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ABSTRACT

The deformation of a thin sheet having initial spherical curva-
ture is shown to be associated with that of an initially flat plate resting
upon an elastic foundation. Using an int‘efral formulation the coupled

Ut

Reissner equations for a ecraseked shellh;\t‘)f length 2c are solved for the
in-plane and Kirchhoff bending stresses, and, among other things, it
is found that the explicit nature of the stresses near the crack point
depends upon the inverse half power of the non-dimensional distance
from the point €, The character of the combined extension-bending
stress field near the crack tip is investigated in detail for the special
case of a radial crack in a spherical cap which is subjected to a uni-
form internal pressure q_ and is clamped at the boundary R =»§O.
Pending a complete study of the solution, approximate results for

the combined surface stresses near the crack tip normal and along

the line of crack prolongation are respectively of the form

6 C€,0)| = o.4s ’_i. SR L
3 wlh € £
3
A=093
c=023Im
€°=4-1_5V'\

~ \ 91 .‘
gx(e,o)\h%-\. 0.45 E j’_e\_ g »

A=0.98

c=9,23\m

Ro= 4.25 1M .
It is interesting to note that the stresses o and o_, along the crack
prolongation, for this geometry are equal. In general, they will be
of the same sign and will differ only slightly in magnitude due to the

bending component. Finally, the experimental and theoretical results

for Sy, along the crack prolongation, compare very well.
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NOTATION

c = half crack length
D = Eh3/[12(1—v2)] = flexural rigidity
E = Young's modulus of elasticity
F(X,Y) = stress function
G = shear modulus
h = thickness
h as defined on p. 35 (see fig. 3)
i = V-1
3-v

k - I+v
Kn = modified Bessel function of the third kind of order n
li = kernels as defined in text
IS = 2c = crack length of shell
.Ep = crack length of plate
(;ecr)S = critical crack length of shell
-('ecr)p = critical crack length of plate

*
Li = kernels as defined in text
L, = lim L

ly -0

m = constant as defined in text
M _,M ,M = moment components

Xy xy
n_ = constant as defined in text
N_,N ,N = membrane forces

Xy’ x
P = periphery
q(X,Y) = internal pressure
9 = uniform internal pressure
r = X x2+y2




R
o

H
il

C

o
R = radius of curvature of the shell
R = X4 ge
Eo = given R
S = surface area of the shell
1:0 = constant as defined in text
8) = energy
A = constant as defined in text
Vy = equivalent shear
W(X,Y) = displacement function
X,y,2 = dimensionless coordinates with respect to the crack length
X,Y,Z = rectangular cartesian coordinates
1
a = (i)2
i
B = (-i)?
Y = 0.5768 = Euler's constant
sk )
% = surface energy per unit area
) = height of the shell
|}
_ X-1,2 Y. 2
€ = 3 ( s )"+ (?)
€ _,€ ,&_ = strain components
%y’ "z
t = x-f
0 = tam b L
4 o 2, 4
4 _ Ehc™ _12(1-v7)c
& = 2~ 22
R™D R"h
3
’ = same N\ as defined in Appendix II, page 59
v = Poisson's ratio
v = l1-v



P = J §2+ yz = J-(x—ﬁ)2+ yzj

s 0. 5T = bending stress components
b b b

Q
Q
X
1

stretching stress components

GX’GY’TXY = applied stress components
0; = critical (fracture) stress for shell
o;; = critical (fracture) stress for plate

®(x,y)y(x,y) = harmonic functions

X (x,y) = deflection of a plate on an elastic foundation

1
4
!
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CHAPTER I

INTRODUCTION

One of the problems in fracture mechanics which apparently
has not received extensive theoretical treatment is that concerning
the effect of initial curvature upon the stress distribution in a thin
sheet containing a crack. Considerable work has been carried out
on initially flat sheets subjected to either extensional or bending
stresses, and for small deformations the superposition of these sep-
arate effects [1] is permissible. On the other hand, if a thin sheet
is initially curved, a bending load will generally produce both bend-
ing and extensional strésses, and similarly a stretching load will
also induce both bending and extensional stresses. The subject of
eventual concern therefore is that of the simultaneous stress fields
produced in an initially curved sheet containing a crack.

Two geometries immediately come to mind: a spherical
shell, and a cylindrical shell. In the latter case one of the princi-
pal radii of curvature is infinite and the other constant. It might
appear therefore that this géornetric simplicity leads to a rather
straightforward analytical solution. However, the fact that the cur-
vature varies between zero and a constant as one considers different
angular positions — say around the point of a crack which is aligned
parallel to the cylinder axis — more than obviates the initial geo-
metric simplification. For this reason a spherical section of a
large radius of curvature constant in all directions is chosen for

consideration.
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It is of some practical value to be able to correlate flat sheet
behavior with that of initially curved specimens. In experimental
work, for example, considerable time could be saved if a reliabie
prediction of curved sheet response behavior could be made from
flat sheet tests. For this reason an exploratory study was undertaken
to assess analytically how the two problems might be related. Although
it is recognized that elastic analysis is not directly applicable to frac-
ture prediction because of the plastic flow near the crack tip, consid-
erable information can be obtained.

Chapter II lists the basic assumptions and equations of shallow
spherical shells. Then the complementary problem of a cracked
spherical shell is formulated in terms of Reissner's shallow shell
equations in Chapter III where the problem is separated into two
parts, symmetric and antisymmetric. In Chapters IV and V the
solutions to the symmetric and antisymmetric parts respectively
are expressed in integral form. They are then reduced to the solu-
tion of a pair of coupled singular integral equations, which are solved
by successive approximations for small values of the characteristic

4
shell parameter \ = \ /12(1- vz) s . No effort was made to con-
vRh

vert the pair of singular integral equations to a corresponding

Fredholm type, however Appendix II shows that the two methods
are equivalent.

The particular example of a clamped segment of a thin shallow
spherical shell is considered in Chapter VI which serves to illustrate
how the local solution may be combined in a particular case. Then

in Chapter VII, Griffith's criterion is extended to the local region of




B
an initially spherical curved sheet and an expression for its critical

crack length is obtained.

Finally, Chapter VIII compares the experimental and theoreti-

cal results for the particular problem described in Chapter VI.
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CHAPTER II

GENERALITIES

In the following, we consider bending and stretching of thin
shells of revolution, as described by traditional two-dimensional linear
théory, with the additional assumption of shallowness. In speaking of
the formulation of two-dimensional differential equations, we mean the
transition from the exact three-dimensional elasticity problem to that
of two-dimensional approximate formulation, which is appropriate in
view of the "thinness" of the shell. In this paper, we limit ourselves
to isotropic and homogeneoﬁs shallow segments* of elastic spherical
shells of constant thickness. It is also assumed that the shell is sub-
jected to small deformations and strains so that the stress-strain
relations may be established through Hooke's law.

The basic variables in the theory of shallow shells are the dis-
placement component W(X,Y) in the direction of an axis Z, which for
shells of revolution coincides with the axis of symmetfy of the shell,
and a stress function F(XY) which represents the stress resultants
tangent to the middle surface of the shell. Following Reissner [2],
the coupled differential equations governing W and F, with X and Y as

rectangular coordinates of the base plane (see fig. 1), are given by:

_Eh grw(xY) x VE(RY) =0 (2.1)
R

viw(zY) TE(rY) = ‘1(1;.\') -

* A segment will be called shallow if the ratio of height to base diame-
ter is less than, say, 1/8.
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The usual bending moment components Mx’ My’ MXY are de-

fined in terms of the displacement function W as:

R N - .
M, [w v 2 |w (2.3)
My = —D | 2 _ 2>
Y s SR szlw (2. 4)
) Bw
M“K = - D () % (2.5)

Similarly, the membrane forces are defined in terms of the stress

function F as:

N, = %;F; (2.6)
N\3 = BB;_" 7 (2.7)

Ny = - BF (2.8)
2qTDY :

In view of (2.3) - (2.8) the bending stress components are

a
c =_EZz 2w L, Ow (2.9)
Xy, (1-v?) 2X2> 2Y*
6, =-Ez2 [ 2w , , 3w (2.10)
3[, (\—D") BYZ bi‘." .
2
Ty = - aeZ 2w (2.11)

