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Abstract-Using an integral formulation, the three-dimensional Rexure problem of an elastic plate 
bounded by the surfaces : = &h and containing a through-the-thickness finite crack is reduced to 

a dual integral equation. which in turn is solved for the unknown function. The analysis shows that. 
in the interior of the plate. only the stresses CT,,. o,,. u;, and r,, are singular of the order (l/Z) and 
that the angular distribution is precisely the same as that of the corresponding stretching problem. 
Furthermore. the stress intensity factor is shown to be a function of: as well as a function of the 

crack to thickness ratio (c/h). The two-dimensional solution is also reduced as the Poisson’s ratio 
Y -0. 

I. INTRODUCTION 

It is wdl known that the classical theory of bending of thin elastic plates permits the 

satisfaction of fcwcr boundary conditions along the edges of a plate than can in reality be 

prcscribcd. For instance. along a free cdgc, only two boundary conditions may bc enforced, 

i.c. the simultaneous vanishing of the bending couple and the cquivalcnt shear (Kirchhoff, 

1x50). A more rcfincd, yet still approximate theory was introduced by Rcissncr (1945) 

who. assuming that the bending strcsscs arc distributed linearly over the thickness of the 

plate and using Castigliano’s thcorcm of least work, was able to obtain a system of equations 

which take into account also the transvcrsc shear deformability of the plate. This theory is 

free ofsomc of the limitations of the classical theory for it permits the satisfaction of three 

boundary conditions along the cdgc of the plate. 

Applications of Rcissncr’s bending theory have been made to certain classical problems 

including that of the stress concentration at a circular hole in an infinite plate under tlexure 

and torsion. It was found that, for a wide range of values of the ratio of the diameter of 

thr hole to the thickness of the plate, the numerical results differ considerably from those 

obtained in the classical theory. However, as Reissner remarks, an exact estimate of the 

accuracy of the numerical results is not possible unless the exact three-dimensional solution 
is known. 

In view of some recent developments (Folias, l975), the author in this paper? discusses 

the bending of the elastic plates from a three-dimensional point of view. Specifically, 

Navier’s equations for the bending of a plate containing a through-the-thickness plane 
crack arc solved. 

Considerations of the bending of thin plates containing cracks have been reported by 

Williams (1957) and Knowles and Wang (1960). In the former reference the bending has 
been studied on the basis of classical bending theory. and in the latter on the basis of 
Rcissncr bending theory. 

2. FORMULATION OF THE PROBLEM 

Consider the equilibrium of a homogeneous, isotropic, linear elastic plate which occu- 
pies the space 1x1 < co, 1.~1 c co, 121 G h, and contains a plane crack in the x-z-plane. The 

crack faces, defined by I-x( c c, y = Of, z G h and the plate faces 121 = h arc free of stress 

t The contents of this paper are based on a report which the author completed in 1975. 
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Fig. I. Geometrical and loading configuration. 

In the absence of body forces, the coupled differential equations governing the dis- 

placement functions 11. 

and constraint (see Fig. I ). The plate is to be loaded by a constant hcnding movcmcnt M,, 

at points far away from the crack. 

where 

(4) 

V’ is the Laplacian operator, MI s I/v and Y is Poisson’s ratio. 
The stress-displacement relations are given by Hooke’s Law as : 

(W 10) 

As to boundary conditions, one must require that at 

l.rl < c. )’ = 0’. /:I < /2: S,,” = r): = cr,.,v = 0 (11) 

I:1 = 11: rr2 = r,., = 6,; = 0 (12) 

In addition to the boundary conditions (I I)-(13) it is required that II, ~7. w and all their 
partial derivatives be continuous for all x. _r and 12) < /I except for the points on the plane 

,c < _K < c, y = 0, /:I < /I. 
It is found convenient at this point to seek the solution to the crack plate problem in 

the form 
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u = fJp)+fbc) etc. 
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where the first component represents the usual ‘undisturbed’ or ‘particular’ solution of a 
plate without the presence of a crack. Such a particular solution may easily be constructed 
and for the particular problem at hand is 

