

The qualitative explanation of fiber multiple crack phenomenon found in the Dogbone test

samples (DiBenedetto et al., 1986 and Bascom et al., 1986) can be made by investigating

the fiber tensile stress along its length. Fig. 16 shows two curves corresponding to two

different geometric ratios a/h=0.01 and a/h=0.05, where [a] denotes the tensile strength of

the fiber. As we can see, the tensile strength in longer fiber (a/h--0.01) has passed the dash

line and hence will break while the shorter fiber (a/h=0.05) will not break because the

maximum tensile stress is below the dash line. However, if (i increases, the dash line will

move lower provided that the tensile strength of the fiber is independent of the ratio a/h.

This may lead to the breakage of shorter fiber. It becomes clear that the fiber tends to relax

itself by having shorter length. Another interesting phenomenon is that the non-

dimensionalized tensile stress at the fiber center for the case ahA=0.01 is about 17, which is

equal to the shear moduli ratio of the current problem. Cox (1952) has predicted that the

maximum tensile stress of the fiber under this model will occur at the fiber center and the

value will be E2aW/E1. This will yield 17ai assuming the Poisson ratio is same for the fiber
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and the matrix in our current problem. The prediction, however, becomes inaccurate when

the fiber length decreases. This indicates that the E2aojE can only be taken as a uplimit of

the fiber tensile stress.

A quantitative comparison of our current results with the experimental results obtained by

Tyson and Davies (1965) is given in Fig. 17. The parameters of their 2D experimental

model are taken to fit our current 3D model. The diameter of the fiber is taken as 4mm and

the half thickness of the plate h is determined by photoelastic method by measuring the

distance from the fiber end to the isotropic point. All other parameters are given in the paper

and can be used directly. As seen from the Figure, our result predicts the interfacial shear

stress quite satisfactorily throughout the interface. A deviation starts at x--4mm, one fiber

diameter from the fiber end. The authors are aware that this deviation may be caused by

neglecting the stress concentration effect at the edge region as discussed previously. On the

other hand, it also indicates that the influence of such a stress concentration effect is

extremely localized. In addition, the result calculated from the shear lag analysis greatly

underestimates the interfacial shear stress especially in the vicinity of the fiber.

In view of the numerical results, one may conclude that:

(1) The thickness as well as the material properties, play a fundamental role on the failure

mechanism of a plate with a cylindrical inclusion. More specifically, the geometric

parameter a/h and the shear moduli ratio g2/g1 are two important ratios which greatly affect

the displacement and stress fields.

(2) A boundary layer effect is shown to exist in the vicinity of z=h where the presence of a

stress singularity (Folias, 1989) may result to crack initiation.

(3) The shear lag analysis may underestimate the interfacial shear stress and may

overestimate the fiber tensile stress.



23

(4) When aOjO<j•L/g 2, the interfacial debonding, slippage and fiber breakage will most

likely initiate at the edge region.

(5) When ai/aN0>4 1 19 2, the interfacial slippage will initiate at the edge region while the

interfacial debonding and fiber breakage may initiate at the center region.

(6) Taking a uniform tensile stress at the the plate surface by neglecting the stress

concentration effect at the edge region may slightly underestimate the interfacial shear stress

near the fiber end. However, such a error reduces quickly as the distance from the fiber end

increases.

(7) The substitution of the "interphase" with an elastic spring may give inaccurate

information of the stress at the edge region because one of the boundary conditions breaks

down at the region.
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Fig. 3 Perfect bonding Model 2: both fiber and matrix are subjected to axial loads
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Fig. 4 Imperfect bonding Model: elastic spring exists at the interface



0.5

0.4]

0.3

0. 2

0.1
/h=1.Oa=0

0.0 0.2 0.4 0.6 0.8 1.0
z/h

(a) Wp24=2 and vi=v2=0.33

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06
a/li=1.0

0.04 a/h.1

0.02 A 0

0.00.