38X DY



e

Similarly, the extensional stress components are

(=} = _l_ _?ii—
& =\ F
Je e A 2xX>
Tog = — b BE__
e L  2xT oY

(2.12)

(2.13)

(2.14)
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CHAPTER III

CRACKED SPHERICAL SHELL

1. Formulation of the Problem

Consider a portion of a thin, shallow spherical shell of constant
thickness h and subjected to an internal pressure q(X,Y). The material
of the shell is assumed to be homogeneous and isotropic and at the apex
there exists a radial cut of length 2c with respect to the apex. The
coupled differential equations governing the bending deflection W (X, Y)‘
and membrane stress function F(X, Y) are given by 2.1 and 2.2. It is
convenient at this point to introduce dimensionless coordinates,

namely

1

xz= X
e

oy= X (3.1)

2l 22
which change the homogeneous parts of 1+ and L2 to:

Ee\l;\cz UW +V'E = o (3.2)

w4 vir- o (3.3)
. RO

As to boundary conditions, one must now require that the normal mo-
ment, equivalent vertical shear, and normal and tangentiél in-plane
stresses vanish along the crack. However, suppose that one has already
found* a particular solution satisfying 3. 2 and 3. 3, but that there is a
residual normal moment My’ equivalent vertical shear Vy’ normal

in-plane stress N_, and an in-plane tangential stress N, along the
y Xy

real axis Ix| < 1, of the form:

%
See particular solution, Chapter VI.



MG) = - >
h) c*
)

TJ’3 = 2 v,

c.l

N - ome
3 -
)

N - 'ho
Xj e

For simplicity, we take m_, Vg

we divide the problem into two parts:

Symmetrical: where v, =

Antisymmetrical:

where m
(8]

(3.4)

(3.5)

(3.6)

(3.7)

sk
> D, to to be constants and furthermore

2. Mathematical Statement of the Problem

Assuming therefore that a particular solution has been found

b

we need to find now two functions of the dimensionless coordinates

(x,y), W(x,y) and F(x,y), such that they satisfy the partial differen-

tial equations:

=0 {3:2)

(3:3)

%
For m

.o o’ o
section 7.

s 5t 5 v, non-constants, see the remarks on Chapter IV,




i

and the following boundary conditions. Aty = 0and Ix| <1:

‘\A'1 (X“o) =—2;[ E‘L-*y?:w;-l = bm’ (3,8)
C 33’- 3% cx
V, (%:0) =- > baw_ + (»-») Sw _X =7 2 (3.9)
1 ERRTE 2x*2dy cs ‘
. BE m
N3 (x,0) = R o = _:-: (3.10)
2
-_ 3F s
N‘*\j (%)O) - —_C_I- 'ax'b\j = —2—; (3. 11)

Next, to satisfy continuity requirements, we require the following equa-

tions to hold for y = 0 and Ixl>1

. 3 " (w) | =
o, (S O0- 5 ()] = 12
e LR (- 5 (0] -

(N\: 0)\)2-,3.>

Furthermore, because we are limiting ourselves to a large radius of
curvature for this shallow shell, i.e., small deviations from a flat
sheet, we can apply certain boundary conditions at infinity even though
we know physically that the stresses and displacements far away from
the crack are finite. Therefore, to avoid infinite stresses and infinite
displacements we must require that the displacement function W and
the stress function F with their first derivatives to be finite far away

from the crack. These restrictions simplify the mathematical
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complexities of the problem considerably, and correspond to the usﬁal
expectations of the St. Venant Principle. It should be pointed out that
the boundary conditions at infinity are not geometrically feasible. How-
ever if the crack is small compared to the dimensions of the shell, the

approximation is good.

3. Reduction of the System

Reissner [3] has shown that the solution to the system (3.2),

(3.3) can be written in the form

W= X+ & (3.14)
F=-% V4 Y (3.15)

where ® and  are harmonic functions and X satisfies the same differ-

ential equation as the deflection of a plate on an elastic foundation, i.e.,

(v*+ )% =0 (3.16)
where

fo BBt _ aQom e\t | 3.17

A\ R*D (R/a) (/Q ( !

The function y represents the inextensional bending part of the solution,

and ® represents the membrane part of the solution.
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CHAPTER IV

SOLUTION OF THE SYMMETRIC PART

1. Integral Representations of the Solution

We next construct the following representations which have

the proper symmetrical behavior with respect to x,

s Ol RO _ s\l
+Tye } Cos XS As

W (x4 = S {ne A%, € (4.1)
® o S R \ —slw\
F(x,'f\ =_¢X’.&‘2% i\’\e T T.e a0 e.s .kcps*séfv (4.2)
c‘-

where the Pi‘s (i=1,2,3,4) are arbitrary functions of s to be deter-
mined from the boundary conditions, and the + signs refer toy > 0
and y < 0 respectively.

2. The Boundary and Continuity Conditions in Terms of the Integral
Representation -

Assuming that we can differentiate under the integral sign,

formally substituting 4.2 into 3.10, 3.11 yields respectively:

s s c')“ I\ RE Y (E1} —slsl )
o T s

(4.3)

\'s\->°

and

gl Ssﬂ)“\'ﬁ\ ~sls\ . A )
J . P »xn“P = »\c RART +Bse  |ssimxsdst =o

\y\»>o
(4. 4)
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where again the ¥ signs refer to y > 0 and y<O0 respectively. A suf-

ficient condition for Eq. 4.4 to be satisfied is to set

SBo=- (V00 -v, {Foe)

Furthermore, it can be shown that the continuity conditions on F and

its derivatives for y=0and Ix| >1are satisfied if we take

Su{ lsl_.'.xl- ?‘-i-ds‘-q-i.)\t \’1} wWIXKS As =0 , X\ >\ (4. 6)

Similarly, introducing 4.2 into 3.8 and 3.9 we obtain respectively:

. Is= i 1w _Js‘+i.\'-' 1u)
‘,Q;'w\ { [?. ('Vos—l- ")e. X +

+ Py (st i) @
lei»o0

+ Dosa L g 1 cosxs ds } =-",; Ix\<«t

(4.7)

and

\y\-»o0

_\l -2 1Y\ J iy 1y
Kiwm {i-g \_?S =i (ves? ~ix)e A 3-\-?\15‘-\» 2 (™ \.)‘)e. ) X

+ vosan e_s\‘a\l COSXSAS.} =o | Ix| <\ (4.8)

Again, a sufficient condition for Eq. 4.8 is to take
Y5 3—- {\l -|. (Yos -h-):') P + \] -\-\- (Vob -L)\ BF } (4.9)

Further it may be easily shown that the continuity conditions are satis-

fied if

g: {FF - a4

cosxsds=o ;1 \x| > (4.10)

(4.5)

— ——

e
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In view of 4.6 and 4.10 we conclude that the individual integrals

must vanish, namely

g“" B [emof wsxsds =o x> (4.11)
o S*

00
g _E-_ ,[51_'0\2- ms‘sc\s =0 N Ix\ >0 (4.12)
SL

©
Therefore we have reduced our problem to solving the dual integral
equations 4.3, 4.7, 4.11 and 4.12 for the unknown functions Pl(s) and

Pz(s).

3. Reduction to Single Integral Equations

Because we are unable to solve dual integral equations of the
type discussed in the previous section, therefore we will reduce the

problem to singular integral equations. Let

xR
W (XY = g I PO cos xsd s s X< (4.13)
Y =
o S
and
o
W, (0 -'-% % (s Cosxsd s y W< (4.13a)

©

which by Fourier inversion gives:

Pl (sx—_f)\t‘ -_-_\ﬁ_}\_% u\g\ q,esgséxg (2.31)
s '
©

and solving for P1

P = = A & \A.‘Lg) oos§SA‘§ (4.14)
N JsA R 3

Similarly
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\

= & 3+ cos Sc\
R - g e &D\ﬁ(g\ gsdy

where the functions ul(g) and uz(f,),

(4.15)

due to the symmetry of the prob-

lem, are even., Formally substituting 4.14 and 4,15 into 4, 3 4.7 we

find after changing the order of integration and rearranging

L

! "

N, = -2 g {u\m\_f —\A.L(.E)L:}AE

X

om- g (e e } s

where

& o, RSy Sa b
. _‘__g e cos (x-¥)sds
R ) T o

0 _ sly\
- L & 53 e o8 (x—s)so\s
2

Rl
L E%& == - Ls(x )sds
A sl_ elxz.

