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Abstract—Several types of waves in a layered composite material were examined. In order to
obtain explicit approximate solutions, a perturbation method was used. This approach views
the nonhomogeneous layering as a perturbation on a homogeneous but anisotropic solid. For
propagation normal to the direction of layering, it was necessary to include the second-order
perturbation terms to get qualitative agreement. Also considered were waves which travel parallel
to the laminae. The material in these waves follows an elliptical path, the orientation of which
depends on the position ia the material. All these waves are also examined numerically. and there
is excellent agreement between the perturbation expansions and the numerical results.

INTRODUCTION

The purpose of this paper is to present a perturbation approach in dealing with layered
materials. The approach is simple to usc and, for a particular carbon fiber composite
examined, yields results which agree very well with various numerical approaches. The basic
idea is to write the layering effect on the material constants in terms of a Fourier scrics,
solve the averaged (homogenized) problem, and then take a truncated series solution of the
rest of the resulting first-order perturbation problem. In this introduction, we mention some
of the previous work, and then outline the results of this paper.

Brillouin (1946) did much carly work in waves in layered media. Though he did not
look at waves in an elastic solid, he did consider waves in two- and three-dimensional
lattices and continuous media. He obtained exact solutions for some simple problems, and
used some perturbation techniques for more general cases. His approaches have had a
lasting influence on the topic of dispersion in a layered material.

Rytov (1956) examined wave propagation in a medium composed of alternating layers
of two isotropic materials. He calculated the wave speed for shear and longitudinal waves
travelling both normal and parallel to the lamination. We will compare these results with
our approach for this case in the sequel. He then went on to calculate effective elastic moduli
for the material, now viewed as anisotropic. He was particularly interested in the thin layers
(as compared to wavelength of the elastic wave) case.

Considerable work has been done subsequently on wave propagation in layered solids.
Some was done with a view towards understanding earthquakes, as the earth can be viewed
as a layered solid and the earthquakes as waves passing through it. Ivakin (1960) studied
wave propagation in a periodically layered material by an analogy with electric circuits.
The approach used involved matching impedances at each boundary and is rather tedious.
In fact, the author concludes *. .. the determination of the velocity of propagation and of the
amplitudes of sinusoidal waves in fine-scale nonhomogencous media constitutes a laborious
problem ...” (p. 108).

More recently, some work has been done particularly with reference to artificial
materials such as carbon composites. Sun et al. (1968) present a continuum theory and
display dispersion curves for various waves in a layered material. They linearly expand the
displacements about the midplanes of the layers, and then require that some continuity
conditions be satisfied at the layer boundarics. An expression for the energy is derived, and
Hamilton's principal is used to obtain (approximate) equations of motion.

t Currently at Southwest Rescarch Institute, Division of Engineering and Material Sciences, San Antonio,
TX 78228. US.A.
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Nayfeh and Nemat-Nasser (1972) examined one-dimensional waves in harmonic
media. and were able to reduce the problem to the study of a Mathieu equation and a Hill
equation. They examined in detail their Hill-type equation. Lee and Yang (1973) also
examined this problem. and looked at the behavior of solutions of the one-dimensional
problem near the discontinuities in the dispersion curve.

In two papers. Hegemier and Nayfeh (1973) and Hegemicr and Bache (1974) developed
a continuum theory for layered media with a similar approach. The latter paper. in fact,
attacked the problem of waves travelling at an arbitrary angle in a layered solid and included
phase velocity versus angle of propagation curves.

In a series of two papers. Ben-Amoz (19735a.b) examined wave propagation in a
direction parallel to the laminae and normal to the laminae. This was done by assuming
relative orders of magnitude for the solution. and then discarding the pieces of the solid
equation which would then be negligible. He concludes that the behavior of a laminated
composite material is “predominantly that of a macroscopically homogeneous medium™
{page 43).

Delph et al. (1979) consider planc strain harmonic waves in a periodic medium, and
show that the dispersion spectrum is governed by the cigenvalues of an 8 x 8 matrix with
complex entries. The approach used was to write the displacements in terms of complex
exponentials.

This leads to the purpose of this paper. Herein will be deseribed a perturbation method,
and some results from it to obtain dispersion curves and displacements for harmonic waves
in an amsotropic layered medium. First, we will describe the notation we will use, and write
down the cquations of clasticity which we will assume to hold. We will view the material
as a continuous medium with noncontinuous elastic constants, and thus avoid needing to
deal with boundary conditions. For comparison purposcs with some of the above work.
we will in particular consider the case of a material made of alternating Layers of two
anisotropic materials. The methods presented apply to nuch more general v layers situ-
ations, but this case is presented as an example and to show the validity of the technigue.

In the one dimensional simplification, the method will give rise to the solution of a
nonlincur ordinary differential cquation. This equation is first derived, and then an approxi-
male perturbation solution is presented. 1t as found that to obtain qualitative agreement
with the dispersion curve it is necessary to include the leading terms of the second-order
perturbation.

Next, the equations are derived for propagation parallel to the laminae, and per-
turbation solutions are obtained for the two cases of on average longitudinal and on average
shear waves. [t will be found that to the first-order perturbution these are nondispersive.

The one-dimensional case will then be returned to, and examined numerically. Agree-
ment will be shown with the perturbation approach. the numerical solution, and Rytov's
solution for the specific example case. The interesting behavior of the solution of the
nonlinear ordinary differential equation will lead to a more general discussion of it, in
particular the question of existence of solutions. This relates back to the question of lack
of continuity of the dispersion curve. The change of behavior of solutions in the vicinity of
the break in the dispersion curve is demonstrated.

Finally, the parallel waves are examined numerically. This necessitates the solution of
a generalized eigenvalue problem, which is done by factoring the problem, and rewriting it
in standard eigenvaluc form. For a range of frequencies the numerical solution is shown to
be nondispersive,

It is hoped that the methods used in this paper present a straightforward approach to
the propagation of waves in a layered solid, and that it will throw more light on the behavior
of such waves.

THE APPROACH

Consider a material made of V layers ol an anisotropic, clastic material. A periodic
layering of height / is assumed. with the layering occurring in the y direction. This means
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the thickness of these .V layers would add up to 4. Each of these layers will be assumed to
be linearly elastic. with the appropriate elastic constants. After having put our material
together, we will view the ““constants™ in Hooke's law as being dependent upon y. If ¢, (1)
are the various constants in Hooke's law, then they may be written in the form

C:/(,‘.) = Cu+dupl/(}') (l)

where there is no implied summation. The ¢ (without the (1)) terms are the average values

l h
¢, = ; J; c, () dy, (2)

the constants d,, are the local deviations, and the p,; function takes into account the actual
structure of the laminae. The reason we are choosing to write d;;p,(y) rather than d;(y) is
that often there are symmetries in a lay-up which produce the same p,, for different ij.

