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Abstract— Using an integral formulation, the three-dimensional flexure problem of an elastic plate
bounded by the surfaces - = +4 and containing a through-the-thickness finite crack is reduced to
a dual integral equation, which in turn is solved for the unknown function. The analysis shows that.
in the interior of the plate. only the stresses ... 0,,. 0., and t,, are singular of the order (1/2) and
that the angular distribution is precisely the same as that of the corresponding stretching problem.
Furthermore, the stress intensity factor is shown to be a function of z as well as a function of the
crack to thickness ratio (¢/h). The two-dimensional solution is also reduced as the Poisson’s ratio
v—0,

1. INTRODUCTION

It is well known that the classical theory of bending of thin elastic plates permits the
satisfaction of fewer boundary conditions along the edges of a plate than can in reality be
prescribed. For instance, along a free edge, only two boundary conditions may be enforced,
i.c. the simultancous vanishing of the bending couple and the equivalent shear (Kirchhoff,
1850). A more refined, yet still approximate theory was introduced by Reissner (1945)
who, assuming that the bending stresses are distributed lincarly over the thickness of the
plate and using Castigliano’s thcorem of least work, was able to obtain a system of equations
which take into account also the transverse shear deformability of the plate. This theory is
free of some of the limitations of the classical theory for it permits the satisfaction of three
boundary conditions along the edge of the plate.

Applications of Reissner’s bending theory have been made to certain classical problems
including that of the stress concentration at a circular hole in an infinite plate under flexure
and torsion. It was found that, for a wide range of values of the ratio of the diameter of
the hole to the thickness of the plate, the numerical results differ considerably from those
obtained in the classical theory. However, as Reissner remarks, an exact estimate of the
accuracy of the numerical results is not possible unless the exact three-dimensional solution
is known.

In view of some recent developments (Folias, 1975), the author in this papert discusses
the bending of the elastic plates from a three-dimensional point of view. Specifically,
Navier’s equations for the bending of a plate containing a through-the-thickness plane
crack are solved.

Considerations of the bending of thin plates containing cracks have been reported by
Williams (1957) and Knowles and Wang (1960). In the former reference the bending has
been studied on the basis of classical bending theory, and in the latter on the basis of
Reissner bending theory.

2. FORMULATION OF THE PROBLEM

Consider the equilibrium of 2 homogeneous, isotropic, linear elastic plate which occu-
pics the space |x| < oo, |¥| < %, |2| < A, and contains a plane crack in the x-z-plane. The
crack faces, defined by |x| < ¢, y = 0%, z < & and the plate faces |zl = h are free of stress

1 The contents of this paper are based on a report which the author completed in 1975.
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Fig. 1. Geometrical and loading configuration.

and constraint (see Fig. 1). The platc is to be loaded by a constant bending movement AL,
at points far away from the crack.

In the absence of body forces, the coupled differential equations governing the dis-
placement functions w, v and w are:

m Jd J ¢ 047 0 \
m3\Gx a2 )0 TV o) = (1)-(3)
where

u Jdv  Ow
—_— + P

¢
0=— -
dx * dy oz

4

V?is the Laplacian operator, m = 1/v and v is Poisson’s ratio.
The stress-displacement relations are given by Hooke’s Law as:

Ju { u (v
=2G| —+ ——|.... = P -
0 cx G[ax + m—z] . Ty G[Oy + L._J. (5)-(10)

As to boundary conditions, one must require that at

xf<c, y=0* [z|<h: t,=1.=0,=0 (1
zZl=h: 1.=1.=0.=0 (12)

IM
r-wx: t,=1.=0, o,= 5 -7;39 . (13)

In addition to the boundary conditions (11)-(13) it is required that w, v, w and all their
partial derivatives be continuous for all x, y and |z| <€ & except for the points on the plane
c<x<c¢y=0|z<h
It is found convenient at this point to seek the solution to the crack plate problem in
the form
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u=uP +u etc.
where the first component represents the usual ‘undisturbed’ or "particular’ solution of a

plate without the presence of a crack. Such a particular solution may easily be constructed
and for the particular problem at hand is

