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Abstract-Foliow~ng Griffith, a fracture criterion incor~rating a geometry and plasticity correction is 
derived for the prediction of failure in pressurized vessels. A comparison with a few sets of experimental data 
chosen at random is very good. 

NOTATION 
A = projected area on the base plane 
c = half crack length 

c, - c + p = half effective crack length 
D = Eh3/ [ 12( 1 - 9) ] = flexural rigidity 

E = Young’s modulus 
G = shear modulus 
k = thickness 

K = fracture toughness 
J,l,J I J f J. I. asdefinedintext C,,ZV r.n> ST XI <.Pl <,p 

P = periphery 
pee,, P(b), Pde), P (@ PF\, PC”\, P*(6), PpCbl, Pg”,“h, Fe’ tr I , 

= stress coefficients as d%ned in text 
q,, = uniform internal pressure 
R = radius of the shell 

r=m,tJ=tan- $1 

U = total e;ergy of the system 
U, = constant or datum energy 

X, y, .z = rectangular cartesian coordinates 
y = 0.5768. . = Euler’s constant 

y* = surface energy per unit area 
r = path of integration as defined in Fig. 1 
6 = as defined in text. 

A4 = y& _ 131 -v%+ 
R%2 

v = Poisson’s ratio 
vg= l-v 
?r=3.14 
p = size of plastic zone 
(T = normal stress as defined in Fig. 3 

cry = yield stress 
a, = ultimate stress 

cf* = oy + (us + o,)/2 
2 

(see also footnote on page 156) 

0, = fracture stress 
CT,, = hoop stress 
IT,, = stress of a flat sheet 

ace’, #” = applied to the crack stress components 
0;: lf?l, ~ re, V , TF~ = stretching stress components 

ttl> 0, , CF~@“, &?i = bending stress components 
OX, cr,, TX, = stresses as defined in text. 

tAssistant Professor. 
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INTRODUCTION 

IT IS well known that large, thin-walled pressure vessels resemble balloons and, like 
balloons, are subject to puncture and explosive loss. For any given material, under a 
specified stress field due to internal pressure, there will be a crack length in the material 
which will be self-propagating. Crack lengths less than the critical value will cause 
leakage but not destruction. However, if the critical length is ever reached, either by 
penetration or by the growth of a small fatigue crack, the explosion and complete loss 
of the structure occurs. The subject of eventual concern, therefore, is to assess analyti- 
cally the relation between critical pressures and critical crack lengths in sheets which 
are initially curved. 

The principal task, however, of fracture mechanics is precisely the prediction of 
such failure in the presence of sharp discontinuities, knowing only geometry, material 
behavior, etc. Specifically, the approach is based on a corollary of the First Law of 
Thermodynamics which was first applied to the phenomenon of fracture by Griffith[ 11. 
His hypothesis was that the total energy of a cracked system subjected to loading 
remains constant as the crack extends an infinitesimal distance. It should, of course, 
be recognized that this is a necessary condition for failure but not sufficient. 

Griffith applied his criterion to an infinite isotropic plate-under stretching-con- 
taining a flat, sharp-ended crack of length 2c and has shown that it can be expressed 
in terms of an integral over the entire surface of the plate. Subsequently, Sanders[2] 
has proven that this integral is independent of the path; i.e. one may integrate along any 
simple contour enclosing the crack. 

The purpose of this paper, therefore, is to extend Griffith’s analysis and thus derive 
a fracture criterion applicable also to thin, shallow, initially curved sheets. 

Fracture criterion 

In deriving a fracture criterion, two ingredients are required: (I) the stress distribu- 
tion due to the presence of the crack and (2) an energy balance for crack initiation. Be- 
cause, however, the stress distribution currently available in the literature[3-61 for 
initially curved sheets is valid only in the immediate vicinity of the crack tip, we proceed 
to derive a criterion using only the singular part of the stresses and integrating over the 
area enclosed by the contour I(see Fig. 1) and through the thickness. Inasmuch as the 
contour I is a non-simple smooth curve, Sanders’ conclusion can not be applied and the 
criterion, therefore, is approximate. 