In general, layers will have different densities, and so we will also write

p(») = p+d,p,(1). 3

If laminae are made of the same material at different angles with respect to the anisotropy.
the density will be constant throughout, and d, will be zero.

To actually solve the equations coming from the perturbation, smooth p,; are needed.
Since they are in a sense the periodic deviation from homogeneity for the material, it is
natural to expand them in a Fourier serics:

- 2n

po(¥) =Y {p,.sin (nap) +q,, cos (nay)), a= P )]
]

n- |

The x term will be appearing often, and one should view it as 2r times the “frequency’ of
the layering.

This gencral approach of using a Fourier series to describe the inhomogencity of the
material makes it possible to model many situations. By picking appropriate p,;, one can
describe layers of different thickness, layers with glue between the layers, and layers of
completely different material.

A PARTICULAR PROBLEM

As an example of a4 way to use the above ideas, and some results from them, wave
propagation in an anisotropic layered material will be considered. One way of viewing this
problem is as separate layers where the above sets of constants hold. and trying to match
the solutions in each layer at the layer boundaries. This is very difficult, but it is the way
the problem is often attacked. We have chosen to write the material parameters as functions
which are position-dependent. For the infinite periodic medium there are no boundaries,
but the partial differential equations no longer have constant coefficients. This naturally
leads to a perturbation approach.

To examine waves travelling in a plate, a plane strain model was used, as this cor-
responds to taking a slice through the plate. The equations are (see Malvern, 1969)

Si(cri(WEen +ci2(p)e) +20:(cee(¥)er2) = pu, )]
28, (cas(¥)E12)+Ca(ci2 (e + 22 (1)E22) = puyy, (6)

where the ¢, are the strains, the ¢;,(») are the coefficients from Hooke's law, p is the density,
and subscripts I and 2 refer to x and y directions. respectively.
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Fiz. 1. The material sct-up and local coordinate system.

A PARTICULAR MATERIAL

As a practical matter, we consider the material Hercules A.S. 4°3501-6. This material
1s made of thin carbon fibers (very thin—they are about 10 um, or 0.001 c¢m in diameter)
which are placed in an epoxy prepreg and pressed into thin sheets. where the fibers all
run in one direction. These sheets are then stacked so that in each layer the fibers run
perpendicularly to the fibers in the previous layer. At this point the sheets are heated and
pressed together, so that the epoxy is a continuous matrix of supporting fibers which run
in two different dircctions. The resulting plate is of the form ... 0 /90,0 /90 ... (sec Fig.
1). Each layer 1s quite thin, and a plate of this material one-quarter inch thick has about
25 layers. With this configuration, 4 = 2(1/100) inch = 0.02 inch.

Let us consider, therefore, such a composite plate made of alternating layers, with
layer Uhaving fibers running in the v direction, and layer 2 having fibers running in the -
direction (out of the planc). The resulting ¢, and d,, values aret

o= 101900 dy, = 9.6350
cao= LT8O dyy = 0.0000
cre= 06276 dy. = 0.0420
Con = 06060 d,, = 0.1040

in million pounds (force) per square inch. For this case, we have

h
L 0gy<
poy) = - (7)
| h < ’
- Ssyr< I

Since p,, (v) is the same for all ij. we let p,(¥) = p(3), and expand p(y) in a Fourier series
Lo get

(8)

4/nn, nodd
/)I‘ =
0, neven,

with all the ¢, being zero. Also, since the material is the same throughout, the density is
constant and we have d, = 0.

NORMAL PROPAGATION, AND A LOCAL WAVESPEED

In this section. the problem of normal propagation in the layering is considered. Both
the longitudinal and transverse waves give rise to the same type of cquation. with the
material constants being different. In order to refate to the specific material discussed above,

1 Data from Hercules, S.L.C., Utah.
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the case of the transverse wave will be considered, since, for the longitudinal wave d,, = 0,
and one has a general travelling wave (see below).
The form of the wave solution will generally be

S = sin (m(o(y)—1)). %9

In this case the wave is propagating in the + y direction (for the case of waves propagating
in the x direction replace » by x). To compare with the more usual approach. one takes

f =sin (ky—mi) (10)

and then examines the relationship between the phase speed and the wave number k, where
k is independent of y. The approach here is quite different. The wave speed is allowed to
vary locally, and by following a constant angle or phase in the sine term one arrives at

m{@(y)—1) = constant, (1)

50 that for a constant frequency

[= T
S
[»%

l
l
I

(12)

=
~
o
-~

or

d .
wave (phasc) speed = di = (13)

where the prime denotes differentiation with respect to y. If the wave is dispersive, ¢ will
have an m dependence. The frequency v of the wave, or number of oscillations per unit
time for a fixed point in space, is then 2zv = m-1 or

frequency = v = é}: (14)

Notice that

frequency of wave
frequency of material

(%)

I
|
i

=<

We will find that in the solutions to be obtained, m and a will always appear in the ratio
mja.
For the transverse case, we assume a solution of the form

u=n(y)fle(y)—1 (16)

v=0, 17

where n(y) now represents an amplitude modulation of the overlying travelling wave. This
amplitude modulation is fixed in space.
Equations (5) and (6) yield
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02(cee(¥)C2u) = pu,,. (18)

The reader may also note that for the longitudinal case the equation is of the same form,
Le.