-0.02.
0.0 0.2 0.4 0.6 0.8 1.0

z/h

(b) W2i4L=17 and vi-v2=0.33

Fig. 5 Sress %r vs z/h for perfect bonding Model I



a/h=0.01
0.00

=0.1

-0.10

-0.20 A= 1.0

-0.30

-0.40

-0.50
0.0 0.2 0.4 0.6 0.8 1.0z/h

(a) ILp241=2 and v=--w=0.33

0.10 -
0.08
0.06
0.04
0.02

0.00. /-

-0.02
o-o.04 a/hhS-0.040"21)'

-0.06 a/h=0.05 a ,
-0.08
-0.10
-0.12
-0.14
-0.16
-0.18
-0.20

0.0 0.2 0.4 0.6 0.8 .0
z/h

(b) p2i1=17 and v---v2=0.33

Fig.6 Stress trz vs z/h for perfect bonding Model 1



0.41

0.3-1
0.3 a/h=1.O

0.2.

0.11

i a/hh0.0o. o1 - OA h= O.01

0.0 0.2 0.4 0.6 0.8 1.0z/h

(a) Agi/=2 and vi=v2=0.33

0.16

0.14]

0.12

0.10

S0.08

Z/h

( b ) 0 .z0i =47 a n d v i -v 2 = 0 .3 3Izh
Fig.7 Stress o• vs z/h for perfect bonding Model I



1.0

0.8,

t c' 0.6. hL

0.4-

0.2 0.0. •

0/h .05

0(0 
a/h=0.33

0.0 0.2 0.4 0.6 0.8 1.0
z/h

(a) WLzgi=2 and vl=v2=0.33

1.0 8 sf e bl

0.8

0.4,

S~a/h=O.O5

0.2,

0.0 a/h= O.Ol

0,0 0.2 0.4 0.6 0.8 1.0
z/bt

(b) P2/1W=17 and vj=v'2=0.33

Fig. 8 Stress a (2) vs z/h for perfect bonding Model I



0.5

0.4

0.3

S0.2 lt- '7

0.1

0.0
0 12 45 6

r/a

Fig. 9 Displacement uzzat z=h vs r/a for perfect bonding model 1
where vi=v2=0.33 and ah=0.05



0.3

0.2

0.1 c7 =01

.aL =0.05

0.00

FL =0

-0.1

-0 .2 , . 1 1 0
0.0 0.2 0.4 0.6 0.8 1.0

z/h

Fig. 10 Stress an- vs z/h for perfect bonding Model 2
where vl--vz=0.33; I•/gi-=17 and a/h=0.05



0.1 [r.

o.o= =0.0

-0.1-

-0.20 ='-

0.0 0.2 0.4

z/h

Fig.11 Stress cnvs z/h for perfect bonding Model 2
where vi=v2=0.33; p211-=17 and a/h=0.05



2.(

°= I

, =0.05

.0.0 CIO,

.0.2 0.4 0.6 0.8 1.0

z/h

Fig.12 Stress oy.)vs z/h for perfect bonding Model 2
where vl=v2=0.33; .tzVu=17 and 0h=0.05



0.3

0.2-

0.0

I c= Ke=O. 1

0.0 d.2 0.4 d.6 d.8 1'.0

z/h

Fig. 13 Stress af vs z/h for imperfect bonding case
where vi=v2=0.33; pLVA1i=17 and a/h=0.05



0.05

0.00. Ke=1.0

-0.05Ke--

-0.10

-0.15
0.0 0.2 0.4 0.6 0.8 1.0

z/h

Fig. 14 Stress •rr vs z/h for imperfect bonding case

where vi--v2=0.33; P.2/91=17 and a/h=0.05



1.2

1.0

0.8 lKle-l.O

0.4,
Ke4-- .

0.2 ,, Ke=O

0.0 ,d
0.0 02 0.4 0.6 0.8 1.0

z/h

(2)
Fig. 15 Stress czz vs z/h for imperfect bonding case

where vi=v2=0.33; W2/t=17 and a/h=O.05



"Dogbone" test sample

100

0

0.02 0d4 0.6 0.8 1.0
z/h

Fig. 16 Stress O43vs z/b for short fiber model where v1=v2=0.33; P4Lj=17



mmra

47mm

Aluminium alloy • -

2.0

1.5 Experimental result by Tyson and Davies

The current Model

1.0

0.5

0.0 ....0 i 110• 20
Distance from fiber end surface (mm)

