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Pare |

An eigenfuncuon expansion is developed for the determination of
the exact 3D steess field o the neighborhood of the intersectirn of
the frec edge of o hole and an interface 1 a lammated composite
plare For transversely sotropie laminae. the stress fickd s showy
torpossess aowenk sigularity whose strengthe depends on the material
constants. the filv e arientations of the two adjacont lannnac as vl as
the polar aagle 00 Resalvs for {02 /0071 (0777071 07745 ) and (U 20
are presented and the best and worst fiber orentations are identifivd

Finally, the mterlanunar stresses are computed and the variation
i~ a funcuon of the angle 8 is identified. The circumferential stress
-.g 18 shown to posses a small jJump across the interface. Results 1 -

vs beliavior i the iaterior of each layver are alse give

Part 11

This part deals with the 3D stress field ot a cylindrical fiber which is
embedded into a resin matrix. The composite is then subjected to a uniform
tensile load 6. The strain energy release rate is computed and the criterion is
used to predict debonding initiation at the fiber/matrix interrace The
analysis shows that this failure is most likelv to occur at the free surtace, ie the
region where the fiber intersects a free surface for example a hole, an edge, or
a crack. Moreover, it will occur at approximately (1/10) the load value
required for the same failure to commense at the center cf the fiber length

The results are also extended to include a doubly periodic array of fibers
which are embedded into a matrix. Based on 3D considerations, the stiffness
matrix is shown to increase as the volume fraction of the fibers increases.
Similarly, the stress orr in the matrix is shown to decrease as the volume

rraction of the fibers increases.
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PREFACE

[t was found convenient for development and clarity purposes to divide
the contents of this report in two parts. Part T deals with the 3D stresses
in a laminated composite plate weakened by a circular hole. The wnalvsis
is based on 3D macromechanical considerations. Part 11 deals with the
debouding aspects between a fiber/matrix mterface particularly ju the 1o
eionr where the fiber mterseets a free edges eoge the surface of a hole. Tl
Larter results o which are huased on micromechianical considerations. wre thon
used 111 conjunction with the results of part 1 to predict the critical applicd
load stress which may cause ndtiation of ply delamination.
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Part 1

THE 3D STRESS FIELD ADJACENT
TO A HOLE IN A LAMINATED COMPOSITE PLATE




Abstract

An eigenfunction expansion is developed for the determination of
the exact 3D stress ficld in the neighborhood of the interseetion of
the free edge of a hole and an interface 1 a lanmmated composite
plate. Por transversely isotropie laminae. the stress field 15 showy
1o possess a weak singularity whose strength depends on the material
constants, the fiber orientations of the two adjacent lammnae ax well as
the polar angle 0. Results for [09/907], [07/70%], [07/157]. and [0 /20"
are presented and the best and worst fibcr orientations are identificd

Finally, the interluninar stresses are computed and the variation
as a function of the angle # 1s 1dentified. The circumferential stress
agg 15 shown to posses a small jump across the interface. Results for
its behavior in the interior of each laver are also given.




1 Introduction

Despite carcful design, practically every structure contalns stress coneentri-
tions due to holes. Bolt holes and rivet holes are necessary componeuts for
structural joints. It is not surprising. therefore. that the najority of service
cracks nueleate i the visinity of a hole. While the subject of stress conr
centrations 1s certainly familiar to engineers, the situation s significantly
more complex in the case of hiigh perforimance lnminated composite nate-
rials. The presence of a hole in the laminate introduces significant stress
contributions in the third dimension which create o very complhicated 3D
stiess feild in the vieinity of the hole. Morcover. this complex stare of stress
iy depend on the stacking sequence of the imnnate. the fiber orlentation
of cach lamina as well as the material properties of the fiber and of the
matrix. Ultimately. these stress concentrations form a primary source of
danage mitiation and property degradation particularly mn the prescuee of
cvelic loadines. Recent experintental investigations carried out by Badas ot
al 11936) on graphite epoxy laminates which have been weakened by aen-
culin hole give us a better insight of this damage growth development under
the action of evelie loadings. In general. the progression of this damaged
process may be characterized as (1) debonding along fiber-matnx mterfaces
(111 matrix cracking parallel to the fibers (111) matrix eracking between fibers
(1v) delamination along the intertace of two adjacent laminae with different
tiber orientations and (v) fiber breakage.

Thus. if rational desigus nsing fiber reinforced-resin matrix composite
laminates are to be made. their performance under static. dynamie. fatigne
anud environmental loads need to be predicatable. The first step towards
this goal is the realizavon that the ultimaie failure. ax well as many orhicr
aspeets of the cotposite behavior, s the result of the growth and accunu-
lation of micro-damage to the fibers, matrix and their interfaces. Thus.
it appears that any generally successful model of performance and failure
must incorporate the effects of this damage in some way. This certainly
represents a challenge.

Delamination has long been recognized as one of tlie most mmportant
failure modes in laminated composite structures. The growth of a delamn-
ination may result in a substantial reduction of strength and stiffness of
the laminate. The identification, therefore, of such locations in a compos-
ite structure is of great interest to the designer. Experimental studies by




Pipes eto al. (1973) have shiown that the delaination mode of failare 1
most likely to initiate at the free edges. One conjectures. therefore, thiat the
stresses at the intersection between a free edge and an mterfuce may well
be singular. Indeed. recent analytical investigations (Wang et al.. 1932,
and Zwiers e. al. 1982) on straight free edges show that a stress singularity
exists there for certain types of laminates,

Alternatively. a curved free edge i1s inherently a three-dimensional prob-
lem which presents greater mathematical difficulties. For this reason. past
analvses have been based primarily on finite element methods with standard
finite elements (Raju et al. 1982) as well as elements which incorporute
the stress singularity in the formulation {Rybicki er. al. 19730 Erieson
ct.al. (1934). While such methods can provide us with stress trends 1
the boundary larver region. it is rather dificult to extract from them with
certainty the order of the prevailing stress singularily which 1s present at
the material interface. Morcover, experimental investigations carried out
on straight edges (Pagano, 1974) show that the lanunate stacking sequence
can offect the static strength of the laminates. Similar experimental ob-
servations were also made by Damel et. al (1974) on plates with cireular
Lioles. The subject. therefore. does warrant further investigation.