¢a(csa(¥)Cat) = pry,. (19a)
and that if ¢.,()) 1s a constant (d,, = G) then

C2020 = pUy,. (19b)

which is the equation for a general travelling wave. This justifies the previous remark.
Carrying out the substitution u = nf one finds

Slces MM f+nf o) = pnf” (20)

where the prime denotes differentiation. Letting c46(y) = c(). as there is only one ¢, which
appears, and expanding one finds

Cnfrnf @t +cdn" A2 0+l f1(@) +f 9"} = pnf”. @2n
Our next step is to remove the f7 term by requiring its coefficient to vanish, i.e.
e’ +e2np 4 et = 0. (22)

If this is divided by eno’, onc obtains

C T
+2,’ + p,=0. 23)
« n o
which can be integrated to give
, A
P = (24)
o

where A is a constant of integration (A is nonzero as it is the exponential of the actual
integration constant). Placing this rather nice result back in eqn (21) gives

S AN .
anf+ C{n"f+ nf" <m2) } =pnf”, (25)
which can finally be reduced to
mp AT .
(en'yf+ c—n_’f =pnf". (26)

This equation has periodic boundary conditions with period h. To proceed further,
some assumptions on f must be made. Suppose that f” = —m’f, as it would if it were
sin (m(e)) or cos(m(e)). This yields

25,2

A m R
(en’) = e +mpn =0 (27

as an cquation for n(»). Now fix m, where m can be any real number.
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In this case, the wave (phase) speed is from eqn (24):

[

l
phase speed = ;;— = cz . (28)

This leads one to wonder about the effect of the constant A4 in the n equation. If we let n
be a solution with 4, as the constant, and if we let u be a solution with A, as the constant,
then 4, = k4, for some k (4 is nonzero), and making the substitution in the u equation
gives

2 42,2

(cu'y — +m’pu=0. (29)

If this is divided by /%, it is concluded that z4/,/k = n and that

e - (30)

One concludes, therefore, that 4 is quite arbitrary as far as physical meaning goes. (This
can also be seen by dividing eqn (27) by \/' A.) Thus, in the following, we let 4 = 1.

As nonlinear equations are difficult to solve, a perturbation approach is used to linearize
the equation in order to glean some information on n. The quantity & will be used as an
cxpansion parameter to obtain equations in various powers of &, after which ¢ will then be
sct equal to 1. Suppose

n=q"+en' +eint 3

i , 3 { . b 1\2
5= () (ol e (%)) &

Using a similar expansion for the coeflicient involving p (let py be written £p), one has

! ! | e (d(,a- )}
_ e = e +e : . 33
¢ Costedesp(y) Csa{ 6'66 PO Cse () (33)

Upon substitution into eqn (27), and letting p be written as p+&d,p,. one obtains an
equation with various powers of ¢.
Separating and equating powers of ¢ in this equation yields three equations

This leads to

m?

£%: Cas('?u)u Cs (no)) +m P'? = {, (34)
i Fyr [ NG mZ d66 3 t 3 1 20
£ cos(n' ) +(dsep(N°YY + =53\ —p+ =n' | +mipn' +m°n’d,p, =0, (35)
Cos(n°) \Cos” 1

err (n')'desp+(n')Ydesp' +cos(n®) —m

1 1\2 2
ATt
NoCss n n N Cee Y

+m*(nd,+pn;) = 0. (36)

There is a simple solution to the ¢° equation, namely
BAS 29:2-8
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n’ = (pces) ™. (37)

a constant. This simplifies the ¢' equation giving
Ly R | 0,2 s
Coo(n')" +4m pn = —n'm4p "= ptd,p, (. (38)
66

This equation has periodic boundary conditions of period A.
Using the Fourier series expansion for the p and p,. a solution to this &' equation can
be found using the orthogonality of the basis. The form of the solution n' is

x

') =23 {a,. sin (n2)) + b, cos (nxy)}. 39)

n=1

A substitution. use of orthogonality and some algebra gives

na\ d

4p—c.. | — L 4

[ I’ "66<"l>]an n {pché pn+(;lp;l.n v ( O)
naY o) des

dp—coe\ =} 1Pa= =" 3P~ qutd,q,.0- (40
m Coo

As will also occur for the waves travelling parallel to the layering, n(x/m) always occur
together. a/m is a measure of the frequency of the wave to the “frequency™ of the matenal.
Morcover, a is large for thin layers and m is large for high frequencies. For this case, the
perturbation is expected to be good for both large and small n(x/m). Equation (40) implies
that «, is approximately a constant multiplied by p, for small n(a/m), and that g, is roughly
inversely proportional to (n(a/m)’ for large n(x/m).

By examining eqns (40) and (41) it is scen that if

N

, A7
4p —coen”— =0, 42)
m-

a solution to the &' problem does not always exist. This nonexistence occurs for

n [Cee
= = 4
v= 5 \/ P (43)

This will be explored more fully in a later section.

It was found in the course of the investigation that the dispersion curve of the first-
order perturbation solution had some qualitative disagreement with exact solution in the
ncighborhood of the nonexistent first-order perturbation. This led us to consider the second-
order perturbation. Since a full second-order term would be difficult to obtain, an approxi-
mate one will be found. As we are interested in regions where eqn (42) nearly holds we fix
n where this holds, and sce that a, and b, are large. This implies the (n')* term dominates
the non-n° terms of (36), leaving

5 . _ L1 . R
£ Cos(n?) +4mpnt = 6m* '?;p(a,, sin (nxy) + b, cos (nxy))” (44)

(n is fixed here). A solution to this equation is
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2 = g,, sin? (nay) +g,, sin (nay) cos (nay)+g;, cos® (nay) 45)

where

) (g ) 1N
in n
) 3 = 6‘3( z) (46)
2ees ('_w_t) 4p_26“(§g) I n° \b;
m m

and

12a,b,p/n°
gom = T e
4p—4dces (;l”)

Using the fact that 4p = c4,(n2/m)* and doing some simplification, we obtain

47

o]
Gin X 27(«1;+2b;)

|
G X — Wa,,h,, r . (48)

I 1, g2
X =~ (2u; +b;
9w 2”0( a, + )J

When the dispersion curve results are later presented, this second-order result will be

included.
This at least gives a better feel for the solution. It is interesting to note that for high

frequencies (large m), eqn (27) gives
n = (p(ces+desp(1) (49)

while for low frequencies n = (pcee) ™%, To see an interesting sidelight of eqn (40), we let
for simplicity {g,} and d, be zero, then for large m and small n,

d
a, = —(pchb)« e 4(_66661,"1 (50)

which gives

d . d
nxn’+n' = (pcﬂ)‘”‘{l -2 ;rfé—pn sin (nay)} = (pcee) ™' {l -2 - p(y)}-
truncated ¥C66 Ceo
(51

This is the first term of the Taylor’s expansion of eqn (49). Thus the perturbation solution
agrees with both the large and small m limit solutions.