Fig. 17 Comparison with the experimental results abtained by Tyson and Davies



PART VII



THE 3D STRESS FIELD IN A COMPOSITE SYSTEM UNDER THE

ACTION OF A UNIFORM LOAD IN THE FIBER DIRECTION

by

E. S. Folias and J. H. Liu

University of Utah
Department of Mechanical Engineering

Salt Lake City, Utah, 84112



The previous analysis may now be extended to the the case of a periodic array of

fibers embedded into a matrix plate and under the action of a uniform load in a direction

parralel to the fiber axis (see figs 1 and 2). Without going into the mathematical details,

which are similar to the previous parts, the results are given in figures 3 through 11. From

these figures it becomes evident that the load transfer characteristics from the fibers to the

matrix are gaverned by the material properties, the fiber radious to fiber lentgh ratio, the

fiber volume fraction, and finally the load ratio matrix and fibers.
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Fig. 1. Geometrical configuration
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Fig. I. Perfect bonding Model both fiber and matrix are subjected to axial loads
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BUTT JOINT UNDER TENSION
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Liu, Y. C., Folias, E. S., Liu, J. H.

Department of Mechanical Engineering
The University of Utah

Salt Lake City. UT84112



ABSTRACT

The adhesive butt joint has been so!ved by using the theory of

linear elasticity under the assumption of plane strain conditions. Both

the adherend and the adhesive layer are assumed to be homogeneous

and isotropic materials with different material properties. Perfect

bonding is also assumed to prevail at the interface.

The numerical results show that under a tension load the

interface plane does not remain plane and that the normal stress

possesses a weak singularity near the free surface z/h=1. It is also

found that there is significant variation in the normal and shear stress

profiles across the adhesive thickness especially near the free surface

and that the stress distribution is very sensitive to the value of the

adhesive thickness to width ratio (a/h) particularly when this is less

than 1. An examination of the octahedral shear stress shows that a

crack is most likely to initiate at the comer of the adhesive layer.

Finally, the numerical results show a good agreement with the results

obtained by finite element method (FEM).

INTRODUCTION

In recent years, there has been a continuing increase in the use

of adhesives as an alternate method for assembling the structures.

From the definitions of ASTM (1982), an adhesive is a substance

capable of holding materials together by surface attachment, an



adherend is a body that is held to another body by an adhesive and

adhesive joint is the location at which two adherends are held

together with a layer of adhesive. Figure I shows some adhesive joints

that are commonly found in engineering practice.

The single-lap joint is one of the most commonly found joint

configurations in engineering practice (see Figure 1). There are

numerous papers in the literature that deal with the problem of a lap

joint from a theoretical as well as a finite element point of view.

However, very few analyses have been- done on adhesive butt joints.

Adhesive butt joints are usually designed with rectangular or circular

cross-section. The mechanical properties of adhesive in bulk form are

different from those in thin-film form, so the adhesive butt joint has

been widely used as a testing specimen to obtain the thin-film

mechanical properties of adhesive. Gent et al. (1970) have analyzed

the incompressible adhesive (i.e., its Poison's ratio is 0.5) in tension or

compression between rigid adherends. Lindsey (1966) has calculated

the stress distribution of the adhesive butt joint in tension with the

assumptions that adherends are rigid and stresses are constant across

the adhesive layer. Two-dimensional plane stress finite element

analysis has been done by Harrison et al. (1972) who use the same

assumptions as Lindsey (1966) and maximum shear stress is found

near the free surface.,Alwar et al. (1976) and Adams et al. (1978) have

used the finite element method to analyze plane stress and

axisymmetric adhesive butt joint. Both analyses assume that the

adherends are nonrigid materials and their numerical results show
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that there is significant variation in normal and shear stress profiles

across the adhesive thickness. A similar conclusion is obtained by Sawa

et al. (1989) who analyze the axisymmetric adhesive butt joint under

tension by using the Michell's stress function from the three-

dimensional theory of elasticity.

In this paper, a plane strain adhesive butt joint loaded in tension

has been analyzed using the general solution derived by Folias (1975,

1990). Both the adherend and the adhesive layer are assumed to be

homogeneous and isotropic materials with different material

properties. Perfect bonding (i.e., continuity of displacements at the

interface between adhesive and adherend) is assumed to prevail at the

interface. The stress distribution of adhesive layer with respect to

different values of geometric ratio (a/h; adhesive thickness/ adhesive

width) and material property ratio (G2/G 1 ; adhesive shear modulus/

adherend shear modulus) have been investigated and these results give

further understanding of the adhesive butt joint problem in the

presence of a tensile load.