In view of the above, the total energy of that portion of the initially curved sheet 

Fig. 1. Path I‘ of the energy integral 
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enclosed by that surface area, whose projection on the base plane is r, is given by 

u system = U0+y*(2A+Ph) +4y*ch--2& 
I II 

-hi!2 0 --s 

(1) 

where the stresses err, uy, T,, are given in [3-61 as the sum of the extensional and 

with 

and 

bending stress components, i.e. 

UI = os (e) + oz(b) 

u!l=(+II 
(e) + cy(b) 

7x.Y 
= ,#e, + ,#b) 

su IY 

up=P~v$jg 

( 

~cos~+-&os~ +O(rO) 

) 

cry(e) = Pv&jTYj 

( 

~cos~-~cos~ 

) 

+O(rO) 

r$ = Pce)lQJSj 
i 

f sin i+d sin T 
> 

+ O(rO) 

ox(b)= Py/~ 
( 
-y%os~-+Los~ 

) 
+o(rO) 

u,~~~=PB~~~(~cos~+~cos~)+0(~~) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The stress coefficients P and Fb) are functions of the geometry of the shell and can be 
found in the Appendix. 

Upon substituting (2-l 0) into (1) and integrating, one has 

u w.stem 
33+66y-7v2 P(b, 2+ 9-71, . 

= U,+y*(2A+Ph) +4y*ch- 8G [ 1 2(1+v) 

Thus, following Griffith’s hypothesis, for crack instability, one requires 

ausystem = o 

ac 
(12) 
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or 

(33+6v-77~~) (l+v) 
3(9-7V) 

(13) 

which in the case of flat sheets reduces to 

(33+6~-7~2)(l+v)[db)]z+[~e)]2_16~~*.2~1_:~). 
3(9-7V) (4-V,,)* (14) 

In general, the geometrical character of (13) is a family of ellipses whose semi-major 
and semi-minor axes are 

V/3(9- 7V) (4 - V”) 
Gd33+6v-7v2 uF’ uF 

respectively. 
It is of some practical value to be able to correlate flat sheet behavior with that of 

initially curved specimens. In experimental work on brittle fracture for example, con- 
siderable time might be saved if one could predict the response behavior of curved 
sheets from flat sheet test data. In answering this question, one may combine (13) and 
(14) and for db) = 0 we obtain 

zTg!,eu_ 1 
-CC?) - (33+6v-7v2) (l+~)~~+~~ w 

(15) 
(+Pl& 

3(9-7&J) 

In particular, if one specializes (15) to an axial crack in a cylindrical pressure vessel, 
one has 

uh 
-= 

UP (33+6v-77~~) (:+Y)~* +12 1’2 (16) 

3(9-7V) c*a C.a 

which for A < I simplifies to 

(+h 1 -ZZ 
@P Vl+0*49A*’ 

(I6a) 

In judging the adequacy of a theory, one often compares theoretical and experimen- 
tal results; therefore, in Fig. 2, we compare our results with the experimental data 
obtained by Kihara, I keda and 1 wanaga [7] on cylindrical pipes containing axial notches. 
The reader will note that the predicted theoretical values are somewhat conservative 
and compare fairly well with the experimental data. One is led, therefore, to believe 
that (15) can be used to predict response behavior of curved sheets from flat sheet 
test data. 

As a consequence of (13), it is also possible to obtain a relation between the critical 
crack length in a shell and the critical crack length in a plate in terms of their corre- 
sponding loadings, in particular 
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Fig. 2. Correlation between fracture-stress ratio of pipe and flat plate and 
(2clx77-G). 

critical 
(17) 

where the constant 6 is defined as 

6E (33+6v-77~~) (l+v) 
3(9-7V) * 

As a practical matter, if one considers the same ‘applied loadings’? on the shell and on 
the plate, 1.e. (I?‘~‘),~,~ = (+b))Shell = 0 and (6’e’)p = (cP) shell = S), then (17) reduces to 

1 shell (3 1 zz- 

1 

( > 

BL.l 2’ 
(1W 

plate critical 
pm 

Mate 

where the right hand side is a function of the geometry of the shell, its crack length and 
its material properties. In general, this quantity is less than unity, which suggests that 
shells present a reduced resistance to fracture initiation that is basically of geometric 
origin. For A = 1, an axial crack in a pressurized cylindrical vessel gives 