(14) 

3. MATHEMATICAL STATEMENT OF THE COMPLEMENTARY PROBLEM 

In view of eqn (14) we need to find three functions u”‘(.r.y.~). L~(~‘(_K,_v,~) and 
rP“(.~._r. z). such that they satisfy the partial differential equations (l)-(3) and the following 
boundary conditions : 

at IZI = 11: $2 = T,$’ = (7:’ = 0; 

at 1~1 = Ot and all X: ~1; = 5.:;’ = 0; 

at r * Co: u(“‘, u(‘) and IV(~) must vanish. 

4. METIIOD OF SOLUTION 

- 3 M” - -7. 
2 h’ -’ (15) 

(16) 

(17) 

(18) 

In constructing a solution to the system (l)-(3) we use the method introduced by Lur’e 
(196-I). which Icads to the following ordinary difftxential equations with respect to the 
independent variable :. 

(19) 

&,I” 

d-2- + D’f 
- ( 

where the symbols of differentiation 

are to be interpreted as numbers. Integrating the above system subject to the values which 
the complementary displacements attain on the middle plane z = 0. i.e. 
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11”’ 
du”’ dr”’ , dw”’ 

= 0. r“’ = 0. I$.“’ = I(‘,). 2; = u;). ;; = L‘,). z = 0. = = 0, (77) 

after some simple calculations one has 

li,cl _ sin CD) , : cos (zD) 
- ___ 11,) - 

D D’ 1 S,K, 
sin (:D) 

[.((I = _- 1 

111 , sin (:D) : cos (:D) 

D 0 - j(lr-l) 
__.~ - .____ 

D’ D: ?A 1 
IV”-’ = cos (:D)rr,, - --__ 

(73) 

(75) 

where 

, 
fl,, = (7 ,u;, + ?,I,;, - D'w,,. (33) 

It may hc noted that u;,, r-1, and w’(, arc arbitrary functions of s and J’ to bc dotcrmincd. 

Morcovcr, in intcrprcting the operators cos (:I>), and (l/D) sin (~0). one must expand 

them in powers of (:D)‘. whcrc the dill~rcntial operators (zD)~” now act on the unknown 

functions II;,(.v.J). ~;,(.r,!) and LV,,(.V.F). 

Using the expressions (23) (26) and the formulae for Hookc’s LAW, the strcsscs on 

any plant pcrpcndicular to the z-axis bccomc 

I 
s!:’ = cos (:D)(u;, + (7, w,,) - 

1?1 : sin (zD) 

G - 2(/rr - I) D 
i) , o;, (27) 

I 
c ai;’ = -2D sin (:D)K~,,- 

VI - 2 sin (:D) ?)I 

?(I,;- I) .D + 2(fH-- I) 
--.-. -~-. : cos (:D) 1 O,, (2’)) 

and boundary condition (16). therefore, takes the form 

whcrc the d,, dcnotc the dilfcrcntial operators 

mh 
d,, = ~0s (/ID) - 

sin (AD) 

Z(PI - i j 
..-D---- 2; 

(30) 

sin (/ID) 
d, 3 = cos (/1D)3, + ._.~!!~._. __~ D---.- D:S, 

1(V2- I) 
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mh 
d21 = - Z(m- 1) 

sin (hD) 
~ ---2,2: D 

mh sin (hD) _: 
dZ2 = cos (hD) - - -c, 

2(m-I) D - 

mh 
d:, = cos (hD)S,+ 2(m_ ,) 

sin (hD) 
~ ___ DzS2 D 

d” = - 
m-2 sin (hD) mh 

2(n~- 1) PPV+2(m-l) D ____ cos (hD) 1 S, 

nr - 2 sin (hD) mh 
d3’ = - 2(n,- 1) ____ ~ + 2(m- I) D ___ cos (hD) 1 dz 

2 - 3~1 dz, = ~ mh 

2(m - I) 
D sin (AD) -t- ~(,,, _ ,) D’ cos (AD). (31) 