Recently. the author investigated analvtically the interlininar stresses
at the boundary layver of a hole free-edge but for two isotropic materials
of different material constants (Folias 1988). The analvsis showed that the
stress field there possesses a weak! singularity. whicli singularity deponds
only on the material properties. In this paper. the author extends this anal-
vsis to also include transversely isotropic laminae with a [07/907]. [07/45 ]
as well as other stacking sequences.

2 Formulation of the Problem

Consider the equilibrium of a laminated composite plate which occupies
the space o] < o, |yl < o and |z| € 2L and contains a cylindrical hole of
radius @ whose generators are perpendicular to the bounding planes. namely
z = £2h. The plate consists of laminae made of transversely isotropic
material with a 0°/907/90°/0° stacking sequence. Let the plate be subjected

Hess than 0.33




to a uniform tensile load oy along the y-axis and parallel to the boundine
planes (see Fig. 1).

I the absence of body forces. the coupled differential equations govern-
ing the displacement functions u, v. and w are

O%u O%*u O*u O
Cugz TCugm +Caga +(CutCulzy
(1
O
- ' =
=+ 13+C55)01_0: 0
. .0 . O . O 07
(Coa “‘)O.I'OU +Cln ) +Coms 0y +C HE
(21
a u
- C. 0
+(Chs + n)aﬂl
) 0% O L 0" u
(Cla +Css)m (Cx>+Cn)010~ + Css 5
{3
o° o°
+C;|0“ +C3301 :0

where the C4)'s are the material constants defining a layver which Las its
fibers running parallel to the z-axis. For the next layver. the fibers will be
running parallel to the y-axis and the governing equations will be obtained
from the above by simply interchanging the appropriate coordinates.

The stress-displacement relations for the latyver are given by the consti-
tutive relations

[ 02: ] ( Chn Cpp Ciz 0 0 0 ] ( €rr |
Tyy Cy Cyp Cy3 0 0 0 Cuy
Oz _ Csi Csy Caz 0 0 0 €:2 (4)
Ty: N 0 O 0 CVLH 0 0 ‘ny:
Tos 0 0 0 0 Css O 2¢,:

|l LO 0 0 0 0 Cel L 26

As to boundary conditions, we require that:
at = 42h: the surface stresses must vanish (5)

-1




at 2 = I the displacements and surface stresses mst warels (6

(]

, —
{

at  r=ua: the surface stresses must vanish. {7
Finally, mn order to complete the formulation of the problem. the loading
conditions far away from the hole must be satisfied.

3 Asymptotic Solution at the Interface

The mwan objective of this analysiz 15 to derive an asviptotic solution
for tlie 3D stress field in the immediate viciuity of the region where the
imterface between two laminae meets the frees of -stress surface of the hole,
Thus. guided by a general analytical solution for the equilibrium of a lincar
clistic 1sotropie laver whieli the author has recently constructed, we assune
the complementary displacement field to be of the form

(1) for lamina {07]

W el o L o FH <
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(109

where




(h = =(Ciu+Cs5) [ Copsin® 8 + Coy cos” H} S C+ConCr=Chycos
11

(o = —(Cry 4 Css)Cyy P12
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Gy = C Cis Pl

[11 writing the above displacements. we used a evliudrical coordin-te
svstem and, furthermore, assumed that (r — ) << a. In view of
the above, one, by direct substitution, can show that the governing
equations (1)-(3) arc indeed satisfied provided the unknown function
H satisfies the differential relation
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root.: of the cubic equation

witlh
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where the e e and ey are tunctions of €, and & and repre-on

Ve
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v for kamna (907

NS __(z__ i 0" O'H .

i HO(!‘—(I)'“)T 1*0(/1—:)3 Ar — )il — =0? T
(2 _. f - o - o o'H .
! == ¢ .\'H (‘) D EEE—— ('rl {2 i
( u) 1 o0 —a)? * TOh = 2 O — il — o N

() ; 2 ; o - ot OH
' =9 Gy - + (4 - SRR =
air —a)t Olr —a)0th = = 4° U\//»L’!‘J

-
i20
[11 = —(C‘.""’f‘ C.n )[('m'. 53113 H+C'11 cos” H\ HCL=Cll ('1 R T
(27
[1-_3 - —(C'g:. + C'AH) }C'_','. (2} |
[.'1 = {C-z;s + ColCoy + Cos)sin® 8 — (Cry + Coa i Cossin® @+ Cocon™ :}
RON
(1 = —(Cha+ Cis)Cliy (30)

() = (Coysin® B4+ Clg cos” 8)( Cag sin? 04Cyy cos? )= (Cra+Cun ) sin B eos #
(31

oy

= Co(Coasint 8 4+ Copcos* @) + Ct(Cunsint 6 + Cy cos™ 61 (32)

11




s -l e

[.’j.", = C'.H C';’,,', . { 33

and the function H(r —a. h — z) is of the same fornn as the H of laver
[07]. except that €, €, €5 are now replaced by the appropriate €. €.,

¢y of layer [907].

It remains, therefore, for us to construct a solution to cquation (181 To
accomplish this, we introduce the local, to the corner. stretehied coordinare
svatemn (see Figo 2)01e.

P— A= pCeoso {34

(I —z)
NG

Oreitting the long and tedious mathemataical detadls, the solution to equa-

= psllLe, 1350

ttot: (18010 terms of the Jocal coordinates, is found to be

) 1 re i .
Hipoo)y=p° Apcos(ao) + By sin(ao) + —/ vi(E)sinlato = &) d¢E
a Jo
+(pmth)
(36!
where
(o) = {,43 Cos [(('\ ~2)tan”! 0_»] + B sin [((u — ) tan" e \
1 @ . /)2 =2 (-31 J
+ / Vo) sin(a = 2) (g2 — £)]dE }
(a=2)Jo P

€ ‘

14+ L tan? o)
P2 €2 ng
7= _ (33)
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3
| o
+ Bisin [ (o —4)tan” \/—— tasnion ||}
L€
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2 \ 1+ tan” o
—
-1 €1
o = tan —tan o | . il
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aund al A and B o= 1.2.3) are constants to be determiied from the

bonudary conditions.
Substituting the previously constructed displacement field mro the hound-
a1y conditions:

at o = ()

p = ) (42
AN 3
Wt = ) 44
ol = ol 43)
) = .02 (461
Ty(l) = ry‘f’ (47)
at ¢ = ~g:
13




ol = BN

,fff],) =0 (40,

= (50
at ¢ = E

al =0 51

T,(,f) ={ 130

=0 (33

veoarrive at aosvstenn of twelve algebrate equations. the determinant of
which mmst vanish. This Lutter condition leads to the determination of thie
cliracteristie values oo In general, the values of a depend on the marerial
as well as on the angle 6.

constuats (’U .