FORMULATION OF THE PROBLEM

Consider two adherends of thickness 211 bonded together in a

butt joint configuration by an adhesive layer, as shown in Figure 2. The

adherends occupy the space a 1x I < o, l yl <-, Izi I h and the

adhesive layer occupies the space I x 1 < a, I y I < - and I z 1 < h. Let the

joint be subjected to a uniform tensile load a0, along the x-axis and



parallel to the bonding planes. The shear modulus G 2 and Poisson's

ratio V 2 represent the material constants of the adhesive layer. In

order to simplify this adhesive butt joint into a symmetrical problem.

one may assume that these two adherends are homogeneous, isotropic

and linearly elastic materials with the same shear modulus, G1 , and

Poisson's ratio, v1 , respectively. Since this adhesix : butt joint has been

simplified to a symmetrical problem, one needs only to consider the

one quarter part of this joint with displacement u equal to zero along

the line x = 0 and displacement w equal to zero along the line z = 0.

According to Figure 2, this adhesive butt joint has a very large

dimension in the y direction and it is reasonable to analyze it as a two-

dimensional plane srin problem.

For this type of problem, it is convenient to separate the solution

in two parts, the particular and complementary solution

Uw =u(P)w + U()I

W(J) W( p)M + Wl c)(i) (2)

i=1,2, where i=1 represents the adherend and i=2 represents the

adhesive layer. Superscript (p) represents the particular solution and

superscript (c) represents the complementary solution.

The particular part must satisfy the Navier's equations and the

loading conditions which without the presence of the adhesive



bonding interface, and the complementary part takes care of the

adhesive bonding interface with no contribution far away from the

interface. The particular solution of this problem can be constructed

as:

u(P)) - mi-1 1o xM, 2Gi (3)

V -p)(1) = 0 (4)

wIP}M) - i (Yo

mi 2Gi (5)

(p)(i),xx = CIO (6)

-Cxz = 0 (7)
(p)(i)

zý -=0 (8)

Assuming that a particular solution has been constructed, one

then needs to find four complementary displacement functions

u(c)(1)(x,z), w(c)(l)(x,z), u(c)(2 )(x,z) and w(c)(2 )(x,z) in order to satisfy the

Navier's equations and the required boundary conditions which are:

xi-( o(, 1) (9)

IzI= h, (c)(1)-- (C) () = 0Iz , O xz (10)



a =tI

O~(21 _(e)(2) 0
CIZ xz (11

_p(1) (c(1) _(p)(2) + ,(YXcXI(2)IxI =a, 1Px +-x =T °(X xx+ xCFXX)(12)

1(p(1 + (c)(l) (p)(21 (c)(2)

XZ +xz =xz + txz (13)

W(p)(1) + W(c)(1) = w(p)(2) + w(c)(2) (1 4)

U (p)(1) + u (c)(1) U U(p)(2) + U (c)(2) (1 5)

Since the adherend is a semi-infinite strip, the complementary

displacements and stresses of the adherend must vanish as x tends to

infinity. On the other hand, the complementary displacements and

stresses of the adhesive layer must also be bounded at x=a.

METHOD OF SOLUTION

A general three-dimensional solution to Navier's equation for

plates of uniform thickness, 2h, and with plate faces free of stress has

been constructed by Folias (1975) and applied to the problem of a

plate of finite thickness containing a finite, through the thickness, line

crack. Later, Folias et al. (1990) applied the solution to the problem of

a finite thickness plate that has been weakened by a cylindrical hole.

Without going into the mathematical details, the general form of

solution obtained by Folias Pt al. (1990) is:



U(C) A, 2(m- 1) cos(p~h) + m1p~h sin(p3vh) I cos(pz)

- mf3vz cos(P3vh) sin(IPvz) I + IBalncsa 1nh) cos(anz)
n=1 y

al 3 1 2
+ Y- + m+1 x~ (16)

(C) 1 [~ 2(m-1) cos(p3,h) + mp~h sin(fPvh) I cos(jPz)

- mp3~z cosUPvh) sin(p~3z) Bn - B cos(anh) cos(anz)
n=1

+ 3m-1 , + a13 + 1 z2a2 13
m+1 3 12 y o'y M+1 2 (17)

W(C = m- A., 1-k Pv 11 (m-2) cos(P~h) - mpvh sin(JP~h) I sin(P3,z)
v= 1

-mP3~z cosQ3vh) cos(I3,vz) I- 2z "
rn+i- a (18)

Since the adhesive butt joint considered here is a two-

dimensional plane strain problem, one may simplify the

complementary displacements as:

(cJ -2 = m1 -ax t{[ 2(m1 -1) cos(Pvh) + m~i3vh sin(I3~h) I

cos(P3~z) - Mj3vz cos(P3vh) sin$Ovz) ) + 1 (19)
1 19



wc)i m.-2 Hý 0,I (m1-2) cos(p~h) - mp~ sin(p~h) I

sin(p~z) - m~p~z cos(p3~h) cos(f3~z) (20)

By using the Hooke's law, one may find the corresponding

complementary stresses as:

(cf)2Gm (I (1) 2 2+ *n
ax 'i- V= Hý0 o~~)+Ph sin~p~h I cosUo~z)

- Pj~ cos(Pvh) sinU.pz) ) (2 1)

(c)(i)f 2GI 0)M ) I cos(P3h) + P3h sin(P3h) ) sin(P3,z)

+ I3~z cos(J3~h) cosU3~z) (22)

(cW_2Gm 0.~ () 2
(C - A i k (1

(Yi-m-2 V=I~ Hý I0, {~ - '"suin(P~h cosU3~z)

+ j3.vz cosU3~h) sln(pz) }(23)

where i = 1, 2, I, 2) = 0, and I¾, are the roots of the transcendental

equation

sin (2t3vh) =-(2I3vh), (24)



It is easy to assure that the complementary stresses, i.e., rxc7i)

And azz c(i0, vanish at the plate faces I z I =h.

Substituting equations (19) and (20) into the Navier's equations ,

one can show that the complementary displacement field does indeed

satisfy Navier's equations, provided that the function Hv(1} satisfies the

following equations:

a Hý)(X) 2 (I)S2H~ i x vH,~ (Ix = 0

ax2 (25)

The proper type of functions Hv('" and Hv(2 ) for this problem is:

Hi ( = e (26)

(2)
Hi (x) = cosh( vX) (27)

By substitution the particular and complementary solutions into

the guided boumdary conditions (12)-(15), one may conclude that the

governing boundary conditions become respectively:

A(1) G 2 (2)

fM1 Av -M 2 I-Av I
v=i



112 cosUpvh) + Pv sin(p3vh)I cosUpvz) - pvz cosU3vh) sin(I3vz)l

=0 1 IzI::h (28)

G (2)
Iml~v+ m 2- - tanhU3va) Av I Pv£~ ImiX

Ilcos~pvh) + fovh sinUpvh)] sin(pvz) + P,,z cosU3vh) cos(Pvz))

=0 1 IzI!ýh (29)

S1111(m1 -2) cos(Ikh) - m1 Ikh sinU3vh)] sin(13vz)

- mlpvz cosUpvh) cosU3 vz))

- ~(2(in -2) cosUpvh) m rnpvh sinU3vh)I sinU3vz)
v= 1

- m2 Pvz cos(pvh) cos(l3vz)l

1 (LG 1 ) ( )
2 m 2 G2m I: I zI:!h (3 0)

A~1[2(m 1 -1) cos(fPvh) + mlpvh sin(13vh)I cosU3vz)
v= 1

- in Iz cosU3vh) sin (I3z) I

(2)
+ I tanhU3va) Aý 112(m 2 -1) cos(I3vh) + mn2 Pv~h sinU3vh)J cosff3vz)

vm 1

-m213VZ cos(13vh) sinU3vz)l

rn1-i1 m 2 - 1 Gi
2min 2m 2 G 2; Izish (3 1)



where AI'I and A,(2I are the normalized coefficients, with the

definitions of:

(1) I 1 [3___ -(P•a) (1)

in-m_2 yoa e (32)

(2) 1 0, G1 (2)
Av - m 2-2 a. a cosh(3pa) A,

Examination of equations (28)-(33) shows that the coefficients

AV"') and Av(2 ) are functions of P3, , the dimensionless ratio a/h, the

shear modulus ratio G 2 /GI and the Poisson's ratio vi/v 2 . Since the

roots 32, P34, 6 ...... are the complex conjugates of 01i, P33, 35 ....... one

concludes that the unknown complex coefficients A2 ('), A4(1). A6 (1) ......

are also the complex conjugates of AIM}, A3 (1), A5() ...... (where i = 1. 2).