(P) 3m—l 1"[0
4m+th
(P)_ém_l_‘!{ﬂ-
dm+1AHG
3m—1 My, , . 3 1 M.,
Wy DT vt - — =z 4
" Smri G V)T i mFi G (14)

3. MATHEMATICAL STATEMENT OF THE COMPLEMENTARY PROBLEM

In view of eqn (14) we need to find three functions #'“(x,y,z). v*'(x,y,z) and
w(x, v, 2). such that they satisfy the partial differential equations (1)—(3) and the following
boundary conditions:

. IM,
at|x] <c, y=0t, |zl <h: 0 =1t0=0 &=~ 5 5T (15)
atlzl=h: W@ =1=0¥=0; (16)
at [y =0% and all x: ¢ =7 =0; (17
atr—oo: 0 and w must vanish. (18)

4. METHOD OF SOLUTION

In constructing a solution to the system (1)—(3) we use the method introduced by Lur’e
(1964), which leads to the following ordinary differential equations with respect to the
independent variable -

d2ut , mo o\ m ) m dwt
dz7 * (D-+ nz—'_’m)um+ (m—20'62>vm+ <m—7a ) dz = 0 (19)

d2t . m m ”n dw'?
) L L A CCY PRI

2m—1) &t du®® dp®
(m—-1) u2 + m (3 u + _m_(72 dv +DW9 =0, 2n
m=2 z m— d: < :

where the symbols of differentiation

o0? é:
Frei oy*

]
]

J 0 "
5’_“.' a =a_ D

¢

are to be interpreted as numbers. Integrating the above system subject to the values which
the complementary displacements attain on the middle plane z = 0, i.e.
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(18] o) Jda)

wro_ RIS K I du . de , dn
=0, t“7'=0, w''=w,, — =u, -
d-

d: d-

after some simple calculations one has

o sin(zD) | m sin (zD)  z cos (zD) ,
ST T 4(m-1) D D’ €10

O = sin (zD) o m sin (D) _ T cos D) o0
h D v d(m-—-1) D' D* 0

1 = cos (zD)w m Z sin (:D)H,
w' = cos (z:D)w, Jom= D) D o

’ ’ - ’ hd
0y = & up+ ey —Dowyg,.

= Ugy. e = 0.

0,

22)

(23)

(24)

(26)

It may be noted that ), ¢, and w, are arbitrary functions of x and y to be determined.
Morcover, in interpreting the operators cos (zD), and (1/D) sin (zD), onc must expand
them in powers of (zD)*, where the differential operators (z12)*" now act on the unknown

functions wiy(x, v). vo(x, v) and wo(x, 1).

Using the expressions (23) (26) and the formulae for Hooke's Law, the stresses on

any plane perpendicular to the z-axis become

! zsin (D
! = cos D) (uy +0 wy) — " sin (zD)

0.0
G 2im—=1) D 1%

m z sip (:D)

G Ti‘_) = COs (:D)(l':, + 03“'”) - zi;,l 7.—7] ) D - (j:()i,
! m—2 sin (zD) ™
- ‘_‘," = =2 1 bt v— - . e ! e = 08 (2D
oL D sin (zD)w, [2("" I D + A=) cos (zD)

and boundary condition (16), therefore, takes the form

diwg+dirg+dw, =0
d:|ll’g+dzzl'b+d33¥v0 =0

dyug+dyaeh +dyw, =0,
where the d,; denote the differential operators

mh  sin (hD) e

i

1

d,, =cos (hD) - -

2m— l“) D
mh  sin (hD)

= R e,
di: 2m—1) D crez

il sin (D)

d” = COS (/ID)(?l + ;’T?;l:r) ‘*"’D‘—"-’ D:E‘

(27

(28)

]Uu (29)

(30)
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mh  sin (kD)
da = " 2m-1) D 616
mh  sin (hD) _,
d., = cos (hD)_?_(m—l) p ¢
mh  sin (kD) .
d.; =cos (hD)63+2(m_l) D D-¢,
m=2 sin (hD) mh
ds -[2('"_” D +2(m‘l)cos (hD):,El
m—2 sin (hD) mh :|
da: '[2(m-1) Dt 2em-1 O D) |
—3m mh s
d_;) ( l) ————D sin (,ID)+ (—"’*‘l—)D" Cos (hD) (31)