4 The Isotropic Case

As o it cheeks we let the laminae he homogencous and isotropic hut of
different material constants. Without going into the mathematical details,
thie material constants of Lnmina 1 hecome:

1‘“ 1
Ciy = Cs = Gy =2 )G ;
11 2 3 1— 2, 1 Lo
C'..“ = C'f,s = C'(,‘.G =G {0D]
) ) . 21y , -
C]'z:c'z:}:clg:——‘— 71, (56)
1—21/1

in view of which the displacement reduce to:
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(l) . 0 G’l [ 0-) 0" -1 OJH - —

ut = s -+ — T
Or—a) |1 =21 [O(r = a) 01,/1—:)*_{()\/1—:;-

(“) (()79 0 G] [ 02 + 02 ] 0.’[{ 'i

. = COS Ny
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? b? 1—-v O°H OH 1
A — o= 2 l) .
! (1{0(1‘—(1)2+0(/1—:)3}{ (1—21/1 0(7‘—(1)*’+0(1/~:1-‘J

TRE
Notice that the #-dependence has totally heen oliminated and thar the
function H now attains the very siple form

H = p" {4, cos(ad) + By sin(ao) + A»cos(a = 2)o
(GO
LBy sinfa — 2)o + Ascos(a —4)o + Basin(a —4)o } + (/"” I

Similarly. the H collapses to the same expression except that the constants
4, and B, are replaced by A, and B, respeetively. The numerical resulis
for this case lead to the same results as those recently reported by Fohas
(1988). Fig. 3. for example. depicts typical values of a.

5 Characterization of the Free—Edge Stress
Singularity

Returning next to the algebraie system (42)-(53). if one considers the case
of a graphite/epoxy layer, with coefficients C;; (Knight 1982)

[ 20.6228 1.0381 1.0381 0.0000 0.0000 0.0000 ]
1.0381 2.2301 1.2301 0.0000 0.0000 0.0000
1.0381 1.2301 2.2301 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.8696 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.8696 |
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then the requirenient of the determinant of the svstem to vauish leads 1o a
transcendental ecquation for the roots a. The only roots of practical interest
are those which he i the interval 5 < Re o < 6. The numerical results
for the 12 x 12 system were carried out i double precision. Omitting
thie long and tedious numerical details, the values of the characteristic o
for [07/9071 {07/70°]. [07/45Y] and [07/20°] interfaces® are shown in Fig.
4. Two mmportant characteristics are worth mentioning. First. the stress
singnlarity 1s a funciton of the material constants Cy;. the angle of sweep #
arzd the fiber ortentation of the respective laminae. Second. the singularity
streneth for amsotropie materials appear to be much weaker than thn
of 1sotropie matertals. The latter may have severe consequences 1o the
dinnage process and to the reduetion of the overall strength i the plate.
As a practican matter, if one plots the max{a — 6) ax a function of the fiba
auele orientation 1 for a [07/.37] interface one can identify the most and
leist desirable fiber ortentations. This is depicted i Figo 5.

Stiilar stress singularity profiles (see Fig. 1) have also been obtudned by
Wiang et. al. (1982) in their pioneering work on straight edees using a ditfer-
cut method of solution. The present analyvsis complements that and shows
thiat, for sufficiently large holes. the results for curved edges will be the
~atne as those obtained near a straight free edge provided laver orientations
1 the second problent are properly chosen to reflect the circumplierential
posttion of a point on the hole boundary and the interface. While this re-
snlt was to be expected. 1t could not be taken for granted. This i because
the latter method represents a desceretes rather than a continuous. approach
andd the ontcome of the Imiting process had to be establizshied. Moreover.
thie present method of solution shows how o 3D analysis can indeed be do
veloped to also nclude this continuous dependence on the angle 6 and thus
provide us with further insight on the construction of such 3D solutions to
transversely isotropie plates with more complicated Haw geometries.

It may further be noted that the macromechanical approach actually
underestimates the velue of the stresses at such regions. For example. if
we examine the local geometry from a micromechanical point of view. e. g.
at 6 = 0° and for a [0°/90°] interface. one notices that the adjaceut fiber
of layer [907] intersects the free surface of the hole boundary perpendicu-
larly. The explicit 3D solution for the stress field in such regions is also

“The results are presently generalized for an arbitrary [0/3] interface.
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known. In partienlar. for a glass fiber embedded mto an epoxy matrix the
stress singularity 1s found to be 0.2489 (Folias 1989, Folias 1990w) wlile
for & carbon fiber embedded mto an epoxy matrix is found to be (0.2315
(Folias 1990bL). The former analysis assumes the fiber to be of an 1sotropic
material while the latter assumes the fiber to be of a trausversely sotropiv
uirterial. Comparing these results with those of Fig. 4 it 1s clear that tlie
stress singularity predicted by the macromechanical theory is indeed under-
extimated. Such information becomes essential for the proper estimation of
thie local damaged zone. This matter will be discussed further later on.

In the case of a [07/907] interface. the profile of the characteristic value
o versus #1s svinetric with respecet to the line € = 457, The same beliavior
was also obtiined by Erieson et. al. (1984) by using finite elements. The
present resultse however, exhibit a stronger singularity than that found
i the above reference. The author attributes this to two factors. First
the material constants were different and secoud 1t 1s rather difficult 1o
obtiin acenrate results for the singularity strength based on finite element
analvses. On the other hand. it 1s impressive mdeed that Ereson etn ol
(1034) as well ax Raju et al (1982) were able to recover the exact profile
as o function of 8 and the relative magnitude.

I order to make o proper comparision with the results of Ericson et. al..
one should use the same material constants, €. as those used in the above
reference. Computing, therefore. the C)'s from the data of the above ref-
ereuce (see Appendix). our analysis gives the characteristic values depicted
m Fig. 6. At 8 = 457, for example, a = 3.9735 or a — 6 = 0.0245. If we
now compare this value with that found by Wang et. al. (1982). for « £45
~tratgle edoe miterface, e a — 6 = 0.0233, we see that the comparison
ix very good. The minor difference is probably due to the small variation
of the C),'s usced depending as to how they are computed. Our results are
hased on the C4)’s shown in the Appendix. The results in the region be-
tween 20 < 8 < 80 compare very well with those reported by Ericson et.
al. On the other hand, for 0 < 6 < 20, our singularity strength is found to
be slightly higher and the characteristic bell shape profile is preserved.