In summary, it is of some practical interest to note that at high frequencies there is a
surprising inverse quarter-power amplitude modulation of the wave, while at low fre-
quencies the wave hardly notices the inhomogeneity of the material at all. There is a discrete
spectrum of frequencies where &' perturbation problem does not have a solution.
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WAVES PROPAGATING PARALLEL TO THE LAMINAE

Here there do not exist purely longitudinal or purely transverse waves. but the same
idea applies. A perturbation method is used to obtain some approximate solutions.
First, the following form of the solution ts assumed:

u = n(y)cos (m(ix—1)) (32)
v = p(y)sin (m(ix—1r)). (53)

where 4 is a constant. This form is chosen since a travelling wave is being looked for, and
the solution is expected to have a y dependence in the amplitude. In this case a variable
phase speed is not being considered because if the phase speed did depend on y, the wave
would separate in the layers, which is not desirable. In addition. an x-dependent wave speed
is not expected since the material properties do not change in the x direction.

[t seems wise to elucidate some assumptions in the above equations. It has been
assumed that the actual solid “particles™ follow an elliptical path. To see this, fix y and
note that

LA 54
n)® ) >4

As will become apparent, the “longitudinal™ wave will have a major axis in the direction
the wave travels, while the “transverse™ wave will have a major axis normal to the dircction
of wave propagation. On a physical note, it has been assumed that the frequency is not so
high that the layers are acting as waveguides. Waveguiding will probably occur at high
frequencies, meaning the wave will separate in cach of the layers, the wave in one layer
travelling faster than the wave in the other layer. Though the assumed form of solution
leads to solutions of the solid equations for almost all frequencies, we suspect that exper-
imentally these type waves would be very diflicult to produce for high frequencics, as
waveguiding would more naturally occur.

The assumed u and v are placed in the original solid equations, eqns (5) and (6), to
give

(Cri+dup ) (=23 cos () +03(Cop +doaPocI €08 (1) + (crx+d2py)mip cos (¢)

+83(Con FdooPoa)migrcos (1) = —m*pncos (+), (55)

(Con+ doup)(=mA)y sin () +02(ca+d3p) (—min sin (4) +(coo+ dooPos) (—m* AP sin ()
et sin () = —mippcos (+), (36)
where ¢+ corresponds to m(ix—1) and the prime denotes differentiation with respect to 1.
The cos (+) can be factored out of the first cquation and the sin () can be factored out of
the second equation, since they do not depend on v
This is what is left:
(o +dnpr) (=P 2+ ((Cos +desPos)’) + (Crat+dy2py)miy
+mi((coo+doopse)pt) = —m pn. (57)

(cos+daapas) (—mi —mi((c 2t d2pi2In) +(Cos +‘166p66)('—'”:;'2)/l
+eaap’ = —mipp. (58)

These are coupled ordinary differential equations, with periodic boundary conditions.
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Once again the system only seems amenable to a perturbation approach : thus one may
proceed as follows. Think of inserting an ¢ in front of the p term, and use an expansion of
the form

nxn’+en', (59)
nxn’+eu'. (60)
The zero order (£°) equation is
—c m*iin’ +ce(n°) + (cr2 4 co)ma(u’)y = —m’pn’, (61)
— (o6 +Ci2)mMAMN°) —ceemAip® +c 32 (4°)" = —m’pn°. (62)

Let @ = c¢,;+ ¢4 as this term will occur again. The first order (¢') equation is

—cum*An +ege(n') +ami(u') +mipn' = m*ild,\p,in° = (despss(n®)Y
“'"Adlzl’l2(#0)'_'"1-(‘16(-[’66#0)'—mzdal’p'loy (63)

—ami(n') = coem* ' + 00y (') +mipp! = midgepos(n®)+mi(d,1p,an°Y
+mPAdgepesp® —mid,p,u’.  (64)

There are two simple solutions to the equations, first

=1 ul=0, il=\/£~. (65)

n

where the #§ = 1 is an arbitrary selection as the equations are linear, and

=1, A, = /;‘i. (66)
66

The subscripts will distinguish these two cases. Similar to the normal wave, 4 is inversely
proportional to the wave speed, and it is immediately seen that the above two solutions are
two different types of waves, as they travel at different speeds. This is, of course, not
unexpected : transverse (shear) and longitudinal waves in a homogeneous, isotropic solid
also travel at different speeds.

~o
[*¥-1

=0 u

PARALLEL LONGITUDINAL WAVES

This section examines the longitudinal waves, or those arising from eqn (65). The first-
order perturbation equation (eqns (63) and (64)) becomes

d
casln!) +am [ L= uly = mp = 1 ) - mid,p,, Q)
i1 1"

’ ” c 2 ’
—am —p‘('l:) +ena(ul) + (1_.“2),,,-[,”: =m,/"£‘dlzﬂlz(a}')- (68)
i 4 Cut

it

One has a solution by assuming the following forms:
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n(y) =Y {a,sin (n2y)+ 2z, cos (nay)}. (69)
n=1
() = Z {b, cos (nay)+ B, sin (nay)}. (70)

n=1

Placement of these in the first-order eqns (67) and (68) gives a system for the «, and b,,
namely

. 3 . d i
—Coo" XA, —am \/;)— nab, = m-p ;ﬂp“.,,—m‘d‘,p,_,,. n
1t 1t

3 [ b
—am \/p naa, + {—c:;n*u‘ + (l - Lﬁ) m'p} b,=m /Ld,:mtpu_,.. (72)
Cri n i

and a sumilar system for the a, and §,.
Solution of these gives the first-order perturbation for the longitudinal case. Dividing

both equations by m* leaves the equations in a form where m and x do not exist indepen-
dently, but only the ratio a/m occurs:

La poa d,, ‘
—Coll —a_ | '—n - ) —— —¢
h m cnom f \ Piin ppp,n

)
) a\ o (73
P Lat Con b, P 2 ' i
—u n —canpn” L+ L= p edon pia,
Cyy M m- o Y Cn m |

Solution of this system gives the a, and the b, The z, and f§, are given by

/ N ’

,a2 P dy J
—Cout” u n- ) ) |
v ’”3 ¢ m ¥ ¢ {111 ;.q,._n

1 a 11
- 2 "= o . (74)
poox ,o© Coe S, P
a R e e T B R T N -
! Cig M m- ) ¢

2
—dyn piag
1 m /

It may be noted that there are situations here, as in the normal case, where solutions
to the &' problem do not exist. This occurs when the determinant in the systems (73) and
(74) vanishes, that is, when

Ly [ e - 1 —
m- m- ¢y i C11Co0

— \/‘i:s {1 G _L} - (76)
h P Ciy C1iCes

Near these frequencics the determinant will be small implying that the specific a,, 5., %,
and B, will be large. It is thus expected that the perturbation will not be good near these
frequencics.

