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Abstract-Several types of waves in a layered composite material were examined. In order to 
obtain explicit approximate solutions. a perturbation method was used. This approach views 
the nonhomogeneous layering as a perturbation on a homogeneous but anisotropic solid. For 
propagation normal to the direction of layering, it was necessary to include the second-order 
perturbation terms to get qualitative agreement. Also considered were waves which travel parallel 

to the laminue. The material in these waves follows an elliptical path. the orientation of which 
depends on the position in the material. All these waves are also examined numerically. and there 
is excellent agreement between the perturbation expansions and the numerical results. 

INTRODUCTION 

The purpose of this paper is to prcscnt a perturbation approach in dealing with layered 

n~atcrials. The approach is simple to USC and. for ;t particular carbon fiber composite 

cx~minud. yields results which agree very well with various numerical approaches. The basic 

idea is to write the layering cffcct on the material constants in terms of a Fourier scrics, 

solve the avcragcd (homogcnizcd) problem. and then take a truncated scrics solution of the 

rest of the resulting first-o&r perturbation problem. In this introduction, WC mention some 

of the previous work, and then outline the results of this papcr. 

Brillouin (1916) did much early work in waves in laycrcd media. Though he did not 

look at W;IVCS in an elastic solid, hc did consider waves in two- and three-dimensional 

Iatticcs and continuous media. He obtained exact solutions for some simple problems, and 

used some perturbation tcchniqucs for more general cases. His approaches have had a 

lasting intlucncc on the topic of dispersion in a layered material. 

Rytov (1956) examined wave propagation in a medium composed of alternating layers 

of two isotropic materials. He calculated the wave speed for shear and longitudinal waves 

travclling both normal and parallel to the lamination. We will compare these results with 

our approach for this case in the scqucl. Hc then went on to calculate effective elastic moduli 

for the material. now viewed as anisotropic. He was particularly interested in the thin layers 

(as compared to wavelength of the elastic wave) case. 

Considcrablc work has been done subsequently on wave propagation in layered solids. 

Some was done with a view towards understanding earthquakes, as the earth can be viewed 

;IS :I laycrcd solid and the carthquakcs as WiLves passing through it. lvakin (1960) studied 
wave propagation in a periodically layered material by an analogy with electric circuits. 

The approach used involved matching impedances at each boundary and is rather tedious. 

In fact, the author concludes “. . . the dctcrmination of the velocity of propagation and of the 
amplitudes of sinusoidal waves in hnc-scale nonhomogcncous media constitutes a laborious 

problem . . .” (p. 108). 

More rcccntly, some work has been done particularly with reference to artificial 
materials such as carbon composites. Sun ef al. (1968) prcscnt a continuum theory and 
display dispersion curves for various waves in a layered material. They linearly expand the 

displacements about the midplancs of the layers, and then require that some continuity 
conditions be satisfied at the layer boundaries. An expression for the energy is derived, and 

Hamilton’s principal is used to obtain (approximate) equations of motion. 
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Nayfrh and Semut-Nasser ( 1972) examined one-dimensional waves in harmonic 

media. and ~rre able to reduce the problem to the study of a \ldthieu equation 2nd a Hill 

equation. They examined in detail their Hill-type equation. Lee and Yang (1977) also 

examined this problem. and looked at the behavior of solutions of the one-dimensional 

problem near the discontinuities in fhc dispersion cur\e. 

In two papers. Hegemier and Sayfeh ( 1973) and Hegemier and Bathe (1974) developed 

a continuum theory for layered media with a similar approach. The latter paper. in fact. 

attacked the problem ofwaves truvelling at an arbitrary angle in a layered solid and included 

phase velocity versus ansle of propagation curves. 

In a series of t\vo papers. Ben-Amoz (1975a.b) examined wave propagation in a 

direction parallel to the laminue and normal to the Iaminae. This W;IS done by assuming 

relative orders of magnitude for the solution. and then discarding the pieces of the solid 

equation which would then be negligible. He concludes that the behavior of ;l Irlminated 

composite material is “predominantly that of il mxroscopically homogeneous medium” 

(page 43). 

Delph t’t ~1. (1979) consider plane strain harmonic Lvil\cs in il periodic medium, and 

show that the dispersion spectrum is governed by the eipcnvalues of an 8 x 8 matrix with 

complex entries. The approach used was to write the displacements in terms of comple:?t 
cxponcntinls. 

This Icnds to the purpose ofthis paper. llcrcin Lvill lx dcscribcd ;l pcrturb;ltirln method, 

and some rtxults from il. to ohlain dispersion curves arid tiisplaccmcnts for harmonic w;lvcs 

in an :\nisotropic laycrcd medium. F:ir.st. wc will tlcscribc the notation WC will use. and write 

down the crliiationo of elasticity which wc will ;issumc (0 hold. WC will view the mritcrial 

as :I continuous mcdiurn with nc,licolltinu~)lIs elastic constants. and thus avoid needing to 

tlcal \vlth bountinry condilions. For comp;lrison purpc)scs with sonic of the ahovc work, 

wc uill in particular consider the cast of :I material matlc of ;iltcrn;iting I;lycrs of two 

anisotropic m;itcrial\. The mcthotls prcscnLctl apply to much iiiorc gcncral ,c’ I;iycrs situ- 

ations. bill this c;isc is prcscntcd as an cx;impIc and lo show the validily of the tcchnicluc. 

In lhc 0nc dimensional simplilication. the mclhoil will give rise to the solution of ;I 

nonlinc;ir ordinary tlil~crcntial cqiiation. This ccliiation is lirst dsrivctl, and then xii approxi- 

malt pcrturtxition solution is prcscntccl. It is foiintl that to ohlain qii;ilitaIivc ;~grcc~ncnt 

with the dispersion curve it is ncccssary to include the Lciin, 0 Icrms of the sccoiitl-order 

pcrturbalion. 

Nat, the ccliiations arc: dcrivcd for propagation parallcl I0 the kiminac. and pcr- 

turbarion solutions arc obtained for the two C;ISCS ol’on avcragc longitudinal and on average 

shear wiIvcS. It will bc found thilt Lo the tirst-order pcrturhalion thc?;c itre nondispcrsivc. 