Pagano et. al. (1973) have shown that high tensile 0., stresses are
associated witli the decreased laminate strengths reported by Pipes et. al.
(1973). This observation points to the importance of understanding the
interlaminar stress behavior near free edges in laminates. It is now possi-
ble to compute the interlaminar stresses adjacent to the hole surface. In

17
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particular,

~ 7 fu (B0 Gl G ) (G2

where the fy are rather long and complicated functions of the :m"l(-\' H
and ¢ and the material constants. The plots for ... 7.0 7. for a [0 /00
mterface, are given in Figo 70 Notice that the max 0., stress for a () /00
interface occurs® at 8 = 237, The result is in agreement with tlmt fonnd
previously based on finite elements (Ericson et. al and Raju et al.).

The reader may also note that all the stresses are normalized with re-
specet to a function C(6) which 1s negative and may vary slightly as one
rravels along the direetion of A, This function of theta 1s to be determined
from a separate analysis valid across the thickness of the plate by comparing
the relative o4, stress functions. The analysis 1s presently being completed
and will he reported separately. The present analysis, however. does pro-
vide us with the relative magnitudes of the interlaminar stresses (see Fie.
S).

The results show the shear stress 7,0 to be relatively low throughout.
On the other hand, the normal stess o, appears to bhe donunant o the
range —30° < 6 < 30° bevond which the shear stress 7. now becomes the
controlling stress, 1e. along 307 < 8 < 60" with its maximun occuring at
6 = 45 . A more clear plot for the stress .. at the interface ix given iu
Fig. 9. Finally. Fig. 10 depicets the jump which exists on the stress a.. a-
one moves across the interface. e at ¢ = 0% zm(l ¢ = 07. The maximum
difference oceurs at € = 0 and 1s approximately 27%. In Figs. 11 and 12
we compare the stress a‘g(;] at ¢ = 0= and ¢ =007 and U([»,l:'.u] at o =04 and
o = 400 respeetively

In view of the above, one may draw the following conclusions for a
[0/90] stacking sequence:

(a) In the vicinity of the interface there exists a boundary larver effect
where the stress field changes rather abruptly.

(b) The res ¢ of delamination mitiation is highest at € equal to 23",

The reader should also take into account the fact that (6—a) is a maximum at 0 = 45¢
and that C'(0) is negative. The results are based on data give by Eq. (61). Also at 0 = (),
C)y = =105 “ay.
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(¢) As one moves away from the plane of the mterface, the stress coneen-
tration factor in layer [907] decreases rapidly (see region =20 < A < 20
where debonding along fiber matrix iterfaces are most hkely to -
thste).

() Substantial damage is expected to oceur i the region =407 < 8 < 40 .

{¢) For the given set of material constants G0 a — 6 maxinnun o

tl
6" =6 =i.4/2).

(f) In general, the magnitude of the signularity streneth depends o the

material constants, . aud on the fiber orientation of the two ro-

.
1
spective laminae.

J

(2] As one moves approximately one radius distance away from the hole
surface, the s.ef. (stress concentartion factor) 1s expected to decrense
to within 10% of the value of the corresponding case of a plare withow
a hole (Fohias 1990 izotropie case).

6 Discussion

Delamination at free-edges has been a problem of sigmficant coucern i
the design of advanced fiber composites. The separation of the laminue.
caused by high local interlaminar stresses and low strength along the lan-
inac interface, may result m effective load transfer. reduction i stitfness
and ultimately loss of structural integrity. In this study. the problemn Lias
been mvestigated by treating cach lamina as a homogeneous, transversely
isotropic. material. Thus the micromechanics effects of fiber size are not
included, although a few of these effects. eg. when a fiber meets a free
surface have been reported separately (Folias, 1989).

The analytical investigation of the 3D stress field adjacent to the hole
and in the vicinity of the interfaces of two laminae of [0°/90°], and [07/45°].
and other fiber orientation shows the stresses to be singular. ,; ~ p°7%. In
general, the singularity exponent depends on the material properties. the
corresponding fiber orientations as well as the angle of sweep. The results
provide us with better insight for the proper understanding of interlami-
nar stresses and the effect which they have on the mechanism of failure.
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For example, for isotropic laminac the stress singularity is o rather weak
singularity (< 0.33), while in transversely isotropic laminac it can he of o
much higher order (< 0.99) suggesting., therefore. a greater mfluence in the
damage process.

Pagano et. al (1971, 1974) postulated that throughout the thickness 1t
15 the stress o which 1s the niain cause of delamination for polyimerie bised
structural composites, This observation was based on experimental as well
as analytical evidenee for laminates with different stacking sequences. Our
analyvtical results are consistent with this observtion particularly in the
region where 6 1s small. Alternatively, for larger values of 8 the shear stress
7. plays a much more dominant role on interlaminar failures. Moreover,
in the case of a {07/907] interface delamination 1s most likely to take place
at @ = 237, The strain energy release rate may now be used m conjunction
with the local stress field to predict delamination failures. This marter 1~
presently under mvestigation.

Finally, one may conclude that i1t 1s possible to reduce the hkelvhiood
of the delamination mode of faillure and thereby increase the lanmate
strengtli. This can be accomplished by carefully considering the effects of
the singularity curves, the stress curves. the load direction and the mdivid
ual tiber orientations at cach mterface. Morcover, 1 future applications it
may be possible to chivose the material constants €5 so that the coctticients
of the singular terms of the interlaminar stresses vamsl.