The unknown complex coefficients Av~I) and AV'2) are to be

determined from the system of linear equations (28)-(31), by using

the method discussed in Kantorovich and Krylov (1964, p. 5 4 -5 6 ). The

system, equations (28)-(31). is very sensitive to even small changes of

the coefficients, so the methods of "collocation" and "least squares"

lead to a nonconvergent solution. However, the method. which was

discussed by Kantorovich and Krylov (1964), shows the complex

coefficients to converge as the number of roots taken increases.



Once the unknown complex coefficients have been determined.

the displacement and stress fields may then be computed at any point

in the adhesive layer.

The displacement field in the adhesive layer becomes:

G-I U(2) m -1 G sinh(o3x) 12)

2m2  G a cosh(pva) {[2(m2- 1) cos(p•h)2m 2 G 2 a += o

+ m 2 Pvh sin(Dvh)] cos(Pvz) - m 2 pvz cos(pvh) sin({,7•1

(34)

G1  1 GI cosh(Pvx). (2)
0 2 2 v= csh{va) k [(m2-2 cos2h

- m2 vh sin(ovh)] sin(Ivz) - m 2 0VZ cos(Pvh) cos(U3z)}

(35)

Similarly, the stress field of the adhesive layer becomes:

a (2)G
= 1 + 2m (-A) PvI3 h Aco((2Rcx) (2)"00 2 h 1I v= h cosh(Pva) {[2 cos(I3vh)

"+ vh sin{pvh)] cos(Pvz) - Pvz cos({vh) sin(ovz)} (36)

()a G2 sinh(ox) (2)

S -2m h2 1{ G)I v-I cosh(Pva) k 11cos(lvh)

"+ Pvh sin(pvh)] sin(pvz) + Pvz cos({vh) cos({vz)} (37)



2 m Ga cosh(p3x) (21

0 2 h G V=1 cosh(Pa)

I - Pvh sin(Pvh) cos(pvz) + PBz cos(Uvh) sin({3z) } (38)

NUMERICAL RESULTS AND DISCUSSION

In the present analysis, we let the a/h = 0.1. G2 /Gj = 0.05. v1 =

0.3 and V2 = 0.33. After determining the complex coefficients Av(,1 and

AV(2). one needs to substitute these complex coefficients into equations

(28) - (31) to examine how well the complex coefficients satisfy the

original boundary equations (28) - (31). Figure 3 shows how the error

of equation (28) improves as one increases the number of roots from

100 to 200. The numerical study shows that the errors of these

boundary equations improve only 3% if one increases the root number

v from 200 to 220 and it is reasonable to set 200 roots throughout this

present analysis. If further accuracy is required, then more

sophisticated algorithms must be used for the solution of the matrix

system.

By substituting the complex coefficients Av(21 into equations (34)

- (38), one obtains the displacement and stress fields in the adhesive

layer. The numerical study indicates the interface does not remain

plane under load, although the shear modulus of adherends is 20

times as stiff as that of adhesive. The variation of displacement u(2 )

along the interface implies that the stresses are not uniform along the



interface (see Figure 4). Along the interface, the effect of dissimilar

material properties (i.e., G2 /Gj < 1) between adherend and adhesive

causes the normal stress to possess a weak singularity (Folias 1989)

near the free surface z/h=1. On the other hand, there will be no stress

singularity present when the material properties of the adherends are

the same as that of the adhesive (i.e., a uniform plate).

In the central region (see Figure 4), the normal stress is

uniformly distributed and is slightly higher than the average applied

stress, and the shear stress almost equals zero except in the region

close to the free surface. On the mid-plane of the adhesive, the normal

stress decreases to a low value near the free surface, and the shear

stress is always zero since this is a symmetrical problem. It is also

noted from Figure 4 that there is a significant variation in the normal

and shear stresses across the adhesive thickness especially near the

free surface z/h = 1 (see Figure 5), Near the free surface, z/h= 0.99.

the interface normal and shear stress increases as the a/h value

increases (see Figure 6), but it does not change after the a/h value is

greater than 1. It is also observed from Figure 6 that the stress values

decreases as the G2/G1 value increases.