The one-climcnsionill GISC will then he returned to. and clramined numerically. Agrcc- 

mcnt will be shown with Lhc pcrturbntion approach. the numcricat solution, and Rytov’s 

solution for the specitic example C;LSC. The intcrcstin, 41 behavior of the solution of the 

nonlinear ordinary ditYercntial equation uill Icild to ;1 more general discussion of it. in 

particular the question of existence of solutions. This relates back to the question of lack 

of continuity of the dispersion curve. The change of behavior of solutions in the vicinity of 

the break in the dispersion curve is demonstrated. 
Finally, the parallel waves are examined numerically. This necessitates the solution of 

;I gcncralized cigcnvaluc problem. which is done by factoring the problem, and rewriting it 

in standard eigenvaluc form. For ;L range of frcqucncics the numerical solution is shown to 

bc nondispcrsivo. 
lt is hoped Lhnt the methods used in this paper prcscnt ;I straightforward approach to 

the propagation of w;lvcs in ;l laycrcd solid, and that it will throw more light on the behavior 
of such w;lvcs. 

Consider ;1 material made of A’ layers of an anisotropic. c&tic material. A periodic 
layering of height /I is ilSSLllllCJ. with the layering occurrin, 17 in the I‘ direction. This mans 
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the thickness of these .V layers would add up to h. Each of these layers will be assumed to 

be linearly elastic. with the appropriate elastic constants. After having put our material 

together. we will view the “constants” in Hooke’s law as being dependent upon _v. If c,,(_v) 

are the various constants in Hooke’s law. then they may be written in the form 

C,,(J) = c,,+4,p,,(.d (1) 

where there is no implied summation. The c,, (without the (J)) terms are the average values 

c,,W dy. (3 

the constants (f,, are the local deviations. and the p,, function takes into account the actual 

structure of the laminae. The reason we are choosing to write d,jp,(y) rather than dij(u) is 

that often there are symmetries in a lay-up which produce the same p,, for different ij. 

In general. layers will have different densities. and so we will also write 

p(y) = p+~l,p,,(.r’). (3) 

If Iaminac arc made of the same material at different angles with respect to the anisotropy. 

the density will he constant throughout. and (I,, will bc zero. 

To actually solve the equations coming from the perturbation, smooth p,, iire needed. 

Since they arc in a scnsc the periodic deviation from homogeneity for the matcrinl, it is 

natur;Il to expand tlicm in ;I Fourier scrics : 

r 

a,,(y) = C (p ,,.” sin (~~r~)ff/ ,,,,, cos (nz_~)l, 
II- I 

r 3 II:. 

The r tcrrn will bc appearing often . antI one should view it as 2rr times the “frcclucncy” of 

the layering. 

This gcnsral approach of using a Fourier series to describe the inhomogeneity of the 

material makes it possible to model many situations. By picking appropriate p,,, one can 

dcscribc layers of cli!Ycrcnt thickness. layers with glue between the layers, and layers of 

complctcly dillkrcnt material. 

A PARTICULAR PROIiLEXl 

As iill example of ;I way to use the above ideas, and some results from them, wave 

propagation in an anisotropic layered material will be considered. One way of viewing this 

problem is as separate layers whcrc the above sets of constants hold. and trying to match 

the solutions in each layer at the layer boundaries. This is very difficult. but it is the way 

the problem is often attacked. We have chosen to write the material parameters as functions 

which are position-dependent. For the infinite periodic medium there are no boundaries, 

but the partial dilTcrcntial equations no longer have constant coefficients. This naturally 

leads to a perturbation approach. 

To examine waves travclling in a plate, a plane strain model was used, as this cor- 

responds to taking a slice through the plate. The equations are (see Malvern, 1969) 

~I(CII(Y)EII +c,?(Y)E?~)+2d?(C66(Y)E,?) = pu,, (5) 

2r!,(c,h(C.)C:,2)+C72(C,:(?.)E,, +C~:(_l’)EZ?) = PC,,, (6) 

where the E,, arc the strains. the c,,(_I*) are the coefficients from Hooke’s law. p is the density, 

and subscripts I and 2 refer to s and _I’ directions. respoctiveiy. 
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As a practical matter. u’c consider the material Hercules A.S. 4 3501-6. This material 

is made of thin carbon fibers (very thin--they are about IO jlrn, or 0.001 cm in diameter) 

\vhich are placed in an epoxy prepreg and pressed into thin sheets. where the fibers all 

run in one direction. These sheets are then stacked so that in each layer the fibers run 

perpendicularly to the fibers in the previous layer. At this point the sheets are heated and 

prcsscd together. so that the cpolcy is a continuous matrix of supporting fibers which run 

in two ditr‘crcnt directions. The resulting plate is of the form .O ,:OO ,O W (SW Fig. 

I ). Each layer is quite thin , and ;i plate of this material one-quarter inch thick has about 

_>‘Y. ‘- I.1 crx With this conlicurntion. Ir = I( l/ 100) inch = 0.X inch. c 
Let us consider. thcrcforc. such a composite plate made of alternating Iaycrs. with 

iaycr I having libcrs running in the .r direction. and I;lycr 3 having libcrs running in the : 

direction (out of the plant). The resulting c,, and tl,, values arc-l’ 

(‘, , = I I. I900 tl, / = ‘I.6350 

(‘2: = I .7 I so LIJ1 = 0.0000 

C’,! = 0.0276 tl, J = O.OJZh 

c (,h = 0.00~~0 dr,r, = 0. IO30 

in million pounds (force) per square inch. I:or this cast, wc have 

I),,(!) = (7) 

Sincc /I,,(!.) is the same for all [j. we let r,,(y) = /J(!$), and expand p(~,) in ;t l:otlrier s;cric< 

to gcY 

i 

4/7rn, II odd 
I’,, = 

0. tr even, 
(8) 

with all the q,, being zero. Also. since the material is the same throughout, the density is 

constant and WC have (I,, = 0. 

NORXIAL PROPA<;ATION. AND A LOCAL W:\VESPEE‘:I~ 

In this section. the problem of normal propagation in the layering is considcrcd. Roth 

the longitudinal and tr;lnsvcrsc waves give rise to the snmc type of cquittion. tvith the 

material constants being difyerent. In order to relate to the specilic material discussed above. 

t 0a1.1 from 1 Icrculw. S L.C.. Utah 
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the case of the transverse wave will be considered, since, for the longitudinal wave dz2 = 0, 

and one has a general travelling wave (see below). 