7 Micromechanical Considerations

If one examines the region adjacent to the hole and at the vicinity of the
interface from a micromechanical point of view one notices the arrangenicnt
depicted in Fig. 13(a). More specifically, in one layer the fibers intersecet
the free surface of the hole perpendicularly. while in the other layer they run
tangent to its surface (see Fig. 13b). Locally, however, this represents the
problera of a fiber intersecting a free surface and being subjected to a biaxial
load normal to the direction of the fiber. As part of this investigation. this
problemn has been recently studied by the author and tlie results lor the case
of an isotropic fiber have been reported in Folias (1989). The explicit local
stress field for one fiber may be found in part B of this report. Without
going nto the mathematical details, the local stress field was found to be
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singular. More specifically. the stresses were shown to be of the form

oy ~ ptiTd {631

where the exponent @ in general is a function of the material properties. In
the case of a glass fiber embedded into an epoxy matrix with the properties

G, =35.00GPa vy = 0.22

Gm = 210GP(1 VU = 034

the stress singularity strength is found to be equal to 2 — a = 0.2439. It i
well recogmzed, iowever, that carbon fibers are transversely 1sotropic rather
thian Isotropie. For this reason. the previous analysis has been extended to
also nelude a transversely isotropic fiber (Folias and Li 1990). Without
comg into the mathematical details. the stress singularity for a carbon
fiber b edded into an epoxy matrix was found to be slightly hieher. ie.
2 — a4 =0.232,

Comparing these results with those of Fig. 4 (see Fig. 14) it becomes
clear that the derived stress field adjacent to the hole based on macrome-
chanical considerations is indeed underestimated. Such information is es-
sential if one is to predict failure initiation and local damage degradation
adjacent to the hole.

Thus one may view the process of delamination as the interfacial crack-
e of the last row of fibers whicli interseet the free surface of the hole (see
Fig. 13b which corresponds to = 90” or 8 = 0 1§ the figure in flipped).
Recalling the results of the surface displacement of the problem studied by
Penado and Folias (1989, see Figs. 14 and 15 of that paper). one concludes
that debonding is most likely to take place at the lower side of the fiber.
c.g. sce Fig. 13b. It would be of great practical interest if one could pre-
dict a priori the critical applied stress oy which may cause a fiber/matrix
debonding to initiate and subsequently propagate and become a full size
delamination crack (see Fig. 7 of Part II). In order to accomplish this, we
use the results of part I, in particular equations (29b and 33) and apply
them at the position® 8 ~ 0. Thus

*Notice that ¢,, is & the same for 0 < § < 25.
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wlhiere the first term is due to the periodicity of the fibers. the third rerm is

the thickness of the layer. @y the radius of the fiber. 412 is the surface enerey,
and G, the shear modulus of the matrix and 2.3 the angle of debond. Nexr.

ing for the ceritical stress gy one finds

A/'l?("lu h 112 g
~._(_ .

(70) % 6.180 x 1077, .

2as3 a
Assuming a fiber diameter of 0.001cm. a matrix shear modulus of 2.1G P,

and w surface energy of 270J /0 for well-bonded interfaces, one finds

1
V23 a

that.

[S]
o

due to the local stress concentration factor. « is the radius of the Loleah is

1 )
(9)r = 2.00—=(— """ M DPu. LGO

For Poorly Louded mrerfaces the constant is approximately one hadt of




Appendix

From Ericson et. al data (1984)

EH = IBSGP(I E = E;u = 1’1.:)(1'1)(1

G =G =Gn=59GPu

iy = Iy = 17y = ).21.
We comnpute:

('11 — 139()3}1

C', = 3.9002

<

C1:5 = 3.9002

~
t

&«
[
Nt
-

Cpy=Cis=Con =59

i view of which our program then gives:

4 a

0.1 ] 5.9440
10 | 5.9469
15 | 5.9698
20 | 5.9714
30 | 5.9739
45 | 5.9755
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FIGURE CAPTIONS
Laminated plate of arbitrary thickness with a cireular Lole.
Detinition of local coordinates at the mnterface.
Singularity strength for isotropic laminue.
Singularity strength for transversely isotropic laminae [07/907].
Best and worse fiber orientations.

Singularity strength for transversely igotropic laminae 107 /00° hased
on Eneson et. al. data.

Interlaminar stresses for a {0°/907] interfuce.
Interlaminar shear stress ratio for « [07/907] wterface.
The mterlaminar stress g., vs 8.

The stress concentration factor for o = 0% and 07,
The stress at[;:;.] for ¢ = 07 and o = 90"

The stress a([:(’?“] for ¢ =07 and o = =90 ".

(a) Geometrical representation.

(b) Local geometry based on micromechanical considerations. {Po-

sition 8 = 907)

Comparison of stress singularities.
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Fig. 1. Laminated plate of arbitrary thickness with a circular hole.
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Part II

ON THE PREDICTION OF FAILURE AT A FIBER/MATRIX INTERFACE IN
A COMPOSITE SUBJECTED TO A TRANSVERSE TENSILE LOAD




ABSTRACT

This paper deals with the 3D stress field of a cvlindrical fiber which is
embedded into a resin matrix. The composite is then subjected to a uniform
tensile load 6p. The strain energy release rate is computed and the criterion is
used to predict debonding initiation at the fiber/matrix interface. The
analysis shows that this failure is most likely to occur at the free surface, ie the
region where the fiber intersects a free surface for example a hole, an edge, or
a crack. Moreover, it will occur at approximately (1/10) the load value
required for the same failure to commense at the center of the fiber length.

The results are also extended to include a doubly periodic array of fibers
which are embedded into a matrix. Based on 3D considerations, the stiffness
matrix is shown to increase as the volume fraction of the fibers increases.
Similarly, the stress orr in the matrix is shown to decrease as the volume

fraction of the fibers increases.
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INTRODUCTION

It is well recognized that fiber composite materials are very attractive
for use in aerospace, automotive and other applications. These composites
consist of relatively stiff fibers which are embedded into a lower stiffness
matrix. Although in most designs the fibers are aligned so that they are
parallel to the direction of the external loads, it is almost impossible to avoid
induced transverse stresses which may lead to premature failure of the
laminate. An excellent example of this is the case of a filament wound
pressure vessel in which the presence of a curvature induces bending as well
as transverse stresses (Folias, 1965). However, in order to be able to predict
their failing characteristics, particularly in the neighborhood of free surfaces
such as holes, edges etc., it is necessary to know the local stress behavior from
a 3D point of view.