Thus the coeflicients a, and the b, only depend on the ratio a/m, which measures the
wavelength of the wave in comparison to the spacing of the layers of material. For large
a/m, meaning low frequencies, the a, and b, are given approximately by
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Ilm 1} d p di:
a, = 33 _{pf’[pll.ﬂ_dpppm p Plz,n}, (77)

1 Cn 22

p d,m
box [ P 78)

The perturbation terms a, and b, are small when a/m is large, or when the wavelength of
the wave is large compared to the spacing of layers.

The wave travels at the root mean square average speed in the material. To see this,
recall that c,, is the average of the ¢, (¥) in the layers, so that

drY (1Y e L [fen(n
&) -6 --i ] e "

The wave has a tumbling structure. It travels in the high speed layer and then tumbles into
the low speed layer, which results in the average wave speed observed.

To justify the statement about the longitudinal waves corresponding to ellipses with
the major axis parallel to the axis of propagation, recall that n} and x| are small, so that

() = L+ni(y). (80)

() = i (). (81)
Since

u? v?

Gon: T GO = 82)

it is scen that w is the major axis, and u corresponds to material displacement in the x
direction.

PARALLEL TRANSVERSE WAVES

For the transverse wave, from egns (63), (64) and (66), the first-order perturbation
cquation is

c(,,,(rlé)"+m:p(l - ’7’ +am‘/ (#z) = —m,/ doal’ss(a)’) (83)

p , " d R
—am [ (n}) +cn(pd) = p==m’pes(ay) —m*d,p,, (84)
Cee Ceo

and one can proceed with 7' and u' as given in eqns (69) and (70).
The equations solved by the coefficients are (already dividing through by m?)
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o) 2B (2 e
m Cse N Cop \/M 2 m )\ con s66on
. ( ") = - (85)
/_p‘ (nx) o (nay b, (i(,_(, i
\ a Coo \ 11 Ca2 n \p Cos Heon qu.n /

2 (1o b 2 ‘-\
P WCQG a C(,(,nm ”n—ifoﬁp(,(,,,

. . 86

/—*n— —enn® 2 (ﬂ" p—m—p —d,p o
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As in the longitudinal case, the wave speed is the root mean square average of the wave
speeds of transverse waves in the two layers.
Here, existence of the solution to the &' problem does not occur if

CAE S e a L
Tt s = - = e p =0, (87)
m e Cae Con  Car Con

whose frequencies are

‘ 2 12
o [Cas Ty ar
v = \/ PRI ‘ (8%)
h # Cat C22044

Here, with 7} and g} small and
n:(3) = i) (89)
(¥ = L (), (90)
the major axis of displacement is ¢, or perpendicular to the direction of wave propagation,
which is why these waves are called transverse waves.
Finally, supposing onc had started with
u = n(y)sin (m(ix—1)) 9h

v = pu{y)cos (m(ix—1)), 92)

it is seen that the above longitudinal results go through if one replaces

\/¢ |u1 - \/tn ®3)

Similarly, the transverse results go through if one replaces

JE by \/ (94)
Cos Cos

SOME NUMERICAL RESULTS FOR THE NORMAL WAVE

In order to verify the perturbation and to examine the solutions of eqn (27) in the
regions where the perturbation fails, numerical solutions were obtained. These were for
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Table I. The numerical results for x/m = 0.0001 (log,, (2/m) = —4)

Two terms Six terms
z Noomp(2) Nper(2) % Error Npere(2) % Error
0.3307 0.328356 0.325574 -0.8 0.325646 -0.8
0.6614 0.328817 0.326130 -0.8 0.326182 -0.8
0.9921 0.329152 0.326559 -0.8 0.326560 -0.8
1.3228 0.329335 0.326813 -0.8 0.326769 -0.8
1.6535 0.329384 0.326865 -0.8 0.326813 -038
1.9842 0.329279 0.326710 -0.8 0.326685 -0.8
2.3149 0.329043 0.326364 -0.8 0.326392 -08
2.6456 0.328652 0.325865 -0.8 0.325934 -0.8
2.9762 0.328142 0.325266 -09 0.325314 -0.9
3.3069 0.327396 0.324634 -0.8 0.324585 -09
3.6376 0.326614 0.324035 -0.8 0.323966 -0.8
3.9683 0.326053 0.323536 -0.8 0.323508 -0.8
4.2990 0.325675 0.323190 -08 0.323215 -0.8
4.6297 0.325516 0.323035 -038 0.323087 -0.7
4.9604 0.325554 0.323087 -0.8 0.323131 -0.7
5.2911 0.325810 0.323341 -0.8 0.323340 -0.8
5.6218 0.326261 0.323769 -0.8 0.323718 -0.8
5.9525 0.326920 0.324326 -0.8 0.324254 -0.8
6.2832 0.327724 0.324950 -0.8 0.324950 -0.8

L, norm of residuals = 0.1615644E-14.
Average phase speed = 5252 fts~'.

the specific case of the Hercules A.S. 4/3501-6 material previously mentioned, and with
the ...0°/90°/0°/90” ... configuration.

The method of choice was Galerkin's method, which changed the problem to that of
the solution of a sct of algebraic nonlincar cquations of the form

h
. |
Ae = J V) @0 93)

where A is a nonsingular matrix, (1) a row vector of basis functions, and the approximate
solution is g(y) = O(Y)C.