Using now the fact that the differential operators 8,. ?:, D’ obey the same formal rules 

of addition and multiplication as numbers, one can deduce that 

whore the unknown functions x,, x2, x, satisfy the dilfcrential relations 

@x, = 0, i= 1.2.3 

and the operator Q is dclincd ast 

(32) 

(33) 

1 cos (AD). (34) 

By expanding the operator Q in powers of (hD), one notices that the first term leads to the 

governing equation of classical bending theory while the inclusion of the second term leads 

to the well known Reissner bending theory. 

It remains, therefore, for us to construct a solution to the difTcrential equations (33), 

which in turn will give us rr;. oh and w,~. 

Using a Fourier integral transform, we construct next the following integral rcp- 

resentations for L&. & IV,, which have the proper symmetrical behavior at infinity.$ 

t It may bc noted that this is a ncccssary and suliicicnt condition for the system (30) to have a solution. The 
question of completeness will be addrcsscd at a later time. 

: By direct substitution. one can easily verify that cqns (35)~(37) represent solutions to the diffcrcntial 

equation (33). First compute D’u,. DuA>. 
will be discussed later. 

etc. and then sum up the resulting series. The question of completeness 



50’ E. S. FOLIAS 

1 

T--G/Y/ cos (ss) ds (36) 

where the + signs refer to J > 0 and _V < 0 respectively. 

Zn+ I rc 
2” = (-_) 7 

i (N=0,1,3....) 

and fi, arc the roots of the equation 

sin (?/L/J) = (2/L/l). (38) 

Equation (38) has an infinite number of complex roots which appear in groups of four, one 

in each quadrant of the complex plane and only two of each group of four roots are relevant 

to the present work. Thcss arc chosen to bc the complex conjugate pairs with positive parts. 
The only real root /I, = 0 must bc ignored. 

Finally, for the expressions (35)-(37) to rcprescnt the solution of the system (30) one 

must furthcrmorc require that the unknown functions P,, Q,, RL”, $,‘I etc., must satisfy 
the additional relations 

(43)-(45) 

(W-(47) 

In order to facilitate our subscqucnt discussion, it is found convenient at this stage to 

summarize our results. Dctining 

(49) 

one may now write the complementary displacements and stresses in the forms below. 
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fi) Compleme~rury d~pfacements 
503 

c-Jwrvl 

xfiz I cos (xs) ds (52) 

fy 1” = 
L 2(m-2) 1-I m FYI-(” 

0 m- 1 
ZQ, e-“‘Y’-2(m-2) c 

v=i 
-g-- cos f/J&) sin (&z) 

e - JTzi,~l 

xJFqtf cos (xs) ds. (53) 

(ii) Cumplemmffry strews 

e - rnl.“I 
cos (xs) ds (54) 



50-l E. S. FOLIAS 

By direct substitution, it can easily be ascertained that the above complementary dis- 

placements satisfy Navier’s equations and furthermore, the corresponding stresses &‘. r!S’, 

r$’ do vanish on the plate faces z = +/I. Moreover, for future applications, the solution 
may bc put in a more convenient form, xc Appendix B. 

It is appropriate at this time to cxaminc the question of completeness of the above 

eigenfunctions. This matter has been invcstigatadt by Wilcox (1978) who, using a double 

Fourier integral transform in .Y and J and the subsequent use of a contour integration, 
arrived precisely at the sx-nc eigcnfunctions as those obtained in the above analysis. This 

established. therefore. the fact that the above cigcnfunctions do indeed constitute a complete 

SCL 

Finally, if we consider the following two combinations to vanish (sullicicnt conditions) 

t In 1977. the author used the same idea 10 show that the set ofrigcnfuncttons was mdwd compictc. Seeking. 
howcvcr. an indepcndcnt opinion, hc posed the qucstion to Prof. Wilcox. 
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2m 5 2s cos (B.h)[-cos’ (B.h) sin (&z)+/~,z cos (&z)J 
y-1 

-.Eo 1 sin (ix,=) = z(h’.-- G)@, (60) 

and 

2.$, 2 cos (Q)[(Zm-2-m cos’ (Ah)) sin (BVz)+m/?V= cos (/7.z)) 

for all IzI < h. then two of the remaining stress boundary conditions are satisfied 

maticaliy. i.e. 