An overall summary of some of the results, which are based on 2D
elasticity considerations can be found in the books by Hull (1981) and by
Chamis (1975). In their pioneering work, Adams and Doner (1967) used finite
differences to solve the problem of a doubly periodic array of elastic fibers
contained in an elastic matrix and subjected to a transverse load. Their
results reveal the dependence of the maximum principal stress versus the
constituent stiffness ratio (Ef/Em) for various fiber volume ratios. A few
years later, Yu and Sendeckyj (1974) used a complex variable approach to
solve the problem of multiple inclusions embedded into an infinite matrix.
Their results were subsequently specialized to cases of two and three
inclusions thus providing us with futher insight into the strength of the
composite. On the other hand, the separation of a smooth circular inclusion
from a matrix was investigated by Keer, Dundurs and Kiattikomol (1973). By
using finite integral transforms, they were able to reduce the problem to that
of a Fredholm integral equation with a weakly singular kernel. Thus,
extracting the singular part of the solution, they were able to reduce the
remaining problem to a simpler one which lends itself to an effective
numerical solution. Their results are very general and are applicable to
various combinations of material properties and loads.
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In this paper, use of the local, 3D, stress field will be made in order to
examine the dependence of the stress o,r, in the matrix, on the ratio (Gf/Gm).
The strain energy release rate will then be computed in order to predict crack
initiation at the fiber/matrix interface. Particular emphasis will be placed in
the region where fibers meet a free surface as well as at the center of a fiber’s
length.

FORMULATION OF THE PROBLEM

Let us consider a cylindrical fiber of homogeneous and isotropic
material, e.g. a glass fiber, which is embedded into a matrix of also
homogeneous and isotropic material.

Futhermore, we assume the matrix to be a rectangular plate with finite

dimensions 2w, 2/, and 2h as defined by fig. 1. For simplicity, we assume
w /
7 >8and; > 8. Such an assumption will guarantee that the boundary planes
x =% w, and y = £/, will not effect the local stress field adjacent to the fiber.”
Thus, mathematically, one may consider the boundaries in the x and vy
directions to extend to infinity. As to loading, the plate is subjected to a
uniform tensile load 64 in the direction of the y-axis and parallel to the
bounding planes (see Fig. 1).

In the absence of body forces, the coupled differential equations

(i)

governing the displacement functions u;”’ are

1 2 i
1-2 vj aexi V2 W) = 0i=123 =12, (1)

(2)

1

(1)

. "and u;”’ represent

where V2 is the Laplacian operator, vj is Poisson’s ratio, u

the displacement functions in media 1 (matrix) and 2 (fiber) respectively, and

d ui(j)

e) = 3G i=123; j=12 (2)

The stress-displacement relations are given by Hooke’s law as

* This can be seen from the results which were recently reported by (Penado and Folias (1989).
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where Aj and G;j are the Lame’ constants describing media 1 and 2.
THE SOLUTION FOR ONE FIBER
A. Region where fiber intersects the free edge

This problem was recently investigated by the author (Folias 1989) who
was able to recover, explicitly, the three dimensional stress field adjacent to
the surface of the fiber® . Without going into the mathematical details, the
displacement and stress fields for the matrix are given in terms of the local
coordinate system (see fig. 2) by:

(i) displacement field:

ull) = Ap p-1sing {B [2 (1-v1) cos (a-1)9 - (a-1) sino sin(a-2)0] (1)

- (o+1) [(1-2v1) sin (a-1)¢ + (a-1) sino cos (x-2) 0]}c05(2n6)

v(D) = Ap p®1 cosB {B [2 (1-v1) cos (a-1)6 - (@-1) sino sin(a-2)0 ] (5)

- (o+1) [(1-2v1) sin (a-1) ¢ + (a-1) sing cos ((x-2)¢>] }cos(Zne)

w(D) = A, po-l {B [- (1-2v1) sin (@100 + (a-1) sing cos (@-2) o ] ®

- (o+1) [ 2 (1-v1) cos (a-1)¢ + (0-1) sing sin(o+2) ¢ ]}cos(2n6)

(1i) stress field:

c,(rl )< 26 (a-1) Ap po-2 {B [ 2 cos (@-2)6 - (@-2) sine sin(a-3)0] ()

- (a+1) [sin (a-2)¢ + (a-2) sind cos (a~3)¢] } cos(2n9)

(1)

1
oge =4v1G(D) (0-1) Ap p®-2 {B cos (0-2)¢ - (ou+1) sin(a-z)o} cos(2n8) (8)

* A similar analysis for a transversely isotropic fiber meeting a free surface has recently been
completed and the results will be reported soon.
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o, =2G(1) (a-1) Ap p&-2 {B (@2 sing sin(@-3)0 (9)

+ (0+1) [(a-Z) sing cos (a-3)¢ - sin(a-2)¢ ]} cos(2n0)

12) =2G) (a-1) An p%-2 {B [sin (@-2)¢ + (0-2) sino cos (@-3)10]  (10)
- (0+1) (@-2) sind sin(a-3)¢ }cos(Zne)
1
Tfé)= T((az)= 0, (11)-(12)

where n = 0,1,2,... and B is a function of the material constants and Ap is a
constant to be determined from the boundary conditions far away from the
fiber’. In general, the characteristic value of o depends on the material
constants of the fiber as well as of the matrix. A typical example is given in
fig. 3.

Upon examination of the stress field, the following remarks are worthy
of note. First, the stress field in the neighborhood where the fiber meets the
free surface is signular. Moreover, in the limiting case of a perfectly rigid
inclusion this singularity strength reaches the value of 0.2888. Second,

(1 (1) (1)

boundary conditions ¢,,’, 1., and Tyz
odd functional behavior in ¢, which points to the presence of a boundary
layer solution as one approaches the free surface. Third, on the free surface
the radial stress is (1/vy) times the circumpherential stress. This suggests,
therefore, that if a crack was to initiate, it would propagate along, (or very
very close to) the fiber/matrix interface. Clearly, the occurance of either
adhesive or cohesive failure will depend on the relative strengths of the
interface, of the fiber, and of the matrix. All things being equal, the analysis
shows the stresses to be highest at the interface, thus pointing to an adhesive

type of failure.

are satisfied as a consequence of the

* for one fiber n=0,1., while for a periodic extension n=0,1,2,..
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B. Interior region

The, 3D, stress field for this region has also been recovered by Penado
and Folias (1989) and the results for various (a/h) and (G2/G1) ratios may be
found in the literature. The results have subsequently been extended (Folias
and Liu, 1990) to also include a layer of modified matrix arcund the fiber.

Thus for v1 = 0.34, v2 = 0.22 and (G2/G1) = 16.67 the stresses Og)and Oé)le) atr =

a and for all |zl < h are given in figs 4 and 5 respectively. Finally, fig. 6 (for

A=0) shows the variation of the stress cg)as a function of the ratio (G3/Gy).