The form of the wave solution will generally be 

f = sin (f44W - 0). (9) 

In this case the wave is propagating in the +y direction (for the case of waves propagating 

in the .r direction replace _V by I). To compare with the more usual approach. one takes 

f = sin (ky-mt) (10) 

and then examines the relationship between the phase speed and the wave number k, where 

k is independent of _v. The approach here is quite different. The wave speed is allowed to 

vary locally. and by following a constant angle or phase in the sine term one arrives at 

m(cp(y) - [) = constant, (11) 

so that for a constant frequency 

drpdv , -L-= 
dydt ’ 

or 

dy I 
wave (phase) speed = = ~I 

dr ip’ 

(12) 

(13 

whcrc the prime denotes differentiation with respect to y. If the wave is dispersive. rp’ will 

have an I?I dependcnco. The f’rcqucncy v of the wave, or number of oscillations per unit 

time for it fixed point in space, is then 2nv = m* 1 or 

111 
frequency = v = 5. (14) 

Notice that 

frequency of wave v m 

frequency of material = T = Cc ’ 
(15) 

h 

WC will find that in the solutions to bc obtained, 111 and a will always appear in the ratio 

nila. 

For the transverse case. we assume a solution of the form 

u = fdYV(dY) - I) (16) 

v = 0. (17) 

where q(y) now represents an amplitude modulation of the overlying travelling wave. This 

amplitude modulation is fixed in space. 

Equations (5) and (6) yield 
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dz(c6b(_v)S:u) = pu:, (18) 

The reader may also note that for the longitudinal case the equation is of the same form, 
i.e. 

dz(cz,(l’)?$-) = PC,,. 

and that if czz(y) is a constant (dzz = 0) then 

(l9a) 

i c1:c ZL’ = pc‘,,. (19b) 

which is the equation for a general travelling wave. This justifies the previous remark. 

Carrying out the substitution u = qf one finds 

JZ[C66(Y) {G--t Vf’cP’Il = PIT (20) 

where the prime denotes differentiation. Letting c&_v) = C(Y), as there is only one c,, which 
appears. and expanding one finds 

~‘(lllf’+tl.l”cP’~+c[rl”~ffZrl’~’cp’+~(f”(cp’)?+f’fp”j] = PVf. 

Our next step is to rcmovc the/” term by requiring its cocflicient to vanish, i.e. 

(21) 

(“‘\‘/I’ + <I 2q’cp’ + q’p”; = 0. 

If this is divided by qcp’. one obtains 

(22) 

c< 
+2 

‘I’ ” 
+(p =o. 

c 'I (P' 
(23) 

which can bc integrated to give 

where A is a constant of integration (A is nonzero as it is the exponential of the actual 

integration constant). Placing this rather nice result back in eqn (21) gives 

which can finally be reduced to 

(c$)Y+ $I_ = pqJ”. (26) 

This equation has periodic boundary conditions with period h. To proceed further, 
some assumptions on f must be made. Suppose that f” = -m’f, as it would if it were 

sin (m(o)) or cos(m(o)). This yields 

as an equation for q(y). Now fix m, where m can be any real number. 

A-‘f?l? 
(cq’)‘- crl) +m?pq = 0 (27) 
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In this case, the wave (phase) speed is from eqn (24) : 

1 cq= 
phase speed = 7 = T. 

This leads one to wonder about the effect of the constant A in the rl equation. If we let q 
be a solution with A, as the constant, and if we let ~1 be a solution with A, as the constant, 
then A, = k.4, for some k (A is nonzero), and making the substitution in the ~1 equation 
gives 

k2A2m’ 
(cp’)‘- ---&- +m’pj.i = 0. 

If this is divided by &, it is concluded that p/.J% = g and that 

4 kf4 4 
z =m=r” (30) 

One concludes, therefore. that A is quite arbitrary as far as physical meaning goes. (This 
can also be seen by dividing eqn (27) by fi.) Thus, in the following, we let A = I. 

As nonlinear equations are dificult to solve, a perturbation approach is u.sed to linearize 

the equation in order to glean some information on ?I. The quantity E will be used as an 
cxpnnsion parameter to obtain equations in various powers of E, after which c will then be 
set cq11al to I. suppose 

This leads to 

(32) 

Using a similar expansion for the coefficient involving p (let pn6 be written cp), one has 

(33) 

Upon substitution into eqn (27), and letting p be written as pfed,,p,, one obtains an 
equation with various powers of E. 

Separating and equating powers of E in this equation yields three equations: 

mt 
E0 : c&“)w- - c ($)3 +mzp’Io = 0, 

66 
(34) 

8’ : C66(tl')n+(d66P(11O)')'f & ($p+ $q’) +m’prt’ +mYQ, = 0, (35) 

+n~‘(%~~+pq~) = 0. (36) 

There is a simple solution to the 9 equation. namely 
SM 1911-s 
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‘10 = (PC& - I”, (37) 

a constant. This simplifies the E’ equation giving 

This equation has periodic boundary conditions of period h. 

Using the Fourier series expansion for the p and pd. a solution to this E’ equation can 

be found using the orthogonality of the basis. The form of the solution ‘7’ is 

4’ (.r) = f (I, sin (rzx+r) + h, cos (nrl) . 
n= I i I 

A substitution. use of orthogonality and some algebra gives 

[4{‘c*@]b” = -I~{,)~~“.+Li’.“,..“}. 

(39) 

(40) 

(41) 

As will also occur for the waves travclling parallcl to the layering, n(r;~) always occur 

togcthcr. r/m is a mcasurc of the frcqucncy of the wave to the “frequency” of the matcriai. 

Morcovcr, z is large for thin layers and IPI is large for high frcqucncics. For this case, the 

perturbation is cxpcctcd to bc good for both large and small n(r/nr). Equation (40) implies 

that (I,, is approximately a constant multiplied by p, for small n(r/m), and that un is roughly 

invcrscly proportional to (n(z/m)’ for large n(z/m). 

By examining cqns (40) and (41) it is seen that if 

a solution to the E’ problem does not always exist. This nonexistence occurs for 

(42) 

(43) 

This will be explored more fully in a later section. 