T’$ = 5:’ = 0 for all X, 1~1 < h and y = 0. 

We may now combine cqns (60) and (61) to obtain 

A study of cqns (60) and (62) shows that it is convenient at this stage to let? 

Thus, using the Fourier Series expansions given in Appendix B, eqn (60) yields 

Returning next to the last boundary condition, we require that 

cos (m) ds 

3 MCl =- - 0 4 j&Lj=; 1x1 < c. I:! < h 

(61) 

auto- 

(62) 

(63) 

(64) 

t An easy way to see that QI = 0 is to let. in eqn (60). 2 = 
in Appendix A. 

h and then use eqn (63) together with the result 
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where we have made use of eqns (61) and (63). Furthermore. along 1x1 > c and 1~1 = 0 
we must require that the complementary displacements. together with their first partial 
derivatives, are continuous for all I:/ < h. The latter can be accomplished if one considers 
the following integral combination to vanish : 

(65) 

The problem, therefore. has been reduced to that of solving the dual integral equation (64). 
(65) for the unknown functions I-, subject to the condition (67). But this is plausible for 
the I-,s are complex 

5. SOLUTION OF THE INTEGRAL EQUATION 

Seeking a solution of the form 

(66) 

and employing the method dcscribcd in Folias (1975). one finds after some straightforward 
computations 

where the integrals It’ have been defined as : 

Similarly, eqn (62). in view of the identity 

and eqn (66) yields 

(65) 

(69, 

(70a) 

(7Ob) 
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where for convenience we have defined 

a,(z) 3 
cos uo) 

BY 
[(h- 2 +m co.+ (&h)) sin (/$z) -m/3.: cos (/?.:)I (71) 

and 

h,(z) z --M 7 [( I + sin’ @Jr)) sin (/I.:) + p.z cos (&z)] + 2mc. (72) 
I 

Prior to engaging ourselves with any numerical computations. it is wise at this point 
to investigate analytically the behavior of the solution of eqn (70a). through the thickness 
1~1 < h. However. for convenience, we choose to study its derivative with respect to z. i.e. 

~0s (@)[(M - 2 -tr~cos~ (l],h)) cos (l1.z) +n$,= sin (@)I = 0 : I=1 < h. (73) 
Y= I 

Defining 

(74) 

the above equation may bc written in the form 

where 

(m- I)[/‘(1 +[)+/‘(I -c)+ ;(I -C)/‘(I +0+ ?(I +()/‘(I -0 = 0 (75) 

[ = (z/h). 

This is a difference-ditferential equation, the solution of which is 

,yhl(l +()e) = (I _C)2-2j’” c -3+;,2~+2;2n+3; -c 

(7W 

where #‘,(. . .) is the hypergeomrtric function and the constants C, and azn are to be chosen 
so that eqn (67) is also satisfied. Thus considering the first term only, which represents the 
dominant part of the solution, one has : 

2,$, Ato’ cos (p”II) cos (/I.:) = co (76b) 

Similarly. 

2 f, AS” cos (/?./I) cos (/I”:) = c, {(,-;J-lim+(l+;J-~] (77) 
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The solution, therefore, of eqns (67) and (70a. b. c) will determine the unknown 
coefficients Al” which are functions of (c.‘h) and Poisson’s ratios. However. as we will see 

later. one needs only to compute the A:“‘, for this is the only coefficient that contributes to 
the highest order singularity. Thus. pending a numerical study of this system. the author 

in this paper considers the coetlicient known. 