1 C=z 
1 + 57Th2 

= 0.67. (17b) 

32 A=1 

tFor a definition of&e’ and tib), see Appendix. 
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Plasticity correction 
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Due to the presence of high stresses in the vicinity of the crack tip, when the ap- 
propriate yield criterion is satisfied then localized, plastic deformation occurs and a 
plastic zone is created. This phenomenon effectively increases the crack length and 
therefore must be accounted for. Following Dugdale [8], the plastic zone size (see Fig. 
3) is determined by the relation 

or 

(a) 

(b) 

t t 

C 
-_=cos = 

CC ( > 2m, 

P- ;-set ;c -1. 
( > Y 

t 

Crack 7 r2V(c) 

(18) 

(19) 

Fig. 3. (a) Internal stress distribution used in the Dugdale model of elastic-plastic 
deformation near a crack of length 2c under plane-stress tensile loading. (b) Dis- 

placements 2 V associated with crack opening. After Hahn and Rosenfield [ lo]. 

This relation applies only to a perfect elastic-plastic behavior of a non strain-hardening 
material. McClintock [9], however, has suggested that a strain hardening material may 
be approximated by an ideally plastic one, if a stress higher than cy and lower than uU is 
chosen. Subsequently, Hahn and Rosenfield [ lo] suggested that mu in (17) be replaced 
by g* = (u,+ oy)/2. Thus, correcting the Griffith-Irwin equation so as to include 
yielding and geometry effects, one has? 

TFor derivation, see [I 11. A more sophisticated approach would be to treat CT* and K as constants to be 
determined such that (20) presents ‘a best fit’. One may, however, choose for o* the value suggested by 
Hahn and Rosenfield or the alternate value suggested by the author: 

o,+ 
(Ty+(Tu 

2 

2 
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2u* uF=7Fcos -1 [exp (-&I 
157 

(20) 

which upon substituting for uF from (13) one has 

(33+6~--7~‘) U+4J2+z2 1’z_2~*cos-l 
3(9-7V) I lr 

[exp (-g-l. (21) 

It should be emphasized that this criterion is not valid after genera1 yield. At the present 
time, there are not adequate criteria to handle these problems. Furthermore, inasmuch 
as a Dugdale mode1 was used, it is only natural, therefore, to consider uniaxial yielding 
too. For small values of oF, i.e. for oF < 0*6o,, (2 1) may be approximated by the simp- 
ler form 

(33+6u-77~~) (l+~)~~+~~ 
3(9-7V) 

=-&. (22) 

Specializing now (2 1) to a cylindrical pressure vessel containing an exial crack, one 
finds 

cr/Jc, a = -y cm 2u* -l [exp(-&)] 

which for A < 1 can be written as 

uh{lf$h2] -$cosl[exp(-g)]. 

(23a) 

(23b) 

By (23a) one would expect, therefore, to predict failure in cylindrical pressure vessels 
containing axial cracks. Inasmuch as theory in general is not useful unless there exists 
experimental evidence to support it, we compare our results with a set of data obtained 
by Anderson and Sullivan[l2] for 6 in. dia. OGOin. thick cylinders of 2014-T6 
aluminum tested at - 320°F. In order to utilize (23a), one must know a priori the frac- 
ture toughness K. This can be accomplished in the following manner: (I) use the test 
data and compute the K’s, (2) find the average K, and (3) use the K,,, to predict fail- 
ing hoop pressures. The results are given in Table 1 and are plotted in Fig. 4. 

As the reader can see, the agreement between theory and experiment is fairly good. It 
should, however, be pointed out that if one disregards the first two points, on the basis 
that they are too close to the yield point, and compute the K,,, from the rest of the data, 
the agreement will be even better. 