Using now the fact that the differential operators ¢,. ¢,, D obey the same formal rules
of addition and multiplication as numbers, one can deduce that

1y =% (x.p)
ry = (Y »)
wy = 1,(x, ¥), (32)

where the unknown functions i, %2, %, satisfy the differential relations
O =0, i=1273 (33)

and the operator Q is defined as?t

di diy dyy _mh o sin (24D)
Q=|d, dyn duy|= —W

- m—1

] cos (hD). (34)
d.‘l d]! d,U

By expanding the operator Q in powers of (AD), one notices that the first term leads to the
governing equation of classical bending theory while the inclusion of the second term leads
to the well known Reissner bending theory.

It remains, therefore, for us to construct a solution to the differential equations (33),
which in turn will give us wy, v and wy,.

Using a Fourier integral transform, we construct next the following integral rep-
resentations for wy, vy, w, which have the proper symmetrical behavior at infinity.}

uy(x,y*) =J' {(p +1y10,) e + Z R e=VF =i 4 Z RYCIPSNA +=.m} sin (xs) ds
0

(35)

t It may be noted that this is a necessiry and sufficient condition for the system (30) to have a solution, The
question of completeness will be addressed at a later time.

{ By dircct substitution, one can c-nily verify that eqns (35)-(37) represent solutions to the differential

equation (33). First computc D uj, Du;”. etc. and then sum up the resulting series. The question of completeness
will be discussed later.
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{(P:_J(_!'VIQ:) e—:|r!+ Z R(VZ) e—\:};’zgv:

v= |

ro(xv®) = «T—J

0

+Y S7en ‘—’:“} cos (xs) ds  (36)

n=0

wole D) =£ {(PH'I}'IQ;) el TR en

ves |

+3) S0 e‘?j’_‘:“‘} cos (xs) ds  (37)
n=

where the + signs refer to y > 0 and y < 0 respectively.

2n+i\n
Az, = (‘-74> il (" = 0, I. 2. .. )

and B, are the roots of the equation
sin (2f.h) = (2B,h). (38)

Equation (38) has an infinite number of complex roots which appear in groups of four, one
in each quadrant of the complex plane and only two of each group of four roots are relevant
to the present work. These are chosen to be the complex conjugate pairs with positive parts.
The only real root f§, = 0 must be ignored.

Finally, for the expressions (35)-(37) to represent the solution of the system (30) one
must furthermore require that the unknown functions P, Q,, R!", SV etc., must satisfy
the additional relations

0:= —Qu 0 = Qi S(PL+P = Qi PimsPy= = TRNO, (39)-4)
S =0, 4¥=S, SV =- —’éiffz- S, (43)-(45)

R =R, R = —J;?E R, (46)-(47)

[1 + 2—_’-"37'; cos® (/;,/,)]R:-” - 3':;__22 [1 + "-"jé cos (,Byh)] lf (48)

In order to facilitate our subsequent discussion, it ts found convenient at this stage to
summarize our results. Defining

r = \/s‘-;/};R 'sin (3.h) (49)
"T Bm=2—mcos® (B,  B.h

one may now write the complementary displacements and stresses in the forms below.
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(1) Complementary displacements

u‘“ar {[ (Pl+mg)+'< )SQ] -

+ Z 3 cos (BWU(2m—2—m cos® (B,h)) sin (B,2)+mB,= cos (B,2)]

@~ ¥ +B B ‘Z“ S, . (a 3 £52+1~2 e*—v;‘*‘&‘!}‘f} “in (x5) ds (50)
\/S: +ﬂf n=0 Xy N

o - :J; {[ (%"’Pl 'le)“' 2"?:[1 %:SQI] t:-~3$)d

m

- Z [(2m—2~m cos® (B,h)) sin (B.2) +mp,= cos (B.2)]
v-==|

x e~V E Z Sin (2,2) e~V e

2 } cos (x5} ds  (51)

g re Zm 0, ‘
Ay m»i s ) 0, e
! ~.[x {[? +m—th' Ql‘*f%q}

+Z

*cos (B[(m~2+m cos? (B.1)) cos (B.2) +mf,z sin (B,2))

e LR g 5

¥
X -mv-:—:} cos (xs) ds  (52)
NOGEY T

o _::J‘ {75::1-—7) Q) e M = 2(m~2) Z g.f.. cos (f,h) sin (B,z

c"qm')'(
X ~—====— C0S (xs)y ds.  (53)
s+
(i) Complementary stresses
{&}
% =-m) Z AL, —— cos (f,h){cos* (B,h) sin (8,z) = B.z cos (B,= )}
e-‘/:sw?’lvt