\ ws(x—g}sc\s

kad = = 1y\
C = -LS {.ﬂ.‘i’é__“i’.) s “aj s(Vos +~'>\1)e a\kus(x-@y&s
2

N el
U= 2l {2 ™ i) s e

(4.16)

(4.17)

(4.18)

(4.19)

(4. 20)

(4.21)

e &
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The integrations in 4.18-4.21 may be carried out explicitly by making

“use of the Fourier cosine transforms

S°° e wsgsds = L‘é_l: (4.22)

©

ms(sc\s =K, (>¢) 5 Rea>0 (4.23)

S” _1s2+a 14l
e

) ‘Is’-* o

and similar results obtained by differentiating them with respect to x

2

and y (see Appendix I). In these formulas pZ = gz + vy, and Kn denotes

the modified Bessel function of the third kind of order n.

The expressions 4.18-4.21 then become respectively

* 23 a g 3 3 2
al, = %—{-2‘%?;‘- (Z*-3f) Ko()ee)-[lig—dig (Z-a\ar)] K, (vpe)

(4.24)
v 22 - ok}
¢ 0L (Fhany T2y amd (g K,
ay= 2 {_32%4—(: i) Ko () L—‘-—?,i-*r o (z ﬂnlﬂ K, Ote)
(4. 25)

22 _ 24wt
£ £

B T e
(4.26)

_oLNeZ K\()mﬁ»:z _ 8T «’x‘(}
e R P t*

.* -
Formulas 4.22 and 4.23 may be obtained from [4], pages 14 and 17
respectively.
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3 262 () K ) -5 (2212248 (¢ )] 0

(4.27)
SERT i (ug) 4 208 2Lty @R |
¢ R &
Thus, the limits as |y | — 0 of NY and MY are found to be respectively

\

L N o _ 2i2%RD _J_S { u.('g)\_\—u.;(g)\.a}c\g
l9\-»0 nc? dx - ‘

I'a\—vo X

M.j- - 2> .f.g‘ {mts\ L, + %, (%) L;} dg

where the integrals are understood to be of Cauchy principal value and

- ' 2
2L =-2E R opzl)- (e« RBE ) K (ple) + o (4.28)
=_'x‘ot*' 2 |\ -
al, = K, (i) - (L = __..{m) K (wz) 2 (4.29)
2 ;j'
_ e L ay, _ ot
s y i K‘("AQ\Z\B v Z3 Z

2L

ll

4= 1’2—5{——1{ (\Z) =¥ (RE a‘xd\\K b‘”‘\g‘y

NP 2Vo S b\
exd\mKO\ﬂK\) = e
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If we set N , M , in the limit as lyl — 0, equal to -n_ and -m_ re-
y y o o
spectively, integrate with respect to x, then we find that they must
satisfy the integral equations

\

S {w (z) 2L, - \&z(S)nIL_.L‘} c\g = -D\.—“ﬁ; % ;0 W\<y (4.32)

\
S i W, (§) aLs-«\- \).AQ&H} c\g = = 0wmMg X 3 <\ °

=\

1
The kernels Ll’ LZ, L3, Z

as can easily be seen by observing their behavior for small arguments:

L4 have singularities of the order

N aph (s (5 _ 38 _ 3 L3\
- seem O F Cenldz -5 -3 S
+ O ( o) (x-s)a&\')\\x-s\\
aL, = -2 el x-gX. -_.—.3_.%1-&1)_‘:5\.
* 2(x~¥) i ( ) Ev o= | <
K= (% @ (2 - 2632 | A« (XS] | (4.35)
+ 0 (\ &x-s) «fm\\x—s\)
AL, = - 2ok (4-%) X-E S'vo -8 | 4= (4, Bae a8
RS R I ORI

-

T (4.36)
J

. b - ) @
MY N | {
5 (A & |
vl @

4+ 0 (¢ (x-EP 'ﬁ‘lx-s\)

See Appendix I for expansions of Kn(z) for small z.




=18

[
AL =- ’)2'23‘4_%) +’)\q°(q(x_§) [5‘)’:;8 % 4;3),0 (8* —QV\)‘ \X"“)]

4 2 (x-%) O
bt V[ ZVonP, 4=3% (4, [ s (re2) ).
) ¥ (X~ ,‘%;[‘/}3‘8 Sl 7 {f{"«w A\ ,,5:9] | (4.37)

+ O(~¢ (x—g‘ M')‘f‘\x-'s‘\}

We require that the solutions ul(x), uz(x) be Holder continuous
for some positive Holder indices kb, and My for all x in the closed in-
terval [-1,1]. Thus in particular ul(x), uz(x) are to be bounded near
the ends of the crack.

The problem of obtainving a solution to the coupled integral
equations 4,32 and 4.33 can be reduced to the problem of solving two
coupled Fredholm integral equations with a bounded kernel, See

Appendix II,

4. Approximate Integral Equations

Because of the complicated nature of the kernels L., L., L.

1 =2

and L4, an exact solution for the unknown functions ul(x) and uz(x)

3

is extremely difficult. On the other hand, for most Practical appli-
cations the parameter \ attains small values as follows from the
definition of \ namely

v ;. | ‘ - ,
= J-‘if{—%’_\\:—)- (‘/k)=m (/R).G:)

It is clear that \ is small for large ratios of L and small crack lengths.

h
As a practical matter, if We consider crack lengths less than one tenth
: : 27R
of the periphery, i.e. 2¢c < 1g ,» and for hE < 103 a corresponding

upper bound for \ can be obtained, namely \ < 20. Thus the range of




——

=]

A becomes 0 < A < 20 and for most practical cases is between 0 and 2,

depending upon the size of the crack.

If we consider small \, we may replace the exact singular

integral equations with the following approximate set

[}
S %U-‘,LE\Q-Q‘— H_NLE)R!Q} A'g = - Mecin x LX) <\
-\ L 22 RD

S\ &\klv(‘g)axa'\‘uio B)u*}c\g e P gl

where the new kernels are:

28 e - Xt - _3_1__,9,,\ \x—s\]
o “-\-)Q (x- §3‘_31 UL L

2L, =Ml aps 5_33w _2 «\x-s]
T T + A - g“-“ a 8 J“?‘":TJ

- _ &-Yo 4 § Y- 4 -o -§)
ak = "-‘—fé'—-)-\-% (x-8)| 2recB ” ‘ —1&—-—(‘\-,&\19_\:__3—_\

2 4 §¥-8 4-3Vo -
ad, = Lk_la——s 0l (x- E)XT A (Manglﬂ

5. Solution to Approximate Integral Equations for Small X\

(4-38)

(4.39)

(4. 40)

(4. 41)

(4.42)

(4. 43)

For the simple case N\ = 0 the problem reduces to that of a flat

sheet under applied bending and stretching loads, the solution of which
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has been investigated by many authors. For example, the problem
for both bending and stretching for an orthotropic plate, containing a
finite crack, was investigated by Ang and Williams [1] and a solution
was obtained by means of dual integral equations. It can easily be
_shown* that the dual integral equations can be transformed to two
singular integral equations of the type 4.32 and 4.33 with simpler
kernels. Furthermore, these are not coupled and the solutions can
easily be obtained as in §47 of [6]. Without going into the details
they are found to be of the form Arl_—?, where A is a constant.

Similarly, the solution for an initially curved sheet must, in
the limit, check the above result and because ul(g) and uz(g) are in
particular to be bounded near the ends of the crack, it is reasonable

to assume solutions of the form

w, (@) = -3 Y_A\ﬂ‘ Ay (-8 +- - 1 y \E1<\ (4.44)

W, (5\:5—‘?—“_%&\’-31 (\—s")-\n--l y Bi<) (4. 45)

where the coefficients Al’AZ’ o & Bl’ BZ’ ... can be functions of A

but not of §.