It was found in the course of the investigation that the dispersion curve of the first- 

order perturbation solution had some qualitative disagrccmcnt with exact solution in the 

neighborhood of the nonexistent first-order perturbation. This led us toconsider the second- 

order perturbation. Since a full second-order term would be dilficult to obtain, an approxi- 

mate one will be found. As we are interested in regions where eqn (43) nearly holds we fix 

11 whcrc this holds, and see that a, and h, are large. This implies the (q’)’ term dominates 

the non-q’ terms of (36), leaving 

2. c: . c,,(f+)“+4f?12p?~2 z 6rn’ : p(a, sin (nzy) +h. cos (nz_r))’ (JJ) 

(n is fixed here). A solution to this equation is 
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‘I2 = gl. sin’ (nq)+g2, sin (nay) cos (nay)+g,, ~0s: (nay) (45) 

where 

and 

1 2dwlrt” 
92" = 

nr ’ 
4P-4G6 ; 

( )’ 

Using the fact that 4p z c6&cx/m) and doing some simplification. we obtain 

(46) 

(47) 

(48) 

When the dispersion curve results are later presented. this second-order result will be 

included. 
This at least gives a better feel for the solution. It is interesting to note that for high 

frcqucncies (large m), eqn (27) gives 

‘I 25 (P(C66 +&P(Y))) - “? (49 

while for low frequencies q z (pcb6)- ‘I’. To see an interesting sidelight of eqn (40). we let 

for simplicity {y,} and CI, be zero, then for large m and small n, 

which gives 

This is the first term of the Taylor’s expansion of eqn (49). Thus the perturbation solution 
agrees with both the large and small m limit solutions. 

In summary, it is of some practical interest to note that at high frequencies there is a 
surprising inverse quarter-power amplitude modulation of the wave, while at low fre- 
quencies the wave hardly notices the inhomogeneity of the material at all. There is a discrete 

spectrum of frequencies where E’ perturbation problem does not have a solution. 
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WAVES PROPAGATING PARtiLLEL TO THE LAMINAE 

Here there do not exist purely longitudinal or purely transverse waves. but the same 
idea applies. A perturbation method is used to obtain some approximate solutions. 

First. the following form of the solution is assumed : 

u = V(J) cos (m(i..v-- 1)) (52) 

I’ = /l(y) sin (m(i..Y - t)). (53) 

where i. is a constant. This form is chosen since a traveliing wave is being looked for, and 

the solution is expected to have a 1’ dependence in the amplitude. In this case a variable 
phase speed is not being considered because if the phase speed did depend on _Y, the wave 
would separate in the layers, which is not desirable. In addition. an x-dependent wave speed 
is not expected since the material properties do not change in the .r direction. 

It seems wise to elucidate some assumptions in the above equations. It has been 

assumed that the actual solid “particles” follow an elliptical path. To see this, fix _P and 

note that 

As will hccomo apparent. the “longitudinal” wave will have ;I major axis in the dircctinn 
the NXVC travels, while the “transvcrsc” wave will have a major axis normal to the direction 

of wave propagation. On ;I physical note. it has been assumed that the frcqucncy is not w 
high that the layers arc acting as wavcguitics. Wavcguiding wilt probably occur at high 
frcqucncics, meaning the wave will scparatc in each of the layers, the wave in one taycr 
travclling I’aslcr than the wave in the other layer. Though the assumed form of solution 

Icatls to solutions of the solid equations for almost all frcqucncics, WC suspect that enper- 
imcntally these type waves would be very dillicult to produce for high frcquencics. as 

wavcguitling would niorc naturally occur. 
The assumed II and u are placed in the original solid equations, eqns (5) and (6). to 

gitc 

(~.~,,+f/,,~l))( -fiG.)rl’sin (.)+L7?(C,?+d,?I))(-Mj.)tl sin (.)+(~,,+~r,,ll,,)(-rtf’;‘)~f sin (*) 

+c~~B” sin (e) = --Jrl~~pp cos (a). (56) 

where * corresponds to nJ(i.s-r) and the prime denotes ditTercntiation with respect to .I’. 
The cos (*) can bc factored out of the first equation and the sin (*) can be factored out 01 

the second equation, since they do not dcpcnd on ~1. 
This is what is left : 

+1F1j.((C6h+dh6/)0h)~J)’ = -J?J’/“/, (57) 

(c,,+ff,,p,,)(-mj.)Jl’-JJJi.((c,:+cf,:p,z)tl)’+(Chh+(fhhl)h~)( -~FJ’j.‘)[J 

fC22ji” = -fFJ:pp. (58) 

These are coupled ordinary differential equations. with periodic boundary conditions. 
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Once again the system only seems amenable to a perturbation approach : thus one may 
proceed as follows. Think of inserting an E in front of the p term, and use an expansion of 
the form 

The zero order (so) equation is 

-clIm2%2~0+~bb(~o)“+(~,2+~bb)m%(p0)’ = -m*pqO, (61) 

-(c~6+c12)m%(~o)‘-cbbm2%2~0+~22(~o)” = -m*pfj’. (63 

Let a = c, z +c~~ as this term will occur again. The first order (E’) equation is 

-cl,m’i.‘~‘+c66(~‘)“+amE.(~‘)‘+m’p~’ = m?i.2d,,p,,~o-(d66p66(~0)‘)’ 

-m~d,2p~A~0)‘-m~(d66p66p0)‘-m2dpp,,t10. (63) 

Thcrc arc two simple solutions to the equations, first 

f/y= I, p:=o. I, = ‘f;, J- 
whcrc the 11; = 1 is an arbitrary sclcction as the equations are linear, and 

(65) 

(66) 

The subscripts will distinguish these two cases. Similar to the normal wave, 1 is inversely 
proportional to the wave speed, and it is immediately seen that the above two solutions are 
two different types of waves, as they travel at different speeds. This is, of course, not 
unexpected : transverse (shear) and longitudinal waves in a homogeneous, isotropic solid 
also travel at different speeds. 

PARALLEL LONGITUDINAL WAVES 

This section examines the longitudinal waves, or those arising from eqn (65). The first- 
order perturbation equation (eqns (63) and (64)) becomes 

cbb(rl1)“+am = m2~$-fp~,(v)-m2d,p,. 

-am (68) 

One has a solution by assuming the following forms: 
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q;(y) = f (a, sin (nr+r)+z, cos (RX,)). 
“S I 

(69) 

,UI(_r) = 1 16, cos (nr~)+b~ sin (,nzy)). (70) 
n= I 

Placement of these in the first-order eqns (67) and (68) gives a system for the (1, and 6,. 
namely 

_ 
, , 

J-- 

P n, I 
-cCgbn-~-~i,--m nrh, = m’p ;p, ,.” -m’d,p “.“. (71) 

Cl I 

and a similar system for the rn and bn. 