INTERFACE FAILURE CLOSE TO THE FREE SURFACE

A closer inspection of the local stress field shows that a crack is most
likely to initiate at the location 8 = 0 and subsequently propagate along the
fiber/matrix interface until it reaches a nominal value of the arc length
beyond which it will advance into the matrix. Moreover, once the crack
begins to propagate, it will simultaneously propagate along the interface and
parallel to the axis of the fiber (mode III). Thus, crack propagation will be
governed initially by a mode I failure and subsequently by a combination of
mode I and mode III failure. It is now possible for us to examine the first
stage of the failing process and to obtain an estimate of the debonded arc
length as well as an estimate of the critical transverse stress for crack
Initiation.

As a practical matter, we will consider the special case of a glass fiber
embedded into an epoxy matrix with the following properties

G1 = 210GPa vi =0.34 (13)
G2 =35.00 GPa v2=0.22.

Without going into the numerical details, the constants o, A and B for this
example are found to be":

* The constant A has been determined by comparing the displacement w(l), as well as the

M
strcss o, at 0 =0, atz=hand for (a/h) = 0.5 with the work of Penado and Folias (1989).
A=Y A,
n
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a=17511, G A a2 =~ 06349 65, B=21302, (14)
where 6 now has the units of GPa. Thus, from equations (7)-(12) one has

(Jat ¢=0and8=0:

o) ~ 40633 o ({?)O'z‘”g (15)
(1) 9))

096 =Vl G v (16)

(i)at o=n/2and¥=0:

o) _ 19163 0 (P2 )}0-2489 (17)
rr Ol h /
(1) (1)

ogg = 04844 G| (18)
(1) _ (1)

) = -029300,, . (19)

It is clear now from equations (15) and (16) that crack failure is most
likely to initiate and subsequently propagate along the fiber/matrix interface
rather than perpendicular to it. Similarly, equations (17) and (19) suggest that
failure in the direction parallel to the axis of the fiber is dominated first by a

mode I and second by a mode III type of failure. It may also be noted that

(1)
Orr
surface of the fiber.

Finally, based on 3D considerations, the stress field away from the
edges, z = th, and in the interior of the plate was shown to be non-singular
(Penado and Folias 1989, Folias and Liu 1990) with®

attains a maximum at 8 = 0 and descreases as one travels along the

0((919) = (0.4090 053) = 0.4090 (1.4281 0p) = 0.5841 065, at 6 =0 (20a)

" These results are valid for a ratio of (a/h) = 0.05 and subject to the assumption that (% )>8

and (//a) > 8 in which case the end boundaries in x and y have insignificant cffects on the
local to the fiber stress field.

8
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atr =aand z = 0. Comparing this value with that of the corresponding plane

strain solution

oo = I_VV% o\l =0515205, ato=0 (20b)
one notices that it is approximately 13% higher in value due to the presence
of the stresses in the third dimension.

It is now possible for us to obtain an approximate criterion for de-
bonding along the fiber/matrix interface based on Griffith’s theory of fracture.
Thus, following the work of Toya (1974), if one assumes the presence of an
interface crack of length 2aP and if futhermore takes into account the local 3D
stress field, then Toya’s result may be written as

(1/16) (1.13370,)2 k a A1 (1+4 €2) 1t No Nosin Bexp [2¢ (m-p)] =27, , (2D

12

where

1+k2
= 1+ko + (1+k1) (G2/G1)

k

3-4vj for plane strain

= 3-Vj
ki -~ for plane stress (23)

1+ vi

~ k

1= 77 L1 +k1+(1+ 1/G2 2

Al= 7o {1411+ a4 G760 ] 24)
1 [1+k2 (G1/G2) 1

= 4 s Grey 4 @5)

1 2(1-k) 1+k2(G1/G2) .

No=Co-¢ -~ GGy &P [ e-1)] (26)
1- (cos B + 2¢ sin B) exp {2e (n-B)] + (1-k) (1 + 4€2) sin2

o - B B exp [2¢ (n-p)] mp

2-k-k (cos P + 2e sinP) exp [28 (m - B)]
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where Np is the complex conjugate of N, ¥;5 is the specific surtace energy of

the interface and B the angle of debonded interface (see Tz 7 .vhile it is
true that this type of approach does not provide results for the exact initiation
of an interface crack problem, ie from a condition of perfectly bonded interface
to that of a partially debonded interface, it does, however :ovide a very good
first approximation to this complex phenomenon. The author is well aware
of that and is presently continuing his work along such lines and with some
promise.
Upon rearranging, equation (21) can be written in the form’

2Y1p
5 = (1.2853) F (vi,Gi; B7, (28)
a

Co

where F is a function of the material constants and the angle [ of the
debonded interface. A plot of this equation for conditions of plane stress, as
well as of plane strain, is given in Fig. 8. In both cases the maximum occurs at
B = 60°. Beyond this angle, the crack will gradually curve away from the
interface and into the matrix.

In order for us to obtain an estimate for the critical stress for crack
initiation we let § — 0%, ie very small but not zero. Thus, for our example

(co)r V2aP = 1.8186 1/712 G1; atz=0. (29a)

On the other hand, in the neighborhood of the free surface, the applied stress
is much higher because of the singularity presence. In order to overcome this
difficulty, one may average the local stress over a distance equal to 10% of that
of the radius, ie.

* It should be noted that at the crack ends the stress field oscillates and that some overlap of
the crack faces takes place. This matter is well recognized and has been documented by
Williams (1952), Rice et al. (1965) and England (1965). The region wherce this occurs, however,

is so small (less than a x 10-3) that eq. (28) provides a good approximation.




1 (0la 02489 ]
(GO)fo = (0.1a) JO (4.0633 00) (%) dg (30)

= 9.5958 ¢¢ .
Thus'

(9.5958 °0)cr V2ap = 1.8146 /ylz G1; atz=%h (29b)

Combining next egs. (29a) and (29b) one finds

(0o)er at z=h

= (.10, (31)
(6o)er lat z=0

ie. the critical loading stress which may cause failure close to a free surface is
approximately (1/10) of the critical stress required to cause the same failure at
the center of the fiber’s length. Thus, all things being equal, a crack will
initiate at the free surface and will propagate along the periphery of the
fiber/matrix interface as well as parallel to the axis of the fiber.