Substituting 4.44 and 4.45 into 4.38 and 4.39 and making use

of the integrals given in Appendix I we obtain:

* See Noble [5].

=y
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A2 e g (g -2 L ax-E3a (o (\**M)“%"an
C B et (e 0 [ (4B ]

(4.46)
4a2 4 a2

- AP 3

-\—A:.{ —_f—- 3% +l—f-vn><}

A2 4. ¢ 2
+ B, { AL I 1, L':t_:qxﬂﬁu O()\aew)\) = - Menct
A L RD
Similarly:

2 - -3V, 44 (4-3% Aa X0 o3

A, {_(4_,,.,) ¢1 ax 4t *‘_sv S¥e-8 :«_:_ x]—}x* z e‘ (4_35-)\_“7(\+ _‘%)x+ : x]}
. -3V, ot 3

+B, {_ (4-k) Ea.;\z nx+x‘d‘[5';18 L A- :v, zs] Ny ¥ (4 : W% (1 %)x+_}x ]l
0(1\4 3 - 3

..\..Al{_&q-v.) = (_:nx nx)}

(4.47)

Bz{—(‘\"“)ﬂ:‘—*(-g-nx—ﬂxz‘)}-\— O(]‘J&A’)\) = - monx

Next we equate coefficients. In particular we first require the coef-

ficients of the x3 terms to vanish which gives
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Az_-" B:. = - '3;—2 (k.—B.) (4.48)
A, - B, =— %5%:_ i_f_( A+ B (4.49)

Then substituting 4.48 and 4.49 into 4.46 and 4.47 and solving for A1

and B1 we find

A = Moc® nt 8-3v . A? ( 1-3& A-3% Lk’ﬂ‘}
e T e e e Ua st £)4 X% 250 by )
(4.50)
° A B-3M , ~2,2(7 .3 3 a2 Xu3 2p,
b e () (e 0 (200)
N> (a-%) e
B = Moc” {5_ AN 3-3% L Xpr -’m 4-3V w,, At 4-3V, L, 2B }
e U T e }TE“‘V‘,(‘* )
’,_n (4.51)
Mo 2 8-3% A + 38\ & 2 X
+x‘?‘(4~v») ai e aow ™ Mi 55 e XF (i —&“ ¥ 0(“1'?“)‘)

We should point out that, if coefficients A'l’ B1 of higher accuracy are
desired, say up to order )LG, then it is necessary to solve ann x n
algebraic system. In effect, this is a method of successive approxi-
mations for which the question of convergence will be investigated in
Appendix II,

It thus appears that for A< h* the power series solutions of

the form
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N . )
“(N)(EB =Vimgm 2 AN (-5Y) (4.52)
| m=e
N M
\LZ(N)(E) = Ji-3* é_=° Bm‘ \“ (\—3‘) (4.53)

in the limit as N — oo, will converge to the exact solutions ul(g) and
u2(§) of the integral equations 4.38 and 4.39. However since most
particular solutions will give us a non-uniform residual moment and
normal membrane stress along the crack, it is only natural to ask
how the solution changes. Suppose, for x| <1, we expand m and
n in the form %) a.nxZn (even powers because of the symmetry of
the problem), then our previous method of solution will still be ap-
plicable. And as can easily be seen from equations 4.32 and 4. 33,
although the coefficients An, Bn in this case may change, the char-
acter of the solution will still remain the same. Finally, because we
desire to focus our attention upon the singular sfresses around the

neighborhood of the crack point, we need only to compute coefficients

A1 and Bl'

6. Determination of W and F

In view of equations 4.14, 4,15, 4,44, 4.45 and the relation

=
z

=t \"‘
% \Iy Q'm,)_\‘ [rQuad] (o2-3) ;5 oex<a . \
S‘ S—h]h(g.s) wsxsds = { )Re\"7—-‘_f

° < , & xX <
(4.54)
which can be found on page 44 of [4] we have:
)= 2 KA\‘S‘(sh A, L—éﬂ + 0(7\“)} (4.55)
s -y
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and similarly

RO)= 2= {B\ T+ e, 2O oc“«ﬂ (4.56)

S+t
where Al and B1 are given by 4.50 and 4.51 respectively. And finally

substituting 4.55 and 4.56 into 4.5 and 4.10 we find

B = = (A+B) ) 3% (Aar®a) Jalo)

(4.57)
—iat - o
y:;z ("\ %‘3 36) + O\)
and
B == (M=) T (6) —ant (A-ny) 228 | o (59) (4.58)

Therefore, a substitution of the above relations into 4.1 and 4.2 will

determine the bending deflection W and membrane stress function F.

7. Determination of the Singular Stresses

In view of equations 4.1, 4.2, 4.55, 4.56, the bending and
extensional stresses defined by 1.9-1.14 can be expressed in integral
forms which may then be evaluated using the relations 14-17 of Appen-

dix I. Without going into the details we list below the results,

*
Bending stresses : On the surface Z =+ }%
6 =-E& Fo (3 e .1 19_) £ 4.59
x\, :.(\-\»V)C"J—é_:(*usl*4“s2 +O( ) ( )

€3b= _ER _‘;::_(.‘_‘*_.5'” M.?..\.Likus%)-;O(E") (4.60)

a@-yyet e\ 4 *

* Note because of the Kirchhoff boundary conditions, the bending shear
stress does not vanish in the free edge. For the flat sheet this problem
was discussed by Knowles and Wang [7].

e e e
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s ﬁu-_e_r_xg;se °) 4.61
hy, =3 s e (2 g e e ) s 0(8) )

g F O rEspeStively aud
T ozt hB o me o { ST | A3, a3V, (H,p“gg)}
° a {ZEGD (4-%)L 32 8 16 \6
(4.62)
me {u,m‘_ 1:21}+ 0 (2 )
T2 (4-2) 32 4-%
Similarly
Extensional stresses:
B 9N N ) 5
o= upE (v g es ) v o) (4.63)
F [y \ geB °
6, = ——2o | 5. s _ — 59 € 4,64
3¢ aTe X % T R X 0(_ ) ( )
= h Lot B b )
e = @ &‘C:r‘( ain 8 L s g8) 4 O (¢) (4.65)
where
Iy 4
R

Mo C* 30 42) 4, MeA*VERD C‘{ 13, 32 3,&3_}
{ A 32 -)\ A PN (4-Vo) 3‘1 8 l‘ i€ (4.66)

+ O ('X“‘-—gv.’x).

It is apparent from the above equations that there exists an interaction
between bending and stretching, except that in the limit as A — 0 the

stresses of a flat sheet are recovered and coincide with those obtained
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previously for bending [8] and extension [9]. Thus the stresses in

a shell are expressed in terms of the stresses in a flat sheet,

8. Combined Stresses

In general, the combined stresses will depend upon the contri-

butions of the particular solutions reflecting the magnitude and dis-
tribution of the applied normal pressure. On the other hand the singular ' 1
part of the solution, that is the terms producing infinite elastic stresses
at the crack tip, will depend only upon the local stresses existing along
the locus of the crack before it is cut, which of course are precisely
the stresses which must be removed or cancelled by the particular

solutions described above in order to obtain the stress free edges as

—

required physically. Hence the distribution of q(x,y) does not — to

the first order — affect the local character of the stresses at the crack

point.
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CHAPTER V

SOLUTION OF THE ANTISYMMETRIC PART

1. Integral Representations and the Stresses

sk
It can be shown that the kernels are given in terms of

g o ‘ B !SZ_')\%(‘- 1yl
€

—

AAw Zs ds
o S

which we cannot evaluate in a closed form. Therefore, we will re-
strict ourselves to the special case where ¥ = 0 and t, # 0 but a

constant. In view of the above, we can assume the following integral

representations of the solutions

o RES k) s ioF o) - shal
W(‘x,‘t\): :;S {Qse. A + Q¢ e +Q, e }A—‘w\stS (5.1)
. % R C b | _Js"-q'o\'- tyl -s\‘a\} ‘
F(x)\st) =3 QCSBS {Qs e . A Qsc aimxsd s (5.2)

where again the + signs refer to y> 0 and y < Orrespectively. Without

going into details (see Appendix III) we list below the results for Z = -121

:iEQ‘ d?}i‘)go (‘!ﬂv Mﬂi_l"_,ﬁi‘“&)+oce°)
%y 2(-¥?) adxe c* 4 % 4 2

(5..3)
=% Exer, _f_%le—";:‘; ($ g -t )+ o(e) (5.4)
bt R (et pes)io® e
Sxe=F ;‘;;E‘u Fao (F 28 +Lsinie) & o(e) {Ba )