Solution of these gives the first-order perturbation for the longitudinal case. Dividing 
both equations by MI’ leaves the equations in a form where no and r do not exist indepen- 
dently, but only the ratio a/m occurs : 

Solution of this system gives the (I, and the h,,. The r, and /In arc given by 

It may be noted that there are situations here, as in the normal case, where solutions 
to the E’ problem do not exist. This occurs when the determinant in the systems (73) and 

(73) vanishes, that is, when 

This implies that a solution does not exist for frequencies 

(76) 

Near these frequencies the determinant will be small implying that the specific a,, h,, s(, 
and fin will be large. It is thus expected that the perturbation will not be good near these 

frequcncics. 
Thus the coeflicients O, and the h, only depend on the ratio z/m, which measures the 

wavelength of the wave in comparison to the spacing of the layers of material. For large 
,cqttt. meaning low frequencies, the (I, and h, are given approximately by 
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6, z - - - -plz3. 

(77) 

(78) 

The perturbation terms a, and b, are small when a/m is large, or when the wavelength of 
the wave is large compared to the spacing of layers. 

The wave travels at the root mean square average speed in the material. To see this, 
recall that c,, is the average of the cl r(y) in the layers. so that 

(79) 

The wave has a tumbling structure. It travels in the high speed layer and then tumbles into 
the low speed layer, which results in the average wave speed observed. 

To justify the statement about the longitudinal waves corresponding to ellipses with 
the major axis parallel to the axis of propagation, recall that qf and /II are small, so that 

Since 

(82) 

it is seen that II is the major axis, and II corresponds to material displacement in the x 
direction. 

PARALLEL TRANSVERSE WAVES 

For the transverse wave, from eqns (63). (64) and (66) the first-order perturbation 
equation is 

- am 
J-- 

$hi)‘+dd)” = P~mzp6s(cly)-mm2d&~ 

and one can proceed with q’ and p’ as given in eqns (69) and (70). 
The equations solved by the coefficients are (already dividing through by m’) 

(84) 
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As in the longitudinal case. the wave speed is the root mean square average of the wave 
speeds of transverse waves in the two layers. 

Here, existence of the solution to the E’ problem does not occur if 

whose frequencies arc 

(87) 

the major ilxis of displaccmcnt is r, or perpendicular to the direction of wave propagation, 
which is why these waves arc called transverse wavt’s. 

Finally, supposing one had started with 

u = q(.re) sin (rrt(2.r - t)) (91) 

I’ = p(y) Cos (m(i.s-- f)), (97) 

it is seen that the above ton~itud~nal results go through if one rcpiaces 

Similarly, the transverse resufts go through if one replaces 

& by -4;. 

(93) 

(94) 

SOME NUMERICAL RESULTS FOR THE NORMAL WAVE 

In order to verify the perturbation and to examine the solutions of eqn (27) in the 
regions where the perturbation fails, numerical solutions were obtained. These were for 
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Table I. The numerical results for r;m = 0.0001 (log,, (z/m) = -4) 

159 

Two terms Six terms 
: Ln&) &S=~ ?‘o Error %A--) 96 Error 

0.3307 0.328356 
0.6614 0.328817 
0.992 I 0.329152 
1.322s 0.329335 
I .6535 0.329384 
I .9842 0.329279 
2.3149 0.329043 
2.6456 0.328652 
2.9762 0.328 142 
3.3069 0.327396 
3.6376 0.326614 
3.9683 0.326053 
4.2990 0.325675 
4.6297 0.325516 
4.9604 0.325554 
5.291 I 0.3258 IO 
5.6218 0.32626 I 
5.9525 0.326920 
6.2832 0.327124 

0.325574 
0.326130 
0.326559 
0.326813 
0.326865 
0.326710 
0.326364 
0.325865 
0.3’5’66 
0.3?4634 
0.324035 
0.323536 
0.323 190 
0.323035 
0.323087 
0.323341 
0.323769 
0.324326 
0.324950 

-0.8 0.325646 -0.8 
-0.8 0.326182 -0.8 
-0.8 0.326560 -0.8 
-0.8 0.326769 -0.8 
-0.8 0.3268 I3 -0.8 
-0.8 0.326685 -0.8 
-0.8 0.326392 -0.8 
-0.8 0.325934 -0.8 
-0.9 0.3253 I4 -0.9 
-0.8 0.324585 -0.9 
-0.8 0.323966 -0.8 
-0.8 0.32350s -0.8 
-0.8 0.3232 I5 -0.8 
-0.8 0.323087 -0.7 
-0.8 0.3’3131 -0.1 
-0.8 0.323340 -0.8 
-0.8 0.323718 -0.8 
-0.8 0.324254 -0.8 
-0.8 0.324950 -0.8 

f,~ norm of residuals = 0.1615644E.14. 
Average phase speed = 5252 ft s-‘. 

the specific case of the Hercules AS. 4/3501-6 material previously mentioned, and with 

the . . .0”/90”/0”/90” . . . contiguration. 

The method of choice was Galcrkin’s method. which changed the prohlcm to that of 

the solution of a set of algebraic nonlinear equations of the form 

AC’ = (1) “( v) _ _._ _-__.!_--_. -: __ dy, 

- (CM + 4hP(YMw9C’)J (95) 

where n is a nonsingular matrix, (P(y) a row vector of basis functions, and the approximate 

solution is q(y) z (D(y);. 

Being a periodic equation, a Fourier sine and cosine basis was used, with 19 basis 

functions. MINPACK was used to solve the nonlinear algebraic equations and took 

approximately I min to converge on a VAX 8600 with 

r/O = (pc&- Ii4 (96) 

as the initial guess. For details the reader may consult Walker (1988). 

Table I displays the results for a specific frequency, a/m = 0.0001, or from eqn (I 5) : 

= 0.5 MHz. (97) 

Shown here is the comparison of the computed solution with the perturbation expan- 
sion truncated at two terms, r,~’ and one term of ‘1’. 

q = ‘1O+q’ z (PC&- “4 + a, sin (z), (98) 

and six terms, ‘1’ and five terms of q’, 
UlS 19r2-C 
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Table 2. The paturbation solution compared wrth the computed solution for wrrou.\ 
z’?n 

log,,, (I ml 

Two wmls Six terms 
‘?b Error “b Error 

Ave. Mar. Abe. Max. 

Wave (phase1 
speed (ft s-‘) 

Abe. 