X ——==——=cos (xs) ds (54)
VE+ 8

{c} ©
%::f { 2m (hzu-.)YQ e~
[i]

+2m i [, cos (A./)(sin* (#,/4) cos (B.2) =B,z sin (B,2)]

v |

e"y‘-‘z*ﬂ.'m P

X e — ¥ S, cos (a,5) Yo e‘\’m"‘} sin (xs) ds  (55)
NASE N s
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e ) 22m L .
G- F ) ;;:_f(h —z7)sQ, e

—2m Y T, cos (B.h)[sin" (B,h) cos (B.2)—B.= sin (B.2)]

v= |

gt RN e
X + Y S, cos (x,5) e’ ”""‘} cos (xs) ds  (56)
n=1{)
Tia = 2(2m—1
T Y- _ - IR P o PN —-sivl
G + ) 2:(sP, Q|)+3 m—1/" 57Q +2sz|v[Q, | e

x.

[, -
+2) Zcos (BM[(2m—2—m cos® (B.h)) sin (B.2) +mp,z cos (B,2)]

v=1 ¥
_ ﬁ”? v ol S,, . 25: + 1: B .
xe TR Y L i (2,2 <~»;~A) et ”'“} sin (xs) ds  (57)
n=1{ %n B
at" 3 Y] 2m p 2m—1 Z%8° e
26 1, lm—t Qi —sP - m—1 3 Qi ~1vs@Q | ¢
. r\v )vv . T A Y
2y / cos (k) sin ()" ,
=t ¥ ST+
I's ["v s .
- Z o cos (B [(2m =2 —m cos® (L)) sin (f,2) +mf,z cos (f,2)]
v—1 v
/2 N A =~ S /o 2 v adiv]
X JsTHBI e~ + Y L Sin (2,2) /s 2, ¢ v R cos () dy (5%)
n=0 "
Q‘.‘Q{_ ‘ {~ Pt 2 O +1yls 2m—1 2357 , .
26 )T e e 'L\Q'+m——l 3 Quje
<L, . oo B
=2 Z ‘/ cos (f1,h) sin (f8,2) .

v |

\/A': ~+—7/)',2

T
+ Z 7}1 cos (B,M[(2m—=2—m cos™ (B,h)) sin (f,2) +mf,z cos ($,2)]

v= 1 Sy

e s e ‘S, P S
X Seemmme = 3 R sin (2,3) /8T Ry e T cos () ds. (59
\/\'.J{.[fv‘ n=0 Xn

By direct substitution, it can easily be ascertained that the above complementary dis-
placements satisfy Navier's equations and furthermore, the corresponding stresses 62, 2,
i do vanish on the plate faces - = +h. Moreover, for future applications, the solution
may be put in a morc convenient form, see Appendix B.

It is appropriate at this time to examine the question of completeness of the above
eigenfunctions. This matter has been investigatedt by Wilcox (1978) who, using a double
Fourier integral transform in x and y and the subsequent use of a contour integration,
arrived precisely at the same eigenfunctions as thosce obtained in the above analysis. This
established. therefore, the fact that the above cigenfunctions do indeed constitute a complete
sct.

Finally, if we consider the following two combinations to vanish (sufficient conditions)

+In 1977, the author uscd the sume idea to show that the set of cigenfunctions was indeed complete. Seeking,
however, an independent opinion, he posed the question to Prof. Wilcox.
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2m Z = cos (B.h)[—cos (B,h) sin (B,2)+ B,z cos (B.2)]

~3
- Z 2 sin (2,2) = —Zj_'r-‘—l(h::— %)SQI (60)

n=0 Zn m

and

2 i L cos (B,h)[(2m—2—m cos® (B,h)) sin (B,z) +mp,= cos (B,2)]
v | v

x 25" +al S, | 2m—1 z?
—Z s +a ?sm (a,,:)=-2:[sP,—Ql+ ’;n — ZQ] (6l)

n=0 n

for all |z} < A, then two of the remaining stress boundary conditions are satisfied auto-
matically, i.e.