For more details see Appendix III.
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Je aTe fce Y 4
.4 Y
o b2 P \ se °
- i P (%ws_g_a,zwsz.) + 0 (€

where

Fﬁs ate i_\_.,l"_& + 0 (7\*&\3}
2% RO 3

—foos 2 etto iv.—aw(«vo)x +4% 2,02 L0 (a\"ﬂ\q)}
2 /YD 16V & -

(5.7)

(5.8)

(5.9)

(5.10)

which, for the case A = 0, also limit check the results in refs. [8] and

[91.
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CHAPTER VI

A PARTICULAR SOLUTION

As an illustration of how the local solution may be combined
in a particular case, consider a clamped segment of a shallow spheri-
cal shell of base radius ﬁo and containing at the apex a finite radial
crack of length 2c in the direction of the X-axis (see fig. 2). The
shell is subjected to a uniform internal pressure q, with radial ex-
tension Nr = %qu, and because it is clamped we require that the
displacement and slope vanish at R = R-o’ For this problem, Reiss-
ner [10] gives the solution of the coupled-extension-bending equa-

tions for the uncracked shell as:

mr(‘) = C, bex ()“c)+ct\,e'- (m'c\ % Gy (6.1)
= E& ev (e - e - — *
R = B fcibei ) - € b Lwcﬂ A (6.2)

where

/
C = €9 R vaGp®) %o bei ()
\
EL* [be;’l (\‘te)]:"\* [bml(\‘m\}z

C B e C‘ { ___\Dm_'("x*)\
: \:{_'\.l (_\T.o)

c. a=C { bex (ea) bei! (o) = bet (o) ber! b\ﬂ}
E ‘ bei! (%)
Along any radial ray, and in particular along 6 = 0, 7, the bending and
extensional shear vanish by symmetry, and the circumferential bending

and stretching stresses are




®)

-M.99 (v = _Dc-:);- {C‘ [ v bel =) = (-v) l:e'r.;('cz':.! 1

-8 [V L%(wc) + (-v) Mﬂ_] } (6.3)
2 l’t

®), 23 N _ i .
Koo () = ,Elj\“a Crosy { Cibel One) -, bex (xt)}—_i TR » o
Neg(x) =0 (6.5)
Veo (7) =0 (6.6)

Therefore, the homogeneous solution must negate these values from
the particular solution. But since in Chapter IV we already have ob-
tained a solution for uniform loadings along the crack, ¥ namely m
and n,, therefore we will make use of these results in order to obtain
an estimate of the stresses in the vicinity of the crack.,r As an engi-
nheering approximation, by considering an upper and lower bound on
m_and N, > We may estimate an upPper and lower bound for the stresses
in the neighborhood of the crack point. On the other hand, if we are
interested in the stresses away from the crack, say 3 times the crack
length, then by Saint Venant's Principle we need to take only the

average values. Thus we define

(w)
(€3 ) ®)
D wm, = ™min Mee & DMy < Mo Mae =D Mo

a
c* Ixi<1,8=0 c* x1<1, 8=0 B>

%k
For nor-uniform see remark in sect, 5, Chapter IV.
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and similarly

@ @) ()
P ®
e = ™Min NL & _Z\M £ mox N o0 - Mo
c2 Ixig1,0=0  °© c* W\« ,9=0 c*

Next, let us consider a spherical shell with the following
geometrical dimensions:

4,25 in.

20 in,

CEE
"

= 0.009 in.

1/3

2c = 0,46 in.

<
i

16 x 10° psi

&=
n

from which we can calculate the parameters

A 0.98

18.50

o
O

The following table shows the variation of the residual moment Mél;)

and membrane force N((;l;) along the crack,

¢ e "

0 0 -0.50 q_ R 0.89 x 10"% q_Rh
0.074 0.30 -0.50 q_ R 0.87x10"%q Rh
0.117 0.50 -0.50 q_ R 0.92x10"%g Rn
0.164 0. 70 -0.50 q_ R 0.94x10"% g Rn
0.235 1.00 -0.50 q_ R 0.97 x 10™* q_ Rh

diff. 0% diff. 9%
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It is clear from the table above that M(GO) and N(BG) are almost uniform

along the crack. Therefore we may choose

)
—v_\ll_. = 0.50 %o R
<
D ) -4
2Mo = — 0.47 X 10 %OR&
ci—

Returning now to the stresses along the crack prolongation, for example

the normal stress ¢ (X,0), one finds using 4.60 and 4. 64 that:

total
“.) (X o‘)‘ L W { L+ (oute +o.03%3§§7}}
3
=L \,&@-l)/
? (6.8)
.\._.G—_'s.__.___{.\_ (oax*-o-ta&.\ )\}
\‘3 (x-0/c e
which for X = 0.98 reduces to:
c, ® o7l & Ba____ § L a7
3,,*‘3 0) = m"‘ {1 } :.(x-t JEEY/ { }
(6.9)
where
€, =52 mo - "applied bending"
TS
€. = ':“’ = "applied stretching"
&
And for our particular example, we can associate
E‘tu) ~ ~-0.58 xlO'a_}LP:_ =~ - 0.00| j’-%?—*— (6.10)
N
- (=
e+ o s0 geR (6.11)

«

From equation 6.9 we see that the initial curvature will increase the

applied bending stress by approximately 7% and the applied stretching
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stress by 27%. One deduces therefore that the critical crack length
of a shell decreases with an increase of \ or a decrease of radius of
curvature. (See next section.) In this particular case it is found
that the direct bending stresses are negligible compared to the ex-

tensional ones and the combined stress is

¢ (x’o)\ ~ 0.¢4 FoR _ o064V q.R (6.12)

%, _ -
Oy Y T Eaw Cf

and similarly

6x (x,o)\ ~ 264 Vel FoR (6.13)
Yokol v= \/3 \l 2 CZ“\) «
where, based on the Kirchhoff theory, the two-dimensional "hydro-
static tension" nature of the o and O'Y stresses predicted for flat

plates is preserved. Finally, the corresponding strains are

%o
E4A

£ (Z,0) x o.30 (6.14)

[
x-1

E (¥ 0) =~ o0.30 |-=— $oR 6.15
X( )) o x-i Ea. ( )
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CHAPTER VII

GRIFFITH'S THEORY OF FRACTURE FOR CURVED SHEETS

As is well known in fracture mechanics, the prediction of
failure in the presence of sharp discontinuities is a very complicated
problem. Some work has been done on flat sheets, based on the
b.rittle fracture theory of A, A. Griffith [11]. His hypothesis is
that the total energy of a cracked system subjected to loading re-
mains constant as the crack extends an infinitesimal distance, It
should of course be recognized that this‘ is a necessary condition
for failure but not sufficient.