6. THE STRESS FIELD AHEAD OF THE CRACK 

In the vicinity of the crack tip. the stresses may now be expressed in terms of the 

following four types of integrals :t 

(7s) 

Unfortunately, the first two intcprals WC have not as yet hccn able to cvaluatc in 

closed form. However, one can show by contour integration that they arc of the O(r:“) as 
.I’ -+ I: sin C/J and .r --) (. + I: cos (1~. 

In view of the above and by virtue of cqn (76b). the strcssos in the interior portion of 

the plate are found to be: 

A 
r$’ = 0,) ;i 0 _ {(l+W2’--(I-d - * ’ 27 Ji [v COS (;)]+o,,:o, (S-t) 

p = 
.s Y 00 0 ; {(I+[)‘-‘“-(1 --<)I “j/$ -: sin (z)+ t sin (y)]+O(C”) (85) 

t The higher order of Bessel mms of eqn (66) contrihutc to stress terms of O(E’ :) 
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Fig. 2. The behavior of (0, A) versus < and for Poisson’s rulio i/3. 
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((I +i)-2’+(l -()- 

+ !Lq2 sin (3 sin (tb)]+O(c”) (-h+s* < : < II--E*). (87) 

whcrc for simplicity WC have dcfincd 

The rcadcr should noticct that Co is proportional to v and thcrcforc the limit as v + 0 of 

A is finite. Furthcrmoro, the constant C,, is rclatcd to Al”’ through the equation 

mm 

c ,p = p?l”c,,. (89) 
Y- I 

We observe now that in the interior layers of the plate the angular distribution of the 
stresses is exactly the same as in the corresponding cast of the stretching problem (Folias, 

1975). Furthermore, our results differ from those obtained by Knowles and Wang (1960) 
by a factor of 

Q = ; 
0 

((l+i)‘-?‘-(l-i)‘_?‘), 

which represents the variation across the thickness (see Fig. 2). 
Finally. the author would like to emphasize that the stress field (82)-(87) is valid only 

in the interior of the plate. i.e. for all -It+&* < 3 c h-c+. where E+ is some distance away 
from the free surface of the plate. 

The reason for this is that cqns (82)-(87) rcflcct only the dominant part of the solution 
(76a). i.e. the C, term only. This is the price that one must pay in order to obtain a simple 
but analytical expression. On the other hand, if one considers the remaining terms CI~,, hc 
can cxtcnd the validity of the stress intensity factor up to a very small boundary layer 
adjacent to the free edge. 

In general. therefore. the value of ,s* depends on the crack to thickness ratio as well as 
on the Poisson’s ratio v. The author estimates E* to be approximately 0.4/r. 

t See eqn (67). Because of the factor of m on the left-hand side of eqn (67). it is clear that A!“’ - (I/m). 
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c/h = 3.0 

Y = l/3 

(X/2) = 3 09 

0.00 1 
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I = z/h 

However, :LS one :lpproachcs the corner point z = //, or ; = I, then other terms of the 

O(C ’ 2+2”py ‘),n = 0, I.2 ,... , also contrihutc to the s;lmc or&r singularity and thcrcforc 

must bc iiccountd for. Only then can the strcsscs n:._. rFz and r,= hc shown to vanish at 

the plate f~cs : = + It. I:or the spcci:ll USC of ;I pl;~tc with ;I circul:lr hole and uncicr the 

action of ;I tonsilc load. this matter has bcun invcstigtd by f’l)liiis :IIKI Wang (I98.F). 

Extcnsivc numerical work in that C;ISC rcvcalcd the prcscncc of ;I bound;~ry layer cfIkct in 

the neighborhood of the free surl’lcc of the plate. Morcovcr, i1n;lnalytical asymptotic 

solution thcrc shows (see f’olias, IOX7) the stress ticld to be proportional to $, where 

a = 1.73959+i I. I1909,. This result is idcntioal to that obtained by Williams (1952) for 

;I 90’ material corner with free-free of stress boundaries. It is also of interest to note 

thiit all stresses, except T,(,. exhibit the same order of singularity in the neighborhood of 

the corner point. 