Being a periodic equation, a Fourier sine and cosine basis was used, with 19 basis
functions. MINPACK was used to solve the nonlincar algebraic equations and took
approximately ! min to converge on a VAX 8600 with

n° = (pces)™'* (96)

as the initial guess. For details the reader may consult Walker (1988).
Table | displays the results for a specific frequency, a/m = 0.0001, or from eqn (15):

'(T =0.5MH 97
vha—. z. 97

Shown here is the comparison of the computed solution with the perturbation expan-
sion truncated at two terms, #° and one term of 5!,

n=n’+n' = (pces)”V* +a, sin (2), (98)

and six terms, n° and five terms of 1,
SAS 29:12-C
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Table 2. The perturbation sclution compared with the computed solution for various

x'm
Two terms Six terms Wave (phaser
% Error °5 Error speed (fts™h) L. norm of
fog ., (x.m) Ave. Max. Ave. Max, Ave, residuals
0.000 0.7 0.7 0.7 0.7 5413 0.8432D-19
—1.000 0.7 0.7 0.7 0.7 5413 0.8438D-19
~2.000 07 07 07 0.7 S413 0.7107D- 19
—3.000 0.7 0.7 0.7 7 5413 0.7936D-19
—4.000 0.8 0.9 0.8 09 3426 0.1616D-14
— 4 546 7.7 102 7.7 102 6130 0.2097D-13
- $.000 s 221 st 126 $537 0.1267D-13
- 5.500 28 7.7 07 i.8 R 0.6172D-13
—6.040 {4 4.1 [} 1o S316 9.1299D-13
- 7.060 1.3 4.0 0.5 10 S37 0. 0ID-13
—8.000 1.3 40 n.s 1.0 S317 0.1098D-13
—9.000 1.3 4.0 0.5 1o 537 01098D-13
— 10.000 1.3 40 0.5 1.0 5317 0.1098D-13
9
nxn’+n' = (pee) P+ Y a4, sin (n2). (99

L

There are six terms sinee the Fourter sine expansion of the periodic square function has p,
and therefore «, equal to zero for even a2, The percentage error is simply

v crror = 100 x rehien T e

(1o0)

!lcnmpmcd
To get the phase speed, or how fast the front of the wave travels, consider how long it will

take the wave 1o travel a distance . Once has that /e’ is the local phase speed by egn (13).
Thus, the time to travel the distance i is

" . - !
Al = J:) d_vttr = J:} P (y)dy = J” (ot dy. (101)
This gives
h Z | .
phasspeed= =0 [ iy (102)

This is also included in the table. The wave speed is near one mile per second.

Next, Table 2 shows some results for a range of 2//. The numerics are the same as
above, und the average pereentage error and maximum percentage error refer to the absolute
values of the percentage error.

For log,, (x/m) > —4 the wave speed is constant, and the crrors stay at the limiting
values indicated in the table. This is also true for the region log,, (2/m) < — 5.5, which is a
result of a finite number of basis functions used in the numerical solution. For values of
log,, {2/m) the accuracy of the perturbation depends on how close one is to an cigenvalue
of the homogeneous problem, as is demonstrated in Fig. 2. The relationship between the
homogenecous problem and the numerical solution will be explored more fully in the next
section.

Next, Fig. 3 is a phase speed plot with only the first order perturbation, for a range of
a/m. The upper curve is the phase speed of the wave based upon the numerical solution
of eqn (27), while the lower curve is the phase speed based upon 50 terms of the first-order
perturbation solution to the same equation. Breaks occur where the numerical method does
not converge. The phase speed is not continuous. The qualitative difference in these two
graphs is what led to an examination of the sccond-order perturbation. The lack of peaks
at higher frequencies in the numerical solution will be discussed in the section on existence
of solutions.
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Fig. 2. A plot of the maximum percentage difference between the two perturbation solutions and
the numencal solution. The upper curve is the two term error, and the lower curve is the six term
error. Frequency increases from right to left (as m increases).
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Fig. 3. A plot of the phase speed versus log,, (#/m). The upper curve is the numerical result, while
the lower curve is the perturbation result with 50 terms.
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Fig. 4. A plot of the dispersion curve for the perturbation solution with second-order terms {solid
curve), as well as a plot of the actual solution due to Rytov {dashed curve).

Figure 4 displays the dispersion curve for the perturbation solution including both
first-order and approximate second-order terms (50 of cach). With it is displayed the
dispersion curve for the exact solution found in Rytov (1956) (and also found in quantum
mechanics textbooks where the periodic square well potential is discussed). If

o o .
o= \/ at ot L e = ;1 ne o6 i {10
# Noop

then this dispersion curve is given by

T om T om Ve, o\ . (zm\ . {=am 2nm
cost — - jecost - —f— 4 S hsind - sin| -~ L= cosy - (104)
ryox I A\, oy ry 7 ry % roa

where ¢ is the phase speed. Notice that the exact solution in Fig. 4 and the numerical
solution displayed in Fig. 3 agree very well. Also. the perturbation solution including
sccond-order terms agrees at least qualitatively with the actual dispersion curve. There are
two apparent differences, First, the perturbation curve has only half as many discontinuitics.
This is due to the Fourier series expansion for p(y) only having nonzero p, fornodd (p, = 0
if n is even). If the even np, terms were nonzero, the perturbation-derived dispersion
curve would have as many discontinuitics as the actual dispersion curve does. The second
difference is the low frequency limit of the phase speed. In the actual curve it s

l -1
z(lu+»-) - S273fs (105)
vy U2

while in the perturbation case it is

| A - ( ! ! )”
= | ——dy] =2 = 5175 fts" . 106
(1: J:; c{ne)” d“) (1) Cos+ s + Con — s > s (106)
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Overall, however, agreement is good. and this demonstrates the validity of the perturbation
approach.

A DISCUSSION OF EXISTENCE

This section discusses the existence of the nonlinear ordinary differential equation dealt
with in the previous sections. The existence of a solution is not proved, but a relationship
is demonstrated between the failure of the numerical method and the eigenvalues of the
linear portion of the equation.

Equation (27) is, after letting - = xy and dividing through by c4¢x*/m°,

" LNES p mz) des
1 - Y L . or=-2, 107
((L+rp(Nn") TP (C“ Z/n=0r ” (107)

with periodic boundary conditions of period 2n. and where the prime denotes differentiation
with respect to .