) =t9=0 forallx, |z]<hand y=0

We may now combine eqns (60) and (61) to obtain

y ;J cos (B,M)[(2m—2+m cos® (B,h)) sin (B,2) —mf,z cos (f,2)]

v=1 v

—m Z 5 B, cos (BW[(1 +sin’ (B,h)) sin (B,2)+ p.z cos (B,2)]
+ ;{:‘“ SZQI. (62)

A study of eqns (60) and (62) shows that it is convenient at this stage to lett

r
Q=0 and sP =2m}y —p.

va |

Thus, using the Fourier Series expansions given in Appendix B, eqn (60) yields

S, 8m . o [,p7 cos® (B,h)
o~ h VAT gy ©
Returning next to the last boundary condition, we require that
o 0 r
f ¥ { 287 cos (B,h) sin (B,7) ——— -
0 vt /} K} +ﬂ:
+cos (B.h)[2m ~2—mcos® (B,h)) sin (B,2) +mB,= cos (B,2)][s* — 5 /52 + B3]
© v h 2 -
—— Z (-1 )" os’ ([[; )1) sin (a,z [:2+ %"— —-s./s2+oz;]} cos (xs) ds
nwQ
3\ M
= - (Z>h—,-(‘l;.-; Ixl<c, |zl <h (64)

T An easy way to sec that Q, = 0 is to let, in eqn (60), = = # and then use eqn (63) together with the result
in Appendix A,
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where we have made use of eqns (61) and (63). Furthermore, along {x| > ¢ and {¥| =0
we must require that the complementary displacements, together with their first partial
derivatives, are continuous for all || < A. The latter can be accomplished if one considers
the following integral combination to vanish:

< rv
J 3 cos (xs)ds =0 |x] >c (635)
0

The problem, therefore. has been reduced to that of solving the dual integral equation (64),
(65) for the unknown functions I, subject to the condition (62). But this is plausible for
the I',s are complex

5. SOLUTION OF THE INTEGRAL EQUATION

Seeking a solution of the form

r, - k) S 1(50)
1 A PES
s 5 (s¢)

(66)

and employing the method described in Folias (1975). one finds after some straightforward
computations

o n ‘)‘(k)

Y ¥y {—-Zﬂf cos (B,h) sin (B,2)15(f,)+cos (B.M[(2m =2 —m cos® ($,h)) sin (f1,2)

vel k=0 v

+mfl,z cos (B,2)(B,) — §/’IH Z (-1 /f__os /;([;‘h' sin (2,2 [1’3’(0:,,)4— i’ I'}’J}

T (4) /Vlvjé‘:f’:q)";ﬁ)ﬁg; zZl<h (j=0,1,2,..) (67)

where the integrals 7%’ have been defined as:

o ° Jilse) Iy, 0s0) 1
I = s P T+ W = T U A a1t
Jo  (se) T (s0) R M k4 j+ De
[ Jera(s€) I, 1 (s¢)
Y, = _ _’LL'_ 1x
Y3 1, s{s? 5\/3 PR (se ),- i ds
[ s ) era(se) J,0 i (s¢)
k) = . * 1* 68
Y@ Jo 5{\/;:‘%[3:} (se)+t (sey't! ds (6%)

Similarly, eqn (62), in view of the identity

et @) o s ( ) _ 126 (69)

and eqn (66) yiclds

Z AWa(z) =0 (70a)
il

Y AVa,(z) =0 (70b)

v |
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S {(2K)ADa, ()= A% Vg, () + A VBB =0 (k=1,23,..) (700)

v= |

where for convenience we have defined

a(z) = C—O—Sﬂﬁf—)[(Zm—2+m cos” (B,h)) sin (B,2) —mp,= cos (B.2)] an
and
bo(e) = —m SR 1 4 sin® (B4y) sin (B.2) + Bz cos (B,2)] + 2m=. 72)

B.