0.000 0.7 0.7 O 7 0.7 5413 O.X432D- 1’4 
- I .ooo 0.7 II.7 0.7 0.7 F4ll O.X-t?XD-I’) 
- 2.000 0.7 0.7 0 7 0.7 %I3 0.7107D-1’2 
-3.UUo 0.7 0.7 0.7 0.7 s-l13 &7936D-I9 
- 4.000 0.8 0.3 0.8 KY SJX 0.1616D-IJ 
-J 540 7.7 to.2 7.7 lO.L\ 6 IN O.XY7D- Ii 
- c.000 II.5 2.1 5.1 12.6 555: tj. f 267D- I3 
- 5. SOI? 2.8 7.7 0 7 1.8 sjy O.h17ZD-i’ 
- 6.W) I.4 41 0 5 I.0 53lh il. t 3YY D- I : 
- 7.orw 1.3 4.0 0.5 I 0 2!17 rt.llUlD-I3 
- S.OUO 1.3 4.n 0.5 I.0 5117 O.tUYSD-I.: 
- 9.uoo I.3 4.0 U s I 0 5317 O.l098D- I? 

- l0.000 I.3 40 0.5 I .o 5117 O.l09RD-1.x 

Thcrc art’ six terms since the Fourier sine cxpnnsion of the periodic square function has [J” 

anti thcrcforc (I,, equal to xro for evtn H. The pcrccntagc error is simply 

To get the phase speed, or how fast the front of the wave travds. consider how long it will 

take ~hc wave to travci ;I distance II. One has that I,‘cp’ is the local phase speed by cqn ( 13). 

Thus. the time to travel the distance II is 

This gives 

phrtsc speed = :‘; = h 

(101) 

(IO?) 

This is also included in the table. The wave speed is near one milt per second. 

Next, Table 2 shows some results for ;I range of x,‘ttt. The numerics arc the s;unc as 

above, and the average pcrccntagc r’rror and maximum pcrcent:lgc error rcfcr to the absolute 

values of the pcrcentagc error. 

For log,,,(z/rn) > -4 the wave speed is constant, and the errors stay at the limiting 

values indicated in the tublc. This is also true for the region logto (r/m) < - 5.5, which is ;I 

result of ;L linitc number of basis functions used in the numerical solution. For values of’ 

log li, (r/m) the accuracy of the perturbation dcpcnds on how close one is to an cigcnvaluc 

of the honto~cn~ous problem, 9s is demonstrated in f+‘ic’ _. 2 The r~l~Iti~~nship bctwccn the 

holno~~n~ous problem and the nurn~ri~~ll solution will bc explored more fully in tftc next 

scction. 

Next, Fig. 3 is ;I phase speed plot with only the first order perturbation, for a rat~gc of 

r!rrr. The upper curve is the phase speed of the w;lvc hascd upon the numerical solution 

of cqn (27). while the lower curve is the phase speed based upon 50 terms of the first-order 

pcrturbrttion solution to the same equation. Breaks occur where the numerical method dots 

not converge. The phase speed is not continuous. The qualitative difference in these two 

graphs is what Icd to an examination of the second-order perturbation. The lack of pctlk~ 

at higher frequencies in the numerical solution will he discussed in the section on existence 

of solutions. 
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fig. 2. A plot of the maximum pcrccn~agc difTcrcncc bctwccn the two perturbation solutions and 
IIIC numcncel solution. The upper curve is the two term error, and the lower curve is the six krm 

error. Frcqucncy increases from right to Icft (as m increases). 

al 

5.0 -%I -4.0 -S.S -3.0 

log Iolpho/ml 

Fig. 3. A plot of the phase speed versus log,, (a/m). The upper curve is the numerical result, while 
the lower curve is the perturbation result with 50 terms: 
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Kgurc 4 displays the dispersion curve for the pcrturhntion solution including both 

first-order and ~lppr~~xill~~tt~ second-order terms (XI of each). With it is displayed the 

dispersion curve for the oxnct solution found in Kytov (1956) (and d?;o found in quantum 

mechanics textbooks whcrc the periodic squaru wcli potcntiitl is discussed). If 

then this dispersion cur~t is given by 

where t’ is tht phase sped. Notice that the exact solution in Fig, 4 and the numerical 

solution displayed in Fig. 3 agree very well. Also. the perturbation sotution including 

second-order terms agrees at le~lst qualitatively with the actual dispersion cucvc. There arc 

two apparent difT~rencts. First, the pcrt~rb~~tion curve has o&y half as many d~s~ontj~u~ti~s. 

This is due to the Fourier series expansion forbad) only having nonzero pn for n odd @:tn = 0 

if it is even). If the even BP* terms were nonzcro, the ~rtur&at~on-derived dispzzrsion 

curve woutd have as many dis~ontinuit~~s as the actuat d&p&on curve does. Tho second 

differcncr: is the low frequency limit of the phase speed. In the actual curve it is 

2(!&‘)-’ = 5273fts-‘. 

while in the perturbation case it is 
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Overall. however, agreement is good. and this demonstrates the validity of the perturbation 
approach. 

A DISCUSSION OF EXISTENCE 

This section discusses the existence of the nonlinear ordinary differential equation dealt 
with in the previous sections. The existence of a solution is not proved, but a relationship 
is demonstrated between the failure of the numerical method and the eigenvalues of the 
linear portion of the equation. 

Equation (37) is. after letting I = Z_V and dividing through by ~~~~~/rn’. 

Cbb 

(107) 

with periodic boundary conditions of period 2x. and where the prime denotes differentiation 
with respect to :. 

In a paper by 
equation 

Lazer and Solimini (1987). the existence of a periodic solution to the 

I 
11” - .- = g 

II’ 
(108) 

is proven for (I > I and 

I g < 0. 
pCIl‘J 

(109) 

IJnfortunatcly, the proofdcpcnds upon the existcncc of a lower bound on u obtained by 
the existence of an upper bound on g (which exists because g is picccwisc continuous on a 
closed interval). So the method of proofdoes not apply to the equation considered. However, 
if a solution of eqn (107) did exist it would presumably be positive and so 

and the corresponding a = 3 > 1. Comparing forms makes it seem reasonable for a solution 
to exist. 

Next the Green’s function will be formally developed. Let 

(jiu’)‘+h=g, />C>O (III) 

with C a constant. As the homogeneous part, 

V;‘)’ + i.u = 0, (112) 

is a Sturm-Liouville problem. there exists a complete set of eigenvalues and eigenfunctions. 
Call these {I.,} and {Cpi}. If g is square integrable, it can be expressed in terms of the {cp,}, 

9 = Cgr'Pi- (113) 



16-t J. D. WALKER and E. S. FOLIAS 

Assuming the solution IJ to be square integrable, one has 

u = c u, cp, (114) 

Using orthonormality of the eigenfunctions, the original equation yields 

or 

(116) 

In this, the integration is over the domain of u. If one exchanges the integration and the 

summation and lets 

(I 17) 

then 11 can bc written 

I1 = i‘ G(z, c. ti).c/(i) d; (I 18) 

where G is called the Crccn’s function. 