In a paper by Lazer and Solimini (1987), the existence of a periodic solution to the
equation

w-l=g (108)

is proven fora 2 | and

f Klg < 0. (109)
peric

Unfortunately, the proof depends upon the existence of a lower bound on « obtained by
the existence of an upper bound on ¢ (which exists because ¢ is piccewise continuous on a
closed interval). So the method of proof does not apply to the equation considered. However,
if' a solution of eqn (107) did exist it would presumably be positive and so

x 2
L —<Ci:—'?>qd:<o (110)
66

and the corresponding a = 3 > 1. Comparing forms makes it seem reasonable for a solution
to exist.
Next the Green’s function will be formally developed. Let

W) +iu=g, f2C>0 an!
with C a constant. As the homogeneous part,
Ju'y+iu=0, (112)

is a Sturm-Liouville problem, there exists a complete set of eigenvalues and eigenfunctions.
Call these {4} and {o,}. If g is square integrable, it can be expressed in terms of the {¢,},

g=zgi¢i- (113)
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Assuming the solution u to be square integrable, one has

u=>uQ,. (114

Using orthonormality of the eigenfunctions, the original equation yields
(A=A)u, = g, (115)

or

' o) do
u=Zu,(p,»=Z£—A(p,=ZLqﬁ(}—/£;—g)‘3(p,(z). (116)

In this, the integration is over the domain of u. If one exchanges the integration and the
summation and lets

(., iy = ¥ 22 e
~  A—4
then w can be written
u= fG(:. £, Ag(C)y de (118)

where G is called the Green's function,
If the nontlincarity in egn (108) is moved to the right-hand side, then the remaining
left-hand side is a periodic Sturm-Liouville problem as described above, that is

pm? m?ja’
(1+r, :)”+( > = 119)
(I +rp(2)n") e )= Tarpom (
Thus, a Green's function exists and the equation could be written as
) J TN P I— (120)
z) = 2,0, A) - —— (. 2
e e (R ) LR

This does not help a great deal in demonstrating existence, but it does indicate that when

equals an eigenvalue of
(N +rpCN)Y +Au =90 (121)

a solution would not exist. The reasoning is that the Green’s function does not exist there
because of the A— 4, term in the denominator, and so one should not expect a solution.
However, as will be seen, there are twice as many values of a/m for which a solution does
not exist than those indicated by this argument.
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Table 3. A comparison of the eigenvalues of the homogeneous problem with
some x.m where the numerical routine did not converge

Squareroot of Squareroot of
N eigenvalues of eigenvalues of
log,a{x m) 2\ plegmin ({(lerp’Y+iu=10 Waiu=10
0.0000 0
—4.480 0.9439 0.9821 1
—<4.500 0.9884 0.9962 I
—3.320 1.0350
—4.800 1.9721 1.9646 2
1.9919 2
—4.980 29849 29480 3
2.9867 3
~5.108 3.9804 39327 4
3.9801 4
—5.200 4.9537 49192 5
-5.210 5.0690 49718 5
- 5280 5.9556 59073 6
5.9618 6
—5.350 6.9972 6.8974 7
6.9499 7
—-5.410 8.0339 7.8893 8
7.9364 8
—~5.470 9.2241 8.8828 9
8.9211 9
9.8777 10
9.9050 10

Following the above argument, the job becomes obtaining the eigenvalues of egn (118).
These are expected to be very close to the eigenvalues of the periodic problem

W+ iu =0, (122)

period 27, which has cigenvalues 0, £, 1, 4,4, ...,
it is simple o set up a numerical scheme to find them approximately. With

u=0¢ (123)

the Galerkin method gives for eqn (121) a corresponding algebraic eigenvalue problem of

A = ABE, (124)

where A and 8 are nonsingular matrices. This form of the eigenvalue problem cun be solved
by EISPACK, and was, with N = 51.

As was pointed out in the lust section, the method did not converge for some regions
of a/m. In Table 3 are displuyed some values in each region for which convergence did not

occur: the value
m
ZJB- e
Cee &

the squarcroots of the numerically computed eigenvalues of eqn (121), and finally the
squarcroots of the cigenvalues of

W du =0, (125)
The correspondence is clear. In fact, the nonconvergence corresponding to 4 & 4 was

not found during the original phase speed calculation, where the method converged for
logio (z/m) = —5.11 and —5.12. Rather it was found by examining
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) _
o \ﬁ (126)
mo AN Ch,

for 4 =~ 4, which gives log,, (x/m) = —-5.107.
A surprising item is the factor 2 which appeared in the perturbation and now again in
the numerical solution. There ts more here than

o ot
2
Coo X

being an cigenvalue of the homogencous problem. So a conjecture : The nonlincar ordinary
differential equation, egn (107), has solutions except when

) m’
4(“"‘ ‘ ':;>
Cop @7

equals an eigenvalue of the corresponding homogeneous equation, eqn (121).
There is even more evidence than presented above that solutions do not exist, and this
gives us greater insight into the solutions n and what happens near the peaks.

060

040

10g,0{®}
7 lae

& 030
togolw)
«+-4.78
020}
010}
000 L L . .
o =2 L3 x2 2=

Fig. 6. A plot of n(v) for frequencies above and below log g (a/m) = —4.8.
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Fig. 7. A plot of n(3) for frequencies above and below log,, (2/m) = —4.98.

Figures 5, 6 and 7 show the solutions to eqn (107) for

3y m
2 l——z 1,2 and 3,
V e @

167

(127)

respectively. Each figure has two solution curves. One curve is for a frequency a little less
than one that did not converge, and one for a frequency a little greater. The character of
the solution changes in a substantial way, sort of flip-flopping. In the perturbation solution,
the coefficient of the respective frequency changes sign at the transition point, and the

numerical solution shows a similar effect.

Finally, some discussion of wavelengths is appropriate. Using the first term of the

perturbation expansion,
n = (pces)” i,

onc has
which leads to the wavelength:

As x = 2x/h this gives

a Cse
Lah= (288
Ya m P
and for 2,/ p/css mja =~ n one obtains

Vi =

2R

(128)

(129)

(130)

(131)

(132)

The wavelength where solutions do not exist is twice one period of the material, for
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n =1, or fowr lavers of the ... 0 90 0 90 material. Comparing these wavelengths with
those exhibized by the n in the previous figures. it is seen that the wavelength of these waves
t5 twice the wavelength which the corresponding 1 would be. if it existed.

Equation ¢ 131) may be used to get an idea of wavelengths for various x m. Forx'm = |
the wavelength is about 33 meters, and for x'm = 10 °, the wavelength is about 0.0033 cm.
For higher frequencies than this, though some were presented in Table 2. a model should
be used which takes into account the microstructure of the luyer, since the tibers are 0.001
cm i drameter.

Some comments seem in order. First, the factor of 2 which appears in this section is
not a result of the method. If one chose to let /2 cover two complete periods of fayering. all
the cxtra Fourier coetlicients would vanish and the same frequencies would lack solutions
as betore, Thus, there s something real about it. Second, although the perturbation was
not very accurate numerically near the transition points in the selution, it did however
predict the qualitative behavior as to how the solutions would change. Third, the reason
why the numerical solution portrays no more peaks for higher frequencies in Figs 3 and 4
is that higher frequency Fourier terms in the numerical basis would be needed to pick up
the higher trequency terms in the solutions, which terms lead to the peaks. Finally, Tor this
material the frequencies where the solution does not exist are roughly

R NI 133
‘\hz_ﬂz bM On 7. [RIRRY

with # any positive integer.
As a practical matter, these are the frequencies which the designer should take into
account m the use of these materials, tor they lead to large strains.