Prior to engaging ourselves with any numerical computations. it is wise at this point
to investigate analytically the behavior of the solution of eqn (70a), through the thickness
|z] < h. However, for convenience, we choose to study its derivative with respect to z, i.e.

D

Y A cos B.W)[(m—2+mcos® (B,h)cos (B,2)+mP,zsin(B,2)] =0: |z} <h (73)

v={

Dcfining

F@ =AY cos (Bh). (74)

v

the above cquation may be written in the form

(m=D[fU+O+ U=+ '-;(l =0/ +C)+’§(l +0/(1-0=0 (75)
where
= (z/h).
This is a difference-differential equation, the solution of which is

Clnf!

7
—_ — ~ 2 ;2 ;-
(2n+2)'F'< 3+m, n+2;2n+3 C)+Co}

s+ = —C)Hf"'{z a,
={
(76a)
where LF,(...) is the hypergeometric function and the constants C, and a,, are to be chosen

so that eqn (67) is also satisfied. Thus considering the first term only, which represents the
dominant part of the solution, one has:

25 A cos (B.h) cos (f.7) = Co{(l - ;)m + (l + Z)m} (76b)

ve |

Similarly,

25 A cos (k) cos (Bu7) = C, {(1 - 7'>m+ (l + I—:)J} W)

etc.

SAS 28:5-n
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The solution, therefore, of eqns (67) and (70a.b.c) will determine the unknown
coefficients 4% which are functions of (c/h) and Poisson’s ratios. However. as we will see
later. one needs only to compute the 4", for this is the only coefficient that contributes to
the highest order singularity. Thus, pending a numerical study of this system. the author
in this paper considers the coefficient known.

6. THE STRESS FIELD AHEAD OF THE CRACK

In the vicinity of the crack tip. the stresses may now be expressed in terms of the
following four types of integrals :+

M, = J Ji(sc) {e“"" fr_s::; e “7“'} cos (xs) ds (78)
)] /s +B

M, =J m.«-){( + li —ﬁms) e~ g s L_[TH} cos (xs) ds (79)
[}]

i

M, =J Ji(se) e Pt dy = \// Lo (80)
0 b
" L e : )
M, = I_rlj sti(se)y e T dy = — /‘ f[e D et L 0(e"). (8D
0 4V e

Unfortunately, the first two integrals we have not as yet been able to evaluate in
closed form. However, one can show by contour integration that they arc of the 0(:") as
y—esingand x — 4 cos .

In view of the above and by virtue of egn (76b), the stresses in the interior portion of
the plate are found to be:

oll = 6.,<A>\(I+C)" —(1=0') \/2‘1: cos < ) l (5«g’>j+0(¢;") (82)

ol = ou@){mo' o= \/,‘1 > cos ( ) ! (52“’)}00;0) (83)

al = a,,(A>{(l +O - =0"y [v cos @ﬂw(c“) (84)

) = a(,<%){(l +0'r—(1 —C)“'z'}\/ié[—- éli sin ((g>+ 3 sin <§§—>]+O(n“) (85)
0 = —ao@)(;—;){(l +O) (=0 1"}/25.[(—1’-«23‘—'— cos (ﬁ) sin (4>)]+0(n”) (86)

+ The higher order of Bessel terms of eqn (66) contribute to stress terms of 0(s' ).

~
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100 T T T I T
075 1
—'2’— 050 -
__—————_'/
025 -
%5 O.;_S 0;0 O.;S I,C%O I.:‘:‘S 1.50

t=+

Fig. 2. The behavior of (Q/A) versus { and for Poisson’s ratio 1/3.

) = 6«;(%)(2){(1 +0) T+l —C)‘z"}\/g[(l—b)z cos (%)

where for simplicity we have defined

z [+v 6M, 4(l~v)(2G) .
: A N Pty [o 88
=R =3y A v asch Co (88)

it
I

The reader should noticet that €, is proportional to v and therefore the limit as v — 0 of
A is finite. Furthermore, the constant C, is related to A4 through the equation

Z A{y()) — 22/2/mC“. (89)

v=|

We observe now that in the interior layers of the plate the angular distribution of the
stresses is exactly the same as in the corresponding casc of the stretching problem (Folias,
1975). Furthermore, our results differ from those obtained by Knowles and Wang (1960)
by a factor of

A 2 14 -2
Q=<§Z){(|+C)"'"-(l—s)' *} (90)

which represents the variation across the thickness (see Fig. 2).