Finally, specializing (21) to a spherical shell, one has 

Uh [Is] = y cos-’ [exp (-$L)] 
and for A < 1, one may use its asymptotic form 

(244 

(24b) 
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Table It. Aluminum 2014 T6. Material: 2014-T6 aluminum at - 320°F. 
(r, = 84 kpsi ry = 72 kpsi 

(T,, talc. ksi (TV talc. ksi 
using 

K = 50.2 ksiV% 
using 

K = 52.3 ksiV% 
c A u* = 78 ksi cr* = 75 ksi v,, exp ksi 

0.056 0.24 73.5 71.5 71.6 
0.075 0.32 70.2 69.4 70.6 
0.100 0.43 65.0 64.5 63.7 
0.125 0,53 60.5 60.8 58.5 
0.150 0.64 55.5 56.5 52.2 
0.200 0.85 48.0 48.8 47.4 
0.250 1.06 41.3 42.3 40.1 
0.375 1.60 29.7 30.6 30.2 
0.500 2.13 22.9 23.4 23.1 
0.625 266 17.8 18.3 18.6 
0.875 3.72 11.9 12.2 14.4 
1MO 4.25 10.1 10.4 11.3 

tNote: u* = [ uU+usr)/2] = 78 ksi and a* = [(wv+ (au+u,)/ 

2)/2] = 75 ksi. 

-- 

60 - 
f 

-* 

z 
& 40 - 

iii 

i 
= 20 - 

I I 
K = 52.3 ksl6 
LT = 75ksi 
l = Experimental Data 

0 , I I I I 1 

0 D3 06 09 

HALFCRACK LENGTH (In.1 

Fig. 4. Comparison between theory and experiment for 2014-T6 aluminum 
cylindrical vessels. 

A comparison between the theoretical and experimental data obtained by Sopher 
et. a/.[131 for 9 in. dia., sin. thickness spheres with through cracks is given by Table 
2 and Fig. 5. The comparison, as the reader can see, is very good.7 

In conclusion, therefore, one may use (2 1) to predict failures in pressurized vessels 
knowing only geometry, ultimate stress, yield stress, crack length and fracture tough- 
ness. The applications of such a relation are numerous. In the space industry, for ex- 
ample, where weight is a critical parameter, this relation will enable the engineer to 
design light and strong structures capable of carrying the necessary loads without 
failure to occur. 

tFor further comparisons see the author’s paper “On the Prediction of Failure in Pressurized Vessels” 
presented at the First International Conference on Pressure Vessel Technology at Delft, the Netherlands. 
Sept. 29-Oct. 2. 1969 (ASME). 
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Table 2-t. Material: ABS-B steel at 40°F cU = 59.4 ksi, uY = 30.7 ksi 

rh talc. ksi CT,, talc. ksi 
using using 

K = 102 ksifl K = 95.8 ksi6 
c x U* = 37.9 ksi U* = 45 ksi q, exp. ksi 

2 0.57 28.4 29.2 28.15 
2 0.57 28.4 29.2 28.15 
4 1.14 19.8 19.5 19.70 
5 1.42 16.8 16.2 16% 
6 1.70 14.0 13.6 13.10 
8 2.27 10.3 10.0 11.20 

tNote: u* = [(cr,+u,)/2] = 45 ksi and (T&= [((T,,+ (c,+u,)/ 
2)/2] = 37.9 ksi. 

4oL 
I K = 97 ksi fi. 

37.9 ksi 

Experimental Data 

01 
I I I I I I I I 

0 2 4 6 6 

HALF CRACK LENGTH (in.) 

Fig. 5. Comparison between theory and experiment for ABS-B steel spherical 
vessels. 

Table 3. Defines the coefficients I and J in (21) for two types of geometries: a cylindrical 
and spherical shell 

Long cylinder 
axial crack 

Forallh c 8 Forh < 1 

Long cylinder 
peripheral crack 

ForallA G 8 Forh < I 

I = I,,, from Fig. 8 flh” 
I,.,. = 1 +a 

J = Jc,P from Fig. 8 J ?.P = 0 

Spherical cap For all A G 5.5 Forh < I 
0 I = I, from Fig. 9 or Table 4 

V 
I, - 1+% 

J = J, from Fig. 10 or Table 4 J, =z 0 
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3 

2 

I 
C,P 

I 

0 
0 2 ;t 6 6 

-0.2 I I I . 

0 2 4 6 6 

x 

Fig. 8. Stress singularities for a cylindrical 
shell containing a peripheral crack [ 151. 

Fig. 9. Stress singularity for a spherical 
shell containing a crack [14]. 
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0 2 4 6 

Fig. 10. Stress singularity for a spherical 
shell containing a crack [14]. 