Griffith applied his criterion to an infinite, isotropic plate
containing a flat, sharp-ended crack of length 2c. We shall now
proceed to obtain a similar, but appréximate, criterion for initially
curved sheets based upon only the singular terms of the stresses.,

The basic concept for crack instability is

where the system energy is defined by

System = —UA—.,QANS + vs‘\'% N Uﬁ“"%‘“"{ {7.2)
The applied stresses are held constant so that
v"’“"ﬁ:v"_ QS?(G“E\A.ni-'TE‘u.n)AP (7.3)

where UO is a reference constant energy, and the integration is over
that portion of the outer perimeter where forces act to cause dis-

placements., The strain energy is
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Us*m'm =—§_’-Sv°1 (63 E§¥+T§'\KE N 6‘ &"\) dvee. LT %)
T)’sm%“(": K(-’LS-\-?-@.-\-‘\C%) {7.5)

It may be shown that the surface area S of the shell faces and the outer
perimeter P of the shell are independent of the crack length

Therefore 7.2 may be written as

'U's‘a*m—_-_ U, +ax —Q.c—%g (gugtu W‘gvt)o\\’

+:~‘:§ Q ( e§&§+”rmxg,\+c: € \ dvos.
Vo

or (7.6)
- ) *
‘)3‘3&\-% = Uo + 4&6 —_—
'Z. N* n -
R C * *
_Jzé::o 26 Xz Sg S_{HY CRANCE )'*(ﬂ“)} idodt
- h'* h>:< 3 "
| - - _ _hn _ h sk
where U0 = Uo+ Y (2A + Ph),Zl-ZO > ,Z2 ZO+ > and A a

radius to be determined (see fig. 3)

In the above we have defined

N ()

RY _ R-Hh S - RS ]
R> R S xS
. R*- R* (R—%')»

with & the height of the shell segment

Integration of 7.6 with respect to 9 gives




= U +48c8 - Lw <o
vsgs*u- o+ 4uc ezo EE\
where
L= ] (v s (o) ]+ [0oomi (o)) (7.8)
with
K _\_kz = E'Zl 2 ﬁG 2

4 — 2w (7c9)

-4 7.10

* acr -yx ' o Tce ( )
kK, +k3 = o (7.11)
Ki-ky=-82Z  Po | 1 Pas (7.12)

(\+y) acz RQ 4
And since we are restricting ourselves to the singular stresses, it is
only fair to derive a Griffith criterion applicable in the immediate
neighborhood of the crack tip, where because locally the shell is almost
flat, we can replace without much error the limits of integration Zl and

Z2 by —% and % Thus 7.7 may be approximated by

"4
v 'y ayc_ Lwm £N Q”‘g L de¥d g
e Us ¥ ¥R v =5 && . (7.13)

2

and after integration
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!
v =V, +4x*ck
Syshemn
2 3 ~ \2
oy (2ER. ) 2 RV v (2 Pa
3G§\+v ( o (\-v3> 3 l) 1+ ('&, (_4) » (7.14)
+v"+cv+zs E P.e (Q) e Pao 2 ,\*
3 Qi-v3)? Q LB

which in the limit, as R — oo and oy 0, in equal biaxial tension O

along the periphery of a flat sheet, must equal to (see ref. [12])

! % sS4 .1
Vsten= Vi ¥ 4% c-&-—_._ &) e = “C-& (3- ) c (7.15)
Thus we have determined the value for A , namely
A¥ = _evc 16 (1-v) 8 (7.16)
q-7V a-TV 'nc
Substituting in 7. 14 for A and applying the basic condition 7.1, the
fracture criterion is seen to be
ag*s - nc isaﬂv-?uL T
4G (\-v2)> a4 cs
-1 N
- 2o ey _ o
2 (i4v) '{,c_&\ {-1y (7'17)
where
~ 4 ———
P|° =_ < & Ce { 16=\3Vo - 4 -3V (.x_‘__‘&‘ :_\_3\
V2 RO (4-Y0) 32 3 4
(7.18)
4>t @y no4-3 ’:& ¥
+ 0 (AT
{ \* 32 4-Y X ( FX)

6VX (4-v)D
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and

= 4 & 2.2 .4 =
P=¢ P RCHR G rs e 40 (7.19)
o — +
* \EY ih } G& (avey Lz’ ; G 1“ e \>

Finally introducing 7.18 and 7.19 into 7.17 we arrive after some re-

arrangement at:

— -
(3B3+6y -7 4y (teil A2 ja) TF , ap (+an5e) §

3 (3-12) (4-wo)* 6 4~V Y
_‘_{ (3Brepv-70*) v (“,_3,,‘1 3% +uv .jv\’)‘)-l, (7.20)
5 -y (9- =1v)(a-%)>\ 32 T* X >
il ’_':z‘ S— (2 43443 .2\ 2*E & 6GE¥
MRl e eem G RE SR S-S NN ne

which, for the case of a flat sheet, i.e. \ = 0, reduces to the follow-

ing simple form:

- - "
(prontlty 32, 0 52l car | ()" (7.21)
3 (4-Yo)* (94-1¥) (R n <, _

For v =% equation 7,20 becomes

0.2

ot (1% 012%) GB +(1.+05'°I')\’") 6‘“

— S
- (042 koddeX\ N &, & = Jeex* - (o* 7.
( V&G = es (&%) (7.22)

— (0.24+0.07 &1)
*

which clearly represents a family of ellipses. In view of 7.22 we can
obtain a relation between the critical crack length in a shell and the

critical crack length in a plate, i.e. for v = %

!
(ﬁc‘) {z:? 6 + & :\?JZED. L'Qr-'t-) P 2l . (7.23)

ot ‘_n..ui (H—o \1)})6‘ + (1+05922) C,—(H-\-"O'HM»‘S" € }
. (D 149 0, ﬁ7_&i’)\) M

i arvenen
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for example if X = 1 and (Eb)P = (Eb)S = (Ee)S = (Ee)P, then 7. 23» reduces

to:
Uc,)s&w = 0.7¢ Q'ch)?w v (7.24)

This clearly shows that the critical crack length for a spherical shell
is less than that of a flat sheet, and as is seen by 7.23 the ratio de-
pends upon the curvature. This agrees with the statement following .
equations 6.10 and 6.11,

For the special case where (ob)P = (o‘b)S = (Ge)s = (Ge)P we

obtain the following expression

_‘_5_> - - 7.25)
Lp /e L4 (o6 ol £u Zf;);\v- (

(31 -0.06 &)
This ratio is less than 1 for all A < #7. W& conjecture that for \ > @7

the same character will possibly be preserved, but more terms, say
up to )\4,Wou1d be required to verify this point. As we have indicated,
however, (see sect. 4, Chapter 4) for most practical cases \ is less
than 2 hence 7.25 gives a good approximation. A plot of equation 7.25
is given in fig. 4.

Returning to equation 7.22 we note that it can also be written '

in the form

2 (o24+0.074 %;

I+ 0.59 22 E‘_ - . A 1.2_"'&._-‘1 +
( 'X) (iﬁ) ( 4\)3‘ G;*) G"s‘>
9-:2" y—
+ ozq (14 0.1223) (ﬁ'ﬁf‘ = i
ey

(7.26)
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This obviously represents a family of ellipses, which are plotted
for different values of the parameter \, see fig. 5. For \ greater .
than 1.5 we will need higher orders of \ for the determination of
the ellipses; therefore for A\ = 10, 20 we show just the intercepts.*
It is also clear from fig. 5 that the applied safe load in a cracked
spherical shell decreases with a decrease in radius of curvature,
For example, if along the crack there is a residual load of equal
bending and stretching a flat sheet can carry, before failure occurs,

]
up to a load of 0,88 (-Tf) while a spherical shell characterized with
o' —~
Gj
the parameter X\ = 1 can carry only up to 0,76 (—:), i.e. approxi-
(o)

mately 14% less load than a flat sheet.

.
Sk

Curve for \ = 2 follows the anticipated trend.
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CHAPTER VIII

EXPERIMENTAL VERIFICATION

8.1 Description of Experiment

To compare theoretical and actual behavior of an initially
curved specimen, a preliminary experiment was conducted. We
have considered a clamped segment of a shallow spherical shell,
containing at the apex a radial cut of length 0.46 in. The shell was
subjected to a uniform internal pressure g, and the strain EY at
three different positions along the direction of crack prolongation
was recorded as a function of qy° The design of the experiment did
not permit a determination of critical crack length, furthermore

the copper material is too ductile for brittle fracture theory to apply.

8.2 Preparations

The shallow shell segment was constructed by the method
*
of "copper electroforming." Its characteristics were h = 0,009 in.,

® 1ps /1n2.