Finally, the author would like to emphasize that the stress field (82)-(87) is valid only
in the interior of the plate, i.c. for all —h+¢* < z < h—¢*, where * is some distance away
from the free surface of the plate.

The reason for this is that eqns (82)~(87) reflect only the dominant part of the solution
(76a), i.e. the C, term only. This is the price that one must pay in order to obtain a simple
but analytical expression. On the other hand, if one considers the remaining terms a,,, he
can extend the validity of the stress intensity factor up to a very small boundary layer
adjacent to the free edge.

In general, therefore, the value of ¢* depends on the crack to thickness ratio as well as
on the Poisson’s ratio v. The author estimates ¢* to be approximately 0.44.

t Sce eqn (67). Because of the factor of m on the left-hand side of eqn (67). it is clcar that 4™ ~ (1/m).



510 E. S. Fouias
2.00

Mo /
- Folias /
.75 T {\ C - ~
L 28 : y/
150 | t :
2L
= ~zo | Iyengar et al.
. 125F ~ |
S - -
° 10O} Mo
~
- L
* o07sf
0.50+ c/h=30
- vE 173
0.25 |- (A72)=3.09
OOO 1 L 1 1 i i 1 | 1
0.0 0.2 04 0.6 0.8 1.0
{=2z/n

Fig. 3. The stress intensity factor versus z/A for crack to thickness ratio of ¢/& = 0.25.

However, as one approaches the corner point = = A, or [ = |, then other terms of the
O "2rpr “Hn=0,12,..., also contribute to the same order singularity and therefore
must be accounted for. Only then can the stresses o, t,. and t,, be shown to vanish at
the plate fuces z = +4. For the special case ol a plate with a circular hole and under the
action of a tensile load, this matter has been investigated by Folias and Wang (1985).
Extensive numerical work in that case revealed the presence of a boundary layer cffect in
the neighborhood of the free surface of the plate. Morcover, ananalytical asymptotic
solution there shows (see Folias, 1987) the stress ficld to be proportional to p*, where
a = 1.73959 +i 1.11902. This result is identical to that obtained by Williams (1952) for
a 90" material corner with free-free of stress boundaries. It is also of interest to note
that all stresses, except 1,4, exhibit the same order of singularity in the neighborhood of
the corner point.

Returning next to eqns (82)-(87), the value of A can casily be caleulated from eqns
(67) and (70). Without going into the details, the stress intensity factor across the thickness,
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{=2z2/h

Fig. 4. The stress intensity factor versus z/h for crack to thickness ratio of ¢/A = 1.00.
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Fig. 5. The stress intensity factor versus z/A for crack to thickness ratio of c/h = 3.00

as given by eqns (82)—(87), is plotted in Figs 3, 4 and § for a Poisson’s ratio of v = 1/3 and
various crack to thickness ratios.

Recently, the problem of a plate with finite plate dimensions was independently inves-
tigated by [yengar er al. (1988). The authors in their analysis usc the same method for the
construction of the solution with the exception that the details are carried out in cylindrical
coordinates. In fact, onc may extract the solution in cylindrical coordinates directly from
the general solution of this paper (sec Appendix B). This establishes, therefore, the parallel
character of the two solutions. A comparison of the analytical results [eqns (82)-(87)] with
those of lyengar er «l. (1988) shows an excellent agreement up to 60-70% of the plate
thickness. Beyond this range, the analytical results begin to deviate, for, as was pointed out
previously, they represent only the dominant term of the z-dependency. In fact, if one takes
into account the remaining terms,} the results tend towards those obtained by lyengar et
al., which are compatible with those found by the author in the case of the hole (Folias et
al., 1985).
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 TlIn order to compare our results with those of Iyengur ef al. (1988), which are applicable to a plate with
finite dimensions of L/B = 0.5, we have multiplied our present results by a factor of 1.19 (see Isida, 1966). Also
note that A = L.I9A,