In the present analysis, the theory of linear elasticity has been

used to evaluate the stress field in the adhesive layer. In order to

examine the possible failure mode of this adhesive joint, one may

choose the octahedral shear stress, Tct, as a suitable parameter. The

numerical results show that the region around the point of

intersection between the free surface and the joint interface is



subjected to higher stress values. Thus yielding is most likely to

initiate first in *this region. Figure 7 shows the yielding zone at the

comer of the adhesive joint with respect for different values of the

applied load. It is observed that, when the load is small (ie.,

ao=0. 7 5 ay), the initial yielding is along the interface. As the load

increases further (ie., a 0 =0.85av), this yielding area is not extending

along the interface but with an angle of approximately 600 from the

interface. Thus, a crack will initiate at the comer and propagate along

the interface up to a certain distance beyond which it will curve into

the adhesive layer due to the mixed-mode (normal and shear) stress

field around the crack tip.

Figure 8 and 9 show the comparison of the analytical results

obtained by this study (plane stress case) with the results obtained by

the Finite Element Method (Alwar et al. 1976) with respect to the

stress distributions at the interface. In this comparison, the a/h value

is 0.1, the G2 /G 1 value is 0.01, the Poisson's ratio v, = 0.3 and V2 =

0.33 and both results are in fairly good agreement. Except in the

vicinity of the comer point z=h where a boundary layer region is

present.

CONCLUSIONS AND RECOMMENDATIONS

From the above study of adhesive butt joints, the following

conclusions can be made:



(1) The interface does not remain plane under a tension load

due to the dissimilarity of the material properties between adherend

and adhesive, and this displacement variation results in the presence

of a stress singularity at the interface and close to the free surface.

Along the interface, the normal stress attains its maximum at the free

surface while the shear stress attains its maximum very very close to

the free surface. Furthermore, it is also observed that there is

significant variation in the normal and shear stress profiles across the

adhesive thickness especially near the free surface.

(2) The maximum normal and shear stress increases as one

decreases the shear modulus of the adhesive layer or increases the a/h

value, but the stresses do not change very much when the a/h value is

greater than 1.

(3) An examination of the octahedral shear stress shows that a

crack is most likely to initiate at the comer and propagate along the

interface up to a certain distance beyond which it will curve into the

adhesive layer.

(4) The analytical results from this study show a good agreement

with the results obtained by Finite Element Method.

In this paper, the plane strain case of adhesive butt joint under

tension has been solved, but the similar procedures can be applied to

the problem of axisymmetric butt joint under tension or torsion, if one

transforms the general solution (16)-(18) from rectangular to



cylindrical coordinates. Furthermore, the single-lap and bevel joints

can also be solved by the application of the general solution used in

this analysis. Identical and isotropic adherends are considered in this

present analysis. Therefore, stress analysis of adhesive joint with

nonidentical or anisotropic adherends is an important extension of

this work. Finally, perfect bonding is assumed in the present analysis,

but partial debonding (flaw) is often found at joint interface in

practical situations. Another important extension of this work is to

analyze an adhesive joint which contains flaw at the interface by

relaxing the assumption of perfect bonding.
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Figure 4 Stress axx and tz for the adhesive layer at the
interface and mid-plane for a/h=0.1, G2 /GI=0.05,
v=0.3 and v2 =0.33.
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Figure 5 Stress xa, and • for the adhesive layer across the
thickness at z/h= 0.98 for a/h=0.1, G 2 /G1 =0.05,

vi=0.3 and v2 =0.33.
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Figure 6 Stress axx for the adhesive layer with respect to the
different a/h values at z/h=0.99. x/a= 1 for
vj-0.3 and v2 =0.33.



r/a =0.05

S[ ~Adherend

i I -60 deg.

r/a 0.1

- a~0 .=O75o

W--- o = 0.80m

-�•o = 0.85 m

Figure 7 The yielding zone at the comer of the adhesive joint
with respect to different values of the applied load.
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Figure 8 Comparison of the stress axx at the interface with
result of FEM (data from Alwar et al.) for ath=O. I,
G2 /GI=0.01, vj=0.3 and v2 =0.33.
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G2 /GI=0.01, vf=0.3 and v2 =0.33.
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and their respective solutions for the displacement and stress fields are then used in order to
provide us with some answers to the following fundamental questions: transverse strength,
longitudinal strength, residual stresses due to thermal expansion mismatch, modeling of

fiber matrix interface, edge effects.

The 3D results are then used to first identify critical locations where failure, due to

fracture, is most likely to initiate and second to derive fracture criteria for crack initiation at

the local level. The criteria reveal the dependance of the composite strength on the material

properties, the local cell geometry, the ratio of the fiber volume fraction, the ratio of fiber

radius to fiber length and finally the applied mechanical and or thermal loads.