Returning next to cqns (81) -(87), the v;tluc of A GUI rusily bc calculated from eqns 

(67) ilncl (70). Without going into the details. the stress intcnsiry f:ictor ;Icross the thickness. 

lye&or et al 

0.50 

0.25 

c/h=l.OO 

v=1/3 

G/21=2.29 

0.00 I , I I I I , t 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 4. The stress intensity factor versus Ah for crack to thickness ratio of c:h = 1.00. 
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cIh10.25 

0.0 0.2 0.4 0.6 0.8 1.0 

f = t/h 

Fig. 5. The stress intensity factor versus z/h for crack to thickness ratio of c/h = 3.00 

as given by eqns (X2)-(87). is plotted in Figs 3.4 and 5 for a Poisson’s ratio of Y = l/3 and 

various crack to thickness ri1tios.t 

Recently. the problem of a plate with finite plate dimensions was independently inves- 

tigated by Iycngar cl ~1. (1988). The authors in their analysis USC the same method for the 

construction of the solution with the exception that the details arc carried out in cylindrical 

coordinates. In fact, one may extract the solution in cylindrical coordinates directly from 

the gcncral solution of this paper (SW Appendix B). This establishes. therefore, the parallel 

character of the two solutions. A comparison of the analytical results [cqns (82)-(87)] with 

those of lycngar (‘I 111. (198X) shows an cxccllcnt agrccmcnt up to 60-70”’ of the plate 

thickness. Beyond this rang. the analytical results begin to deviate, for, as was pointed out 

previously. they reprcscnt only the dominant term of the z-dependency. In fact, if one takes 

into account the remaining tcrms.f the results tend towards those obtained by lycngar er 

uf., which are compatible with those found by the author in the case of the hole (Folias et 

ul., 1985). 
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APPESDIX A 

2 q% (-I)” 
;=- 

h- 
7 sin (2.1) 

*-” =7 

-h<:<h 

-h<:$h 

--;----;_sin(z-) -h<zQh. 
“‘r; (q--B;) *- 

.- CDS (fi.-_) = i [cos (,!Lh) -B.h sin (S&)1 $‘” $$$i 
r 

sin (11.:) + i /elI cos (fi.h) Y 
(-I)” 

-5---;? sin (2 -) 
,I,) (Z.--a,)- “- 

APPENDIX B 

-2 T p.ff. sin (p.z) cos (/J./l) 
I- I 
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* I S'H. -.r, sp &I- 2 -m co? @.A)) sin (B.:) + rnp.2 cos (B.:)] cos (B.h) 

= I E’H, 
- 1 - - sin (J;z) sin (z,h) 

“_” 1” &I?~ 

a!” 
2 = -m,E, j?.H,[cos' (B.h) sin (B.z)-j3.z cos (8.:)] cos (B.h) 

+ 2m *$, $ [sin’ (/I&) cos (p,:) -p.: sin (/J.-_)] cos (j?.h) 

+ Jo x cos (I,=) sin (aA 
I 

+, 
.2 = _ 2E(h:-.-:),!z& 
G 

- 51 .c, ‘$ [sin’ (/I,h) cos (8,:) -/I,-_ sin (/l,r)] cos (/l.h) 

+ i c!G cos (2.2) sin (a&) 
*-” JY 

whcrc WC have ~~ssumcd that I, and I: UC 2-D harmonic functions und thut II, rnd H” satisfy the 2-L) cquutions 

Ptt. 3’11. 
3;;i- + -;-<- -pItI. = 0 

‘Y 

;uKl 

p + 7 -a:.‘ti. = 0. 
JY 

Notice that in cylindrical coordinates. thr equation for If, reads 

a’tt. I ail. ’ %++(-J, =+;Jr+7 r- Jlp 

the solution of which is 

which solution is computibls with that reported by lycnpr CI ul. (1988). 