Focusing next our attention on the advancement of the crack along the
periphery of the fiber we conclude that the crack will advance itself to a
cricital angle of B = 60°. Once the crack has reached” 8 = 60°, the local
geometry is similar to that of a hole. This problem has also been investigated
for the, 3D, stress field close to a free surface (Folias, 1987), as well as in the
interior of the plate (Folias and Wang 1986). Without going into the details,
at z=h, it was found that

o(l)
98 - (1+v1) = -134, (32)

suggesting, therefore, that the failure now is governed by the stress céé) which

attains its maximum value at 8 = n/2. Thus, the crack will begin to curve into

* The reader may notice that the right hand side of equation (29b) differs from (29a) because it
is based on plane stress.
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the matrix until its direction becomes perpendicular to that of the applied
load.

PERIODIC ARRAY OF FIBERS

The previous results were based on the presence of one tiber only. Itis
now desirable to extend these results to also include a doubly periodic array of
fibers which are embedded into a matrix. For this reason, we assume, a
periodic arrangement of the type shown in fig. 9. Following the same method
of solution as that of Penado and Folias (1989), one finds® at z=0 the stresses

(1) and cel) for v1 = 0.34, v2 = 0.22 and various (G2/G1) ratios, shown in figs.

6 and 10. Two observations are worthy of note. First, beyond a certain ratio of
(G2/G1) the stress 0(1) reaches an asymptotic value. Such trend was also

found by Adams (1967) based on 2D considerations. Second, as the volume of
fibers increases the stress og) decreases by as much as 40% (see fig. 11).

Finally, in fig. 12 we plot the stiffness ratio versus the fiber volume fraction
73

Returning next to the strain energy release rate, equation (21) is still a
good approximation provided that op is replaced by the following effective

load stress

(o(l)l ]
=<‘ﬁsl——> O,forz-—O. (

(5 =0

Unfortunately, in order to obtain a similar expression for z=h, one needs to
establish whether the order of the singularity strength increases as adjacent

(OS]
~—

)

(c,)

effective periodic

" The results are valid for all fibers which are at least four diameters away from the bounding
planes x =+ wand y = £/ The solution and the details are similar to thosc discussed by Penado
and Folias (1989) except that one now has c0s(2n6), n= 0,1,2,..., where the remaining unknown
cocfficients are determined from the boundary conditions of the geometrical cell
configuration. The present results, are based on n = 0,..., N = 20 terms which provide accurate
results in the region |z/h|< 1/2. However, many more terms are needed in order to obtain
accurate results particularly in the neighborhood of z = £ h. We are presently woiking on this
and the results for this problem, as well as for the problem of stresses due to temperature
missmatch, will be reported in the near future.
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fibers approach the fiber in question. In view of some previous work the
author conjectures that this may very well be the case. Thus, the following
fundamental questions come to mind. How close must adjacent fibers be
before the order of the singularity strength is affected? Does a certain
separation distance or a certain periodic array of fibers exists which leads to an
optimal state of stress? Based on 3D considerations, Penado and Folias (1989)
have shown that when fibers are placed four fiber diameters apart, center to
center, practically all fiber interactions have subsided, including those at the
free surface z=h. The author suspects, however, that when fibers are placed
two diameters apart, center to center, the singularity strength will be affected.
Naturally, this is a conjecture that needs to be investigated.

CONCLUSIONS

Based on a 3D analytical solution, we have shown that fiber/matrix
debonding is most likely to occur close to a free surface. Thus, regions where
fibers intersect free surfaces, eg. holes, cut outs, edges, cracks etc. are potential
trouble spots. Moreover, the strain energy release rate (eq. 28) may be used to
predict crack initiation in the center of the fiber length (eq. 29a), as well as at
the free surface (eq. 29b). Moreover, fiber/matrix debonding at a free surface
will occur at approximately (1/10) the load value required for the same type of
failure to occur at the center of the fiber length. Such information on crack
Initiation is particularly important for the proper understanding of damage
evolution.

Alternatively, the strain energy release rate for a periodic array of fibers
of the type shown in fig. 9 may, at z=0, be approximated by eq. (28) in
conjunction with eq. (33). A similar expression applicable to the
neighborhood of the free surface requires that one must first establish
whether the strength of the singularity is indeed affected as the fiber volume
increases. For _Vf < 0.05, however, it has been shown" that no such interaction
effects are present.

As a final remark, we note that if the bond at the interface does not fail
the analysis shows that there exists a stress magnification factor in the resin
which attains a maximum between the fibers. This maximum stress

* See Panado and Folias (1989).
13




magnification occurs along the line 6 = 0° and at a distance r = 1.2a from the

center of the fiber™ .
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FIGURE CAPTIONS
Geometrical and loading configuration.
Definition of local coordinates.

Singularity strength for isotropic fiber and isotropic matrix
versus G2/Gj.

Stress oglr)at r=a, 8=0 and for v] = 0.34, v2 = 0.22 and (G2/G1) =

16.67, accross the thickness.

Stress oéle) at r=a, 6=0 and for v1 = 0.34, v2 = 0.22 and (G2/G1) =
16.67, across the thickness.

Stress cg)at r=a, 0=0 and for v1 = 0.34, v2 = 0.22, versus the ratio

(G2/G).
Fiber/matrix interface crack under transverse loading.

Strain energy release rate for plane stress and plane strain
conditions for v1 = 0.34, v2 = 0.22 and (G2/G1) = 16.67.

Periodic array of fibers of length 2h, embedded into a matrix.

Stress cl{l)at r=a, 0=0 and for v1 = 0.34, v2 = 0.22, versus the ratio

(G2/G1D.

16.67 vi =034, v2 =

Stress o(()le) at r=a, versus Vg, for (G2/G1)
0.22.

Stiffness ratio versus V§ for (G2/G1) = 16.67, v1i =034 and v2 =
0.22.
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Geometrical and loading configuration.
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Fig. 2. Definition of local coordinates.
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Fig. 3. Singularity strength for isotropic fiber and isotropic matrix
versus G2/Gj.
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Stress oéle)‘at r=a, §=0 and for v1 = 0.34, v2 = 0.22, versus the ratio

(G2/Gy).
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Fig. 12 Stiffness ratio versus V¢ for (G2/G1) = 16.67, v1 = 0.34 and v2 =
0.22.