If the nonlinearity in eqn (108) is moved to the right-hand side, then the remaining 
Icft-hand side is a periodic Sturm--Liouvillc problem as dcscribcd above, that is 

Thus, a Green’s function exists and the equation could be written as 

?n 3 , 

f/C=) = G(‘, <, j_) ___!!!~!~__._ d<, 

(1 +v(i))fl’(i) 

(119) 

(120) 

This does not help a great deal in demonstrating existence, but it does indicate that when 

equals an eigenvalue of 

((I +rp(z))u’)‘+ Ill = 0 (121) 

a solution would not exist. The reasoning is that the Green’s function does not exist there 
because of the 2-E., term in the denominator, and so one should not expect a solution. 
However, as will be seen, there are twice as many values of a/m for which a solution does 
not exist than those indicated by this argument. 
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Table 3. A comparison of the eigenvalues of the homogeneous problem with 
some z m where the numerical routine did not converge 

Squareroot of Squareroot of 
eigenvalues of eigenvalues of 

2, ~,:z (II +rp)u’)‘+iu = 0 u”CLu = 0 

0.0000 0 
-4.480 0.9439 0.9821 I 
-4.WU 0.9884 0.9962 I 
-4.520 I .O?ZO 

-4.800 I.9721 1.9646 z 
1.9919 , 

-4.980 2.9849 2.9480 ; 
2.9867 3 

-5.105 3.9804 3.9327 4 
3.9801 4 

- 5200 4.9537 4.9 I92 5 
-5.210 5.0690 4.9718 5 
- 52FO 5.9556 5.9073 6 

5.9618 6 
- 5.350 6.9972 6.8974 7 

6.9499 7 

-S.JlO 8.0339 7.8893 8 
7.9364 8 

- 5.470 9.2241 8.S828 9 
8.921 I 9 

9.x777 10 
9.9050 IO 

Following the above argument. thcjob becomes obtaining the eigenvalucs ofcqn ( I IS). 
Thcsc are expected to be very close to the eigenvalucs of the periodic problem 

li” + .A11 = 0, (123) 

pcriot! 2n, which has cigenvalucs 0. I, I. 4, 4, . . . . 
It is simple to set up a numerical scheme to find them approximately. With 

the Galcrkin method gives for eqn (I 21) a corresponding algebraic eigenvalue problem of 

AC;‘ = RBi?, (f24) 

where /I and !I are nonsingular matrices. This form of the eigenvalue problem can be solved 

by EISPACK. :tnd was, with II’ = 51. 

As was pointed out in the last section, the method did not converge for some regions 

of zjrr~ In Table 3 are displayed some values in each region for which convergence did not 

occur: the vufuc 

- 
2 J ’ 

P nl -_ .- 

c66 a 

the squareroots of the nurneri~~~fly computed eigcnvalucs of cqn (121). and finally the 
squareroots of the eigcnvalues of 

14” + 1.u = 0. (125) 

The correspondence is clear. in fact. the nonconvergence corresponding to i. 2 4 was 

not found during the originat phase speed calculation. where the method converged for 
log,, (?/QH) = - 5.11 and - 5.12. Rather it was found by examining 
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0 nn I w2 2x 

Y 

Fig. 5. A plot of q(y) for frequcnclcs above and below log,,,(z;m) = -4.5. 

(126) 

for .I z 4, which gives log,,, (zz/n~) z -5.107. 

A surprising item is the factor 2 which rtppcarcd in the perturbation and now again in 
the numerical solution. Thcrc is more hcrc than 

being an eigenvaluc of the homogcncous problem. So ;I conjecture: The nonlinear ordinary 

dilTerential equation, eqn (107). has solutions except when 

equals an eigenvulue of the corresponding homogeneous equation, eqn (121). 

There is even more evidence than presented above that solutions do not exist, and this 

gives us greater insight into the solutions q and what happens near the peaks. 

0 60 r 

t 

s-4 78 
020 

0 IO 
t 

Fig. 6. A plot of q(v) for frequcncics above and below log,, (a/m) = -4.8 
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0 00 
0 s h-2 2% 

Y 

Fig. 7. A plot of s(v) for frequencies above and below log,,, (z,‘m) = -4.98 

Figures 5. 6 and 7 show the solutions to eqn (107) for 

2 l.2and3, (127) 

respectively. Each figure has two solution curves. One curve is for a frequency a little less 

than one that did not convcrgc, and one for a frcqucncy a little greater. The character of 

the solution changes in a substantial way, sort of flip-flopping. In the perturbation solution, 

the cocfkicnt of the rcspectivc frequency changes sign at the transition point, and the 

numerical solution shows a similar cfIkc1. 

Finally. some discussion of wavclcngths is appropriate. Using the first term of the 

perturbation expansion, 

one has 

As II = In/h this gives 

‘_ I P 
cp- 

cbb(~c66)- “4 J 
= - 

9 

Cl36 

which leads to the wavelength : 

YA 

and for Z,/~/C~~ m/a z n one obtains 

(129) 

(130) 

(131) 

2h 
YAy. (132) 

The wavelength where solutions do not exist is twice one period of the material. for 



Equation ( 131) may lx used to get an i&x ofuawlengths for various x ttz. For 1 VI = I 
the ua\rlttngth is about 33 mr’ters. and for x /)I = IO ‘, the wavelength is about 0.0033 cm. 

For higher frqurncies than this. though some were presented in Table 2. ;I model should 

be usrd which takes into account the microstructure of tho layer. since the fibers arc O.(~(Ii 

cm in di;imcter. 

Some clmments ~ccm in order. First. the factor of 2 which appears in this section is 

not ;I result of the method. If one chose to let Ir cover two cnmplctc periods of layering. all 

the e\tru F<>uricr coctkirnts would vanish :~rxi the WTIC frcqucncics v.ould lack solutions 

as before. Thus. thcrc ic something real about it. Second, ~~Ith~~lI~h the p~rtLirb~lti~~n BXS 

nilt wrq xcurate n~~~~~~ri~;lily near the transition points in the sdution. it did however 

predict the qwlitativc bcharior as to how the solutions ~~dcf change. Third. thy’ rtx~stw 

why the numtxicai solution portrays no more peaks for higher frequencies in Figs 3 and 3 

is thgt hightx t’rcqucnc~ Fourier terms in the numerical basis woulJ be nccdcd to pick up 

the higher frqucncy terms in the solutions. Lvhich terms Icad to the ptxks. Finally, for this 

m;ltcrial ttic frtqucncics \vhcrc the solution does riot exist arc roughly 

(Ii31 

where A. II. and C’ arc symmetric mutcrials. This i. is the wmc invcrsc w;~~cspcccl which 

appears in cqns (OS) and (60). If thcsc wvcs wcrc dispersive. then i would dcpcnrl upon 

I!!. 