SOME NUMERICAL RESULTS FOR THE PARALLEL WAVE

In a simular fashion, the parallel waves were examined numerically. These wiaves
required more terms in the perturbation inorder to show good agreement with the numericul
results,

Using the Galerkin method, eqns (55yand (56) lead to a generalized cigenvalue problem
of the form

(APA+iB+C) =0 (134)

where A, B. and C are symmetric materials. This 4 is the same inverse wavespeed which
appeirs in eqns (65) and (66). 1f these waves were dispersive, then 4 would depend upon
218

Fquation (134) can be fuctored to give

(=0 6= oG I

where ¥ is a dummy vector. This is a form of an eigenvaluc problem which can be solved
by EISPACK. Using the double precision RGG path and 19 Fourier basis functions for
both # and g some results were obtained.

Of the eigenvalues, four are found to be real. They came in pairs, a positive and a
negative one for the longitudinal wave. and a positive and a negative one for the transverse
wave. These correspond to waves travelling in the +.x and —.x directions.

Ford
(%
-
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Table 4. The parallel wave numerical results for 2/m = 1 (log,, (x,m) = 0)

Two terms Six terms

z Heomp(2) Hpen(2) % Error Hpen(2) % Error
0.3307 0.1122E-06 0.1086E-06 -3.231 0.1122E-06 -0.011
0.6614 0.8210E-07 0.906 E-07 10.361 0.8210E-07 -0.011
0.9921 0.5194E-07 0.6280E-07 20.897 0.5195E-07 0.002
1.3228 0.2270E-07 0.2819E-07 24.182 0.2270E-07 —0.002
1.6535 —0.7873E-08 —0.9482E-08 20425 —0.7873E-08 —0.004
1.9842 —0.3674E-07 —0.4612E-07 25.522 —0.3674E-07 0.000
2.3149 —0.6781E-07 —0.7776E-07 14.673 —0.6782E-07 0.002
2.6456 —0.9585E-07 —0.1010E-06 5.351 —0.9584E-07 -0.007
2.9762 —0.1287E-06 —-0.1133E-06 —11.974 —0.1286E-06 -0.013
3.3069 —~0.1287E-06 —0.1133E-06 —-11.973 —0.1286E-06 -0.012
3.6376 —-0.9585E-07 —0.1010E-06 5.350 —0.9584E-07 -0.007
3.9683 —0.6782E-07 —0.7776E-07 14.667 —0.6782E-07 —0.004
4.2990 —~0.3674E-07 —0.4612E-07 25.519 —0.3674E-07 —-0.002
4.6297 —~0.7873E-08 —0.9482E-08 20.430 ~0.7873E-08 0.000
4.9604 0.2270E-07 0.2819E-07 24.184 0.2270E-07 ~0.001
5.2911 0.5195E-07 0.6280E-07 20.891 0.5195E-07 —-0.003
5.6218 0.8210E-07 0.9061E-07 10.357 0.8210E-07 -0.005
5.9525 0.1122E-06 0.1086E-06 -3.229 0.1122E-06 —-0.010
6.2832 0.1359E-06 0.1148E-06 ~15.542 0.1359E-06 -0.013

Computed wave speed = 22913 ft s,
Perturbation wave speed = 22914 ft s~

Table 4 displays results for a/m = |, or v = 50 Hz. Next, Table 5 shows a wide range
of results, from a/m = 10~ (v = 50,000 Hz) to 2/m = 10% (v = } Hz). Here the wavelengths
are given by

wavelength = \/ELl e (136)
P (m
(=)
and with A = 0,02 for the case considered, a/m = 10 * has a wavelength of 14 cm, and
a/m = 10% has a wavelength of 14 km. For a/m below 10~ EISPACK had errors, and for
a/m = 10" and above the “longitudinal” eigenvalues it lost all relation to the wavespeed as
their wavespeed rapidly increased. For small frequencies, the eigenvalues for the transverse
wave were very numerically sensitive and EISPACK was unable to obtain them accurately,
even in double precision.
It was noted that the ¢' perturbation solutions did not exist for certain frequencies,
and a calculation of eqn (76) for the longitudinal waves gives the frequencies as

= 16.34 MHz, (137)
which correspond to a/m = 7.88 x 10~® which was beyond the range of the numerically

considered values. It should be noted that all the results shown were for frequencies

Table 5. The parallel wave perturbation solution compared with the computed solution
for various 2/m. The perturbation wave speed is 22914 ft s~ and §332 fts~".

Wave speed (fts™') u
log o (2/m) Longitudinal  Transverse Two terms Six terms
Max. % crror Max. % error

-3.0 22911 5256 25.72 -043
-20 22938 5254 25.66 0.12
-1.0 22919 5251 25.59 0.06
0.0 22913 25.52 -0.01
1.0 22913 25.51 -0.02

2.0 22914 25.54 0.03
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significantly below the first frequency for which the tirst-order perturbation did not exist.
Based upon the richness of behavior displayed by the perpendicular case. we probably
should not draw many conclusions about these higher frequencies. Also. for this material.
the frequencies of nonexistence for the transverse waves turned out to be complex. and thus
not physically realizable.

SUMMARY

A perturbation approach was presented and shown to give good results in wave
propagation. [t also predicted qualitative behavior in regions where solutions of the per-
turbation approach did not exist.

The analysis revealed that a discrete spectrum of trequencies (see eqns (132) and (133))
gives rise to large stresses and (clastic) strains. While 1t is well recognized that large
stresses and strains are in violation of the lincar hypothesis. nevertheless important physical
information can be extracted from the results. For example, in the Linear Theory of
Fracture, although the stresses close to the crack tip are very large. important physical
results have been obtained on the bases of tinear elasticity. Be that as it may. the authors
believe that this phenomenon is a form of resonance attributed to the particular layered
structure. These frequencies should be considered by the designer of composite structures
for they may lead to fatures and possibly the premature loss ot a structure.

Finally, the above results may now be used to investigate the cetteets that this type of
wave has on the mechanism of Tatture at pre-existing crucks. This study has recently been
completed and the results will be reported in a toltow-up paper.
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