R =20 in., § = 0.4 in., R_ = 4.25 in., v=%, E =16 x 10
A hole of 0.014 in. diameter was drilled at the apex of the shell seg-
ment, and a crack was sawed with a jeweler's saw of 0.007 in.
thickness, Finally, the ends of the crack were smoothed by the
"diamond thread method,"w< (diameter of diamond thread less than
0.005 in.). In the process of drilling and of sawing, a wax backing

was used in order to avoid damaging of the shell. Next, along the

crack prolongation, three strain gages were attached on the shell

* See ref. [13].
%% A cotton thread impregnated with 6 micron diamond paste.
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to measure the strains in the Y direction (see figs, 6, 7). The shell
was cemented between two circular rings, with Eo = 4 in, as the inside
radius (see fig. 8). Next the crack was sealed internally with two
layers of acetate fibre tape. The first layer was a square of 2 x 2
inches, and the second layer was a rectangular one of 2 x %_— inches.

The following table gives the gage factors and positions of the gages

from the crack tip.

e

Gage no. G.F. = Gage Factor X -1 X1
1 2,10 0.07 I. &l

2 2.09 0.29 0.89

3 2.09 0,48 0.69

In fig. 9 we have plotted voltage vs. gage pressure, and
because the curves for small pressures were not quite straight lines,
a second run was conducted a few hours later. It gav e better results
(fig. 10). The change between first and second runs ié attributed
to warming up of the resistance gages in the electronic equipment
and "setting" of the strain gages. Even for the second run, the
curves are slightly curved at the origin. It is possible that the tape
carries a small part of the load. In any case, we consider the slope .

of the curve which is given by

2 AE vourage ‘
= S«eb e = ©
C Y AF X A}o (8.1)
where A.F. = amplifier factor = 5
In view of this, we can compute the strains from

& = _4_ Q% | | (8.2)

Yo Psv Tar




=B
where P,S.V., = Power supply voltage = 6 volts (measured).
The theoretical strains were calculated from equation 6.14 and

the comparison with experimentally determined values follows.

Gﬁg? Theoretical sy C Exp. sy C1 Exp. ey
1 0.75x10" % d, 3.03x10"% 0.96><10‘4’qo 2.42x107% o.77><1o‘4q0
2 0.37x107% g 1.70x107* 0.54x107%q 1.37x107% 0.44x107% g
3 0.29x107% g 1.37x107 0.44x10"%q_ 1.15x107% 0.36x107%q
first run second run

8.3 Conclusions

In fig. 11, we compare the theoretical predicted strains with
the experimental ones. It is easy to see that close to the crack tip
the theoretical results are slightly lower than the experimental ones,
e.g. there exists an error of about 3% for the first gage. We recall
that in the theoretical formula we neglected terms of O()\4). This fact
could contribute to the difference, as well as the averaging effect of
the finite gage thickness. As we move further away from the crack
tip the theoretical values become smaller than the experimental ones.
This is to be expected, since now € is large and the non-singular
terms become significant. Our theoretical results were computed
on the basis of only the singular term and furthermore only up to
terms of O()\Z).

While it should be pointed out that the bending stresses are
practically negligible for this particular test configuration, it was
found that on the whole the experimental and theoretical results

compare very well.
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CHAPTER IX

CONCLUSIONS

The local stresses near the crack point are found to be propor-
tional to 1/v€ which is characteristic for crack problems., Further-
Amore, the angular distribution around the crack tip is exactly the same
as that of a flat sheet, and the curvature appears only in the intensity
factors and in such a way that for R = o we recover the flat sheet

behavior. A typical term is

A Comst C* |
R et . {5‘+ _2531— N 0("\'@)} (Bud)

where the constant is a positive quantity. The general effect of initial
curvature, in reference to that of a flat sheet, is to increase the
stress in the neighborhood of the crack point. Furthermore, it is of
some practical value to be able to correlate flat sheet behavior with
that of initially curved specimens. In experimental work on brittle
fracture for example, considerable time might be saved since by 8.1
we would expect to predict the response behavior of curved sheets
from flat sheet tests.

The stresses also indicate that there exists an interaction
between bending and stretching, i.e. bending loadings will generally
produce both bending and stretching stresses, and vice versa.

It is well known that large, thin-walled pressure vessels
resemble balloons and like balloons are subject to puncture and
explosive loss. For any given material, under a specified stress
field due to internal pressure, there will be a crack length in the

material which will be self propagating. Crack lengths less than

el 2 .1)*)mj
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the critical value will cause leakage but not destruction. However,
if the critical length is ever reached, either by penetration or by the
growth of a small fatigue crack, the explosion and complete loss of
the structure occurs. This critical crack length, using Griffith's
criterion, W‘as shown to depend upon the stress field, the radius and
thickness of the vessel, as well as the material itself (see 7.20).
We were also able to obtain a relation for the ratic:;{ritical crack
length of a spherical shellMcritical crack length of a flat sheet
(see eq. 7.23). In general this ratio is less than unity, which again
indicates clearly that a cracked initially curved shell is weaker
than a cracked flat sheet subjected to the same loading.

In conclusion it must be emphasized that the classical bend-
ing theory has been used in deducing the foregoing results. Hence it
is inherent that only the Kirchhoff equivalent shear free condition
is satisfied along the crack, and not the vanishing of both individual
shearing stresses. While outside the local region the stress distri-
bution should be accurate, one might expect the same type of dis-
crepancy to exist near the crack point as that found by Knowles and
Wang [7] in comparing Kirchhoff and Reissner bending results for
the flat plate case [8, 9]. In this case the order of the stress singu-
larity remained unchanged but the circumferential distribution around
the crack changed so as to be precisely the same as that due to solely
extensional loading. Pending further investigation of this effect for
initially curved plates, one is tempted to conjecture that the bending

amplitude and angular distribution would be the same as that of
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stretching,
Finally for a clamped spherical shell, the experimental and

theoretical strains sy, at three different locations along the crack

prolongation, compare very well,
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APPENDIX I

1. Table of F.C. Transforms:

We list below the following integrals which are useful for the

% * % %
evaluation of the kernels L1 . LZ’ L3, L4

* e-Js‘— o |l
So {55 3o~ wsg s ds = K, (¢ e) (1)
* _ ,l 1_-\",0-\'0\ .
go e s wsZs ds = l%!_\_ K‘(')\Q?) (2)

o - &s"—- ot 4l
st e

- w A = ar z{l
|, S e ds = 2EL ¢ (a0
| (3)
N (ZQ;H\) K, (289)
S roworn I
- \!s?-_)‘za(l € oS SAS = (A8 _ ly|>
g" < (% —L—Qs )K.me)
(4)
2,3 4|2 /
+ 2B K (eg)
¢
% ~ly\s v
S e wsJsds = Jul (5)
° e?—
G -sl .
§ se ! cosZsds = - 4 2l _ @7 &
° ea_ _-—Q“ @

L i

_ﬁ%\: K, (wee)
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i
1
1
3
1
;
g
!

o R ) e : ’
S osZads == 2 (7l e 2 R o)

v |
(8) ;
3 o e om s 4 4 72 ?
_.)\595 (Z“"”\*— 47 14 ) K, (}PQ).\.'A EZ:!\; ka(leg) |
€ £ |
4
|
2. Table of Proper and Improper Integrals
Another set of integrals which are used in Chapter IV, section
5, are (where |x l<1):
i g
C?Vg EAg:nx (9) 1
-4 X-%
\ /S "
c.PVS O-%) dg=n (2 x-x (10) i
» X-§ ,
T |
- Q- - IS w5 .3 s ‘
c.?.v.&‘__;:%__ cbg_n(.s.x Qx-»x) (11)
¢ G %Zi/i X)Scwr(?z X-32 2 £ ox°o x¥>
N %-% &
\
-5 (%x-8) L A \x%- - D 2o
10 (xvy AP dp e L (1 a2 )
12)
n 3
+ ol
|
Vioe 2 —5\3 N\ x-5) N I e L 2 5
S-. "5 )t A 22008 e < (-3 J“«JI)“ (13)
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To evaluate 12 proceed as follows. First define
\
1o = (VT Oen) a2 \x—;\] g
-\

which is continuous and bounded for all -1< x<1 and -1<§ <1. For-

mally, upon differentiation with respect to x
'
Tl = | 37 { AP 1 ds
\
= %*S Vi-g> L At x-81 L""\}Lg = & + 1, (%)
-\

where

'
T = erv | T-s A alent | dy
==y
Next differentiating Il(x) once we obtain

X

1:(*) = S\ .__..___J\_Ez A/g

X-%

Integrating once gives

Iy = “;z + T, (0)

where
\

T,e) = | FEm Ae2alsldy o0l Bl

and hence
T (%) =%[\+ ,anﬁ_‘.lx ~ o x> + T (o)

where

Y ()= - &b\ 4\—5“' z .ev\'\xa\f\ dz =o




-50-

?’ 3. Some Integrals of the Bessel Functions Jl(s)