(1.35) 

whcrc J’ is ;1 dummy vector. This is a form of an cignvaluc prohlcm which can bc solved 

by EISPACK. Using the double precision RGG path and 19 Four&r basis functions for 
both q and il. somc results were obtained. 

Of the cigcnvalucs. four arc found to bc real. They wmc in pairs. a positive and ;I 

ncgrltivc one for the longitudinal w:~vc. nnd ;L positive and a ncgativc one for the transvcrsc 
W;IVO. Thcsc correspond to waves travclling in the +.u itnd --s directions. 
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Table 4. The parallel wave numerical results for z/m = 1 (log,, (x(m) = 0) 

169 

Two terms Six terms 
z Fcunp(:) k¶(--) % Error &A=) % Error 

0.3307 0. I I”E-06 &_ 
0.6614 0.82 IOE-07 
0.9921 0.5194E-07 
1.3228 0.2’70E-07 
1.6535 -0.7873E-08 
I .98-Q -0.3674E-07 
2.3 I49 -0.678 I E-07 
2.6456 -0.9585E-07 
2.9762 -0.12878-06 
3.3069 -0.1287E-06 
3.6376 -O.Y585E-07 
3.9683 -0.6782E-07 
4.2990 -0.3674E-07 
4.62Y7 - 0.7873&08 
4.9604 O.?270E-07 
5.291 I 0.5195E-07 
5.6218 0.82 IOE-07 
5.9525 0. I I22E-06 
6.2832 O.l35YE-06 

O.l086E-06 -3.231 
O.Y06lE-07 10.361 
0.6280E-07 20.897 
0.28 IYE- 24,182 

-0.9482E-08 20.425 
-0.4612E-07 25.5’2 
-0.7776E-07 14.673 
-0.1010E-06 5.351 
-0. I133E-06 - II.974 
-0. Il33E-06 - II.973 
-0. IOIOE-06 5.350 
-0.7776E-07 14.667 
-0.4612E-07 25.519 
-0.9482E-08 20.430 

O.‘819E-07 24.184 
0.6280E-07 20.89 I 
0.906 I E-07 10.357 
O.l086E-06 - 3.22’) 
0. I IJRE-06 - IS.542 

0. I IZ?E-06 
0.8210E-07 
0.5195E-07 
0.2270E-07 

-0.7873E-08 
-0.3674E-07 
-0.678?E-07 
-0.958JE-07 
-O.l286E-06 
-0. I286E-06 
-0.958JE-07 
-0.6782E-07 
-0.3674E-07 
-0.7873E-08 

0.227OE-07 
0.5 195E-07 
0.8?lOE-07 
0. I I22E-06 
0. I359E-06 

-0.01 I 
-0.01 I 
0.00' 

-0.002 
-0.004 
0.000 
0.002 

-0.007 
-0.013 
-0.012 
-0.007 
-0.004 
-0.002 

0.000 
-0.001 
-0.003 
-0.005 
-0.010 
-0.013 

Computed wave speed = 229 13 ft s- ‘. 
Perturbation wave speed = 22914 ft se ‘. 

Table 4 displays results for a/m = I, or v = 50 Hz. Next. Table 5 shows a wide range 

of results, from r/r?t = 10 _’ (v = 50,000 Hz) to a/r?1 = 10’ (v = i Hz). Hcrc the wavelengths 

arc given by 

(136) 

~InJ with h = 0.02 for the case considcrcd, a/m = 10 -’ has a wavelength of I4 cm, and 

a/m = IO* has a wavelength of I4 km. For cr/m below IOeJ EISPACK had errors, and for 

Z/VI = IO’ and above the “longitudinal” eigenvalues it lost all relation to the wavespeed as 

their wavespcrd rapidly increased. For small frequencies, the eigcnvalues for the transverse 

wave were very numerically sensitive and EISPACK was unable to obtain them accurately, 

even in double precision. 

It was noted that the t” perturbation solutions did not exist for certain frequencies, 

and a calculation of eqn (76) for the longitudinal waves gives the frequencies as 

Y = n6.34 MHz, (137) 

which correspond to a/~ = 7.88 x 10e6 which was beyond the range of the numerically 

considered values. It should be noted that all the results shown were for frequencies 

Table 5. The parallel wave perturbation solution compared with the computed solution 
for various z/m. The pcrlurbation wave speed is 229 I4 ft s- ’ and 5332 ft s _ ‘. 

log I ” ww 

-3.0 
-2.0 
- I.0 

0.0 
I.0 
2.0 

Wave spcvd (ft s - ‘) 
Longitudinal Transverse 

2291 I 5256 
22938 5254 
22919 525 I 
22913 
22913 
2291-I 

P 
Two terms Six terms 

Max. % Error Max. % error 

25.72 -0.43 
25.66 0.12 
25.59 0.06 
25.52 -0.01 
25.5 I -0.02 
25.54 0.03 
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significantly below the first frequency for which the first-order perturbation did not exist. 

Based upon the richness of behavior displayed b> the perpendicular c;~se. \ve probabl) 

should not draw many conclusions about these higher frequencies. Also. for this material. 

the frequencies of nonexistence for the transverse WLL\~S turned out to be complex. and thus 

not physically realizable. 

A perturbation approach ws presented and 5hou-n to give good results in wx\e 

propapation. It also predicted qualitative behavior in rc@ons \vhere solutions of the per- 

turbation approach did not exist. 

The analysis revealed that :t discrete spectrum of frequencies (see eqns ( 132) and ( 133)) 

gives rise to large stresses and (elastic) strains. IVhile it is Lvell recognized that large 

stresses and strains are in violation of the linear hypothesis. nevertheless important physical 

information can be extracted from the results. For esample, in the Linear Thcorq of 

Fracture, although the stresses close to the crack tip are very large. important physical 

results have been obtained on the how?; of linear elasticity. Be that ~1s it may, the authnrx 

believe that this phenomenon is a form of’ resonance attributed to the particular laycrcd 
structure. These frcqucncics should be corrsidercd b> the designer of composite structures 

for they may kid to t’lilurcs and possibly the premature loss of a structure, 