Table 4. Stress coefficients 

Cylinder (axial) Sphere 

A A, = 1c.a ab = 0.54J,,,z A, = I, ab = 0.54J, 

0.2 1.0096 0~00410 
0.4 1.0371 0.01124 
0.6 1.0795 0.01902 
0.8 1.1344 0.02659 
1.0 1.1993 0.03359 
1.2 1.2723 0.03985 
1.4 1.3519 0.04529 
1.6 I .4367 0.04990 
1.8 1.5256 0.05368 
2.0 1.6177 0,05664 
2.2 1.7122 0.05883 
2.4 1.8085 0,06018 
2.6 19060 o%mO 
2.8 2.0045 OWl83 
3.0 2.1035 oGXI14 
3.25 2.2276 0.05832 
3.50 2.3519 0.05549 
3.75 2.4761 0.05172 
4.00 2.5999 om700 
4.25 2.7232 0.04154 
4.50 2.8459 0.03512 
5.00 3.0895 0.02012 
5.50 3.3303 OX@234 
6.00 3.5681 0.02222 
6.50 3.8029 0~04130 
7.00 4.0347 0.06622 
7.50 4.2637 0+9350 
8.00 4.4895 0.12279 

1.0112 0~00611 
1.0422 0.01693 
I.0887 0.029 19 
1.1479 0.04186 
1.2174 0.05448 
1.2956 OG685 
1.3812 0.07886 
1.4731 0.09045 
1.5706 0.10155 
1.6729 0.11216 
1.7795 0.12223 
1.8899 0.13172 
2.0038 0.14058 
2.1208 0.14879 
2.2408 0.15630 
2.3947 0.16463 
2.5526 0.17172 
2.7143 0.17751 
2.8796 0.18194 
3.0485 0.18483 
3.2208 0.18644 
3.5750 0.18493 
3.9446 0.17802 
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APPENDIX 

The stress coefficients Fe) and P for various shell geometries and for A < 1 are 
given in [3-61 as: 

Sphere; 
for clamped 
spherical cap 

,(e) = qR/(2h) 
@) = 0 

p 8 (b) = _ &e’ 

Flat plate 

ppw = &e) 

&b’ 

PJb) = - 4 _ vg 

Cylinder, 
axial; 

for long 
cylinder 
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~3~) = qR/h 
&b’=o 

v5P 
P(b) = - I+’ d-(4 _ vo) r,n 

12vo - 5v,,2 - 8 7Th2 

(4 - vu) vc, 64 

Cylinder, 
peripheral; 
for long 
cylinder 

7rh2 

i I v5=PA2 1+v 1 ( A 
P~:,=iF) l+m +scb’ ti(4_v,,) 32v, 1+2y+2Injj 

I 

+’ = qR/ (2h) 
#C(b) = 0 

p(b) = _ +9 
v%2 

c. I, 
-(4-v,,) 

,+b’ 
-- 

4 - vo 

l_5+2v+v%rA2 

(4-vo)vo 64 

For A 2 1, the stress coefficients for e(b) = 0 are given by: 

Sphere [ 141 
Psce) = @)Zs (see Table 4 or Fig. 9) 

Pib’ = @JS (see Table 4 or Fig. 10) 

Cylinder 
axial [ 141 

pjT\z = @‘)I,, (I (see Table 4 or Fig. 6) 

Pkf\z = bce)Jc, cI (see Table 4 or Fig. 7) 

Cylinder, 
peripheral [ 151 

P!;\, = ?P)lc, ,, (see Fig. 8) 

PC,qi, = @‘)Jc, ,, (see Fig. 8) 

R&sum6-A la suite de Griffith, un critbre de rupture est derive, incorporant une correction de geometric et 
de plasticite et permettant de prtdire toute difectuosite dans les cuves pressurisees. Une comparaison, 
qui s’avere tres bonne, a ete effect&e entre quelques series de don&es experimentales prises au hasard. 

Zusammenfassung- Fur die Vorhersage von Rissen in einem Druckbehalter wird nach Griffith ein Bruchkri- 
terium abgeleitet, das eine Geometrie-sowie eine Plastizitltskorrektur enthalt. Der Vergleich mit einigen. 
willktirlich gewahlten Gruppen von Versuchsergebnissen ist sehr befriedigend. 