$ By solving numerically the system (67) and (70).
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APPENDIX A

Fourier series expansions

28 (=1y
1=V cos (1,2) —h<z<h
T 2,
2 E (=1
:=—V( ,) sin (%,7) ~h<=<h
R %
s 4 & (=1
h* =25 =+ ) cos(z.-) ~hgz-<h
h =y 1n
sin (8,2) :l-’;cos(ﬁh) 3 (- r sin () —-h<:-<h
=T h n:l)( *ﬂ) " D
3 . e
zcos (f,2) = ,:1[cos (B.7) = B.h sin (B, h)]’Z‘n( s sin (1,,-)+ 1} cos (8.7 f” (_‘T/}T sin (2,3)
—-h<g-<h

APPENDIX B

Alternate form of the general solution
The displucement and stress ficlds due to bending may also be written in the following more convenient form.

(1) The displacement ficld .
“© (’I, D) AAAN G e ALY
*l ’I 1 m—1Jdxay

- 5: ’: ([I [2rm =2~ cos® (B00)) sin (ff,2) +mfl,z cos (f1,2)] cos (f,h)
v 0

©
ll

< 1 oM, .
+ ) - lk—’ sin (x,2) sin (x,h)

n— 1" vy
RIS Rl AN RN
v =+ + D_} +1¥ n m-1 3 0
“ P II
+ Z i [("m« —m cost (B.m) sin (B.2) +mf.z cos (B,2)] cos (8,h)
o |
+ 5 240 G (x,2) sin (, /‘)}
o, O
mo 01, t R (V:

W = - gt 2
"m—-1 dy e dy ¥l

+ E‘: H =2 +m cos™ (f§,h) cos (B,2)+mf,z sin (f,2)] cos (B.)

v |
(i1) The stress field

o' 2, 2 01- a, 7nl-l z? (7‘[
-5 i

G & Tm=12dy Tyt m—1 3 dy'

9

-2 Z B.H, cos (k) sin (fi.2)

vl

- i l 0 2 cos® (f.m) sin (8,2) +mf,z cos (B,2)] cos (B.h)
vw | Fr
= | JH,
+ ";) % 3%ay sin (x,2) sin (a,h)
ol 2m o, &l m—~12 3N, o,
L::w“‘i_.ﬁ+.__,_.MT Iv""‘
2G m—=13dy ' m-—1 3 0y

=2 7 B.H, sin (f,2) cos (fi,h)

v
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1 &°H,
val 8. E_V:

2

{(2m—2—m cos® (B,h)) sin (B.5) +mP,z cos (B,2)] cos (B,h)

H .
== sin (x,2) sin (2,h)
o 34 OxCY

{c) x
;_2. = -mY B.H.(cos’ (B.h) sin (B,2)— B,z cos (B.2)] cos (B.h)
v i
@ fo (S0 2t 2L El
G- & T E) T\t cvc’y axdy
= 1 'H,
Z am [(2m—2—m cos® (B,h)) sin (B.z) +mpB.z cos (B.2)] cos (B.h)
— g‘n ;%(i’_:{-n - aag ) sin (a,=) sin (a, h)]
i m . H o,
G~ i{m—l(h e
+ 2 ,2) — B,z sin (B,2)] cos (B.h)
v .
2 0H, .
L cos ) sin (o }
T im0 L 0
G _m—l(h o )0,\'(7)/

. 3
D) “,’”— [sin® (f1,h) cos (B,2) ~ B,z sin (f§,2)] cos (B.h)
vt X

- OH, .
F Y " cos (2,3) sin (a,h)

Al

where we have assumed that /7, and 7, arc 2-D harmonic functions and that H, and #,, satisfy the 2-D equations

PH, OH,
= = fH, =0
Ix? M Jy A
and
IH, 0’” ol
- L H, = 0.
ax? + oyt

Notice that in cylindrical coordinates, the equation for #, reads

@H, 1o, 1 I'H,

PR R o

the solution of which is
H, = Z {Al,lrl/l(ﬂv’)+BkKkrl/2(/;vr)} glhrlihe
k=0

which solution is compatible with that reported by lyengar e al. (1988).