]
I
; section 7,

o | i _
S ].Cs) e“s\‘é\ osxsds < Re% 3\(5) c‘_s\_\‘s\ x] A})

A

Below we list a set of integrals which are used in Chapter IV,

ws e 40(€) gy

X: 1) ™ ginxeds = - L ~me 4+ 0 ({79)(15)

Jze

H\S“\S“S\(SS e_s\%\msxsas = ‘c.os L - s %_9-] +O(ee)16)

A{RE 2

4

\‘a\&:s 3,6) c‘smsiv\xs S = - il'o\_é‘ [A?\% - ain %]%O(e(i)”

4. Properties of the Kn(z)

K, (2) = - ¥ (a)
Ko@) = -XK\(@) = K, (2) + K@
2

For small arguments z the expansions are:

Ko = - (x+a 2) [ 1 +(2) = (‘?‘)‘]

_ 4
@' @ 0 ()

(18)

(19)

(20)
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5
K, @) =L +(x+ M 2) [.g.»f(f)arj_; + (&) 4._3}
‘ (21)

K 7
+ (835 @) £ @) 0 (Twe).
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APPENDIX II

On the Solution of Singular Integral Equations

l For simplicity, we will consider the case of a single singular
| integral equation of the type encountered in Chapter III, sect. 5, i.e.
f s ool emdy = mex 5w @
where g(x,£) is continuous and bounded for all x and £ and furthermore
symmetric, i.e. g(x,§) = g(§,x) and g(x,x) = 0, Equation 1 can be

written in the form

\

We next seek a solution to equation 2 such that it is bounded [—1,1]

| ' wiE) _

|, 2 4 - fo (@)
where

FO) = "Mox- 7\"& % 0n%) W(E)ds (3)

and is Holder continuous for some positive Holder index p.
Following Muskhelishvili [6] §47, the solution can be written

in the form:

L
w = A \+x‘§ -t $w
M= e L e oo (4)
or substituting for £f(t)
\
W) = o | kX {S =B mot Ak (5)
N\ \=X ‘b p-x

\ |

-5 S_‘ l_‘l-i—-? &_\gb,ﬂ w(8) -i\-i A
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which after some rearrangement can be written in the form:

i
3

u(x)-\-\ = K,,LE xtg %U:,s) u.(g)cl,s _‘_.\.". \-x?%

1+t

(6)

Using the Poincaré-Betrand transformation formula we find

\

- g‘ w(8) K (x5) dr

=\

which substituted in 6 will give

wOy+ 22 ws) Kows) dg = me 5 (7)

-
i.e. we have reduced the singular integral equation 1 to a Fredholm
integral equation of the second kind, where the kernel K(x,§) is a
continuous and bounded function of x and £.

We will now seek the solution of the integral equation

\
LGy = Mo [ A % wig) K (x3) dg (8)

-\
by the method of successive approximations. For the zero-order

approximation let us take the right-hand side of equation 8 namely

Wb(X) = Mo m? (9)

n

substitute into 8 to obtain
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w (x) = '1"_;\9 J1=-x* - ﬁ%.?.’& K (x,%) »‘\—g’- J)g
n -1 _
(10)

1
= Mo | z o [l -t ’
o 4 'Znﬁ‘l:—x'ggw k- % = gl

N V=X

-\

and in general

W0 = 5 —me >__ lx__.g %, (08) (imsT dy (11)
where K(n) (x,€) is determined from the recurrence relationship

) \
Gy (0B = W 0uD) K, (om) =) KK (e 2)

Assuming that the successive approximations do converge, and pro-
ceeding to the limit in equation 11 we obtain a solution of the integral

equation 7 in the form of an infinite series

Y
" — Mo
T2 (2] ke T & 03)
These successive approximations do converge uniformly for all values
of \ lying inside the circle In IZ < % s Where:'<

1L
T 1Y, IRl s

w1 LR ey

Ll

*If the kernel is also a function of \, then B = B(\) and therefore the
solution of the inequality

2 o _1

will give us the radius of convergence,
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The limit of the successive approximations is the solution of equation 7
%
and this solution is unique. Furthermore, if in the series 13 only those

terms are included which contain powers of \ up to the 2n-th, then the

magnitude of the error will not exceed

R My

BM.
-2 R

D (& {2l

L)

In particular if

g5) = gL-E) = 9(Q) = - "% { X8 K, (1)

(14)
K, - X
- (e D) Konz) + & |- 2
which when expanded for small arguments gives
§ (%) = - ae GO Mm—_]
(15)
O (98 Leslm | x-s1)
and therefore the integrals
\
I.(» _—__% =57 aly,s) dg =
- L ¢+ £ nt? 2
e T - L LI N

= ot vac, tP+o(a¥)

* For a proof of this theorem see Mikhlin [14], pp. 7-13.
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\
I = A=t T
* & xE Y Ak

- - & \_t 1
8 E_: o Rc \ K At + o(\

= 0 (=x) + Ga(-xX) (lvaxd) + 0 (>a)

= n(-x [C\-\- Ca (hu‘-)]+ o(xt) - (17)

from which

W, (x) = % N-x* - ""‘__°_T' Ji-xz [C\*C;(\*R*‘)}* o (a*)
n

= Mo

== T 5 Lo o ves Grax)] 22 4o (\‘ﬂ
(18)

“”‘°r-_"' A.-(i}_)‘_:'%c,%&_"_t 2
" Wk { e BRI N (T TR

= —w, J'\_-T@‘{ Avx b, (1=x*) + o(f«)}

where

A, = L—\‘Q"[é’i +3E 42 :»_e_]w(x*) (19)

o = 313-: + oY) (20)
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Next we will show that if in equation 1 we assume a power ser-

ies solution of the form:
W, (x) = N-x* iA:"+'\‘»\:(\—x‘)+---} (21)

the coefficients will be identical to the ones obtained by the previous
method, which indicates that the two methods are equivalent. Sub-
stituting 21 into 1, integrating and equating coefficients on both sides
of the resulting equation, it is easy to show that Af = A1 and so on.

In a similar fashion this can be carried out for coupled integral equa-
tions. In Chapter IV we encountered two coupled integrals of the

form:

\ \
| SO0 g, e

(22)

-X S_‘ . (R (8 dg o, <

Wi(s) +ua (5) dg = Fhox— q‘&_\‘ B () Wi () g

|
\
-x\ R0 Wiz e

where the functions gik(x, €) (i,k =1,2) are to be continuous and bounded
for all x and £ in the interval [1,-1].

For convenience we define

\ \
£ Y= mex- S 8, (1:3) wi (%) ds -*«‘S A B8 1o (5) 5 (24)

xz_(x\ = MgX - )\‘gi %;‘Lx,g)u‘ [’g)clg_xg‘ %n@,ﬂ w,(x) dz (25)
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Thus equations 22 and 23 can be written in the form

oamili-na®) ls
%-\ x% 5= hoo (26)

\
’ L) .
| —D—}%ﬁ b= Lo (27)

We seek for solutions to the system such that they are bounded in
[-1,1] and are Holder continuous for some positive Holder indices

My and Koo Again following Muskhelishvili [6] the solutions can be

written in the form

- 0 = L [T 8' EEAE AO W

: (28)
= ‘v A-x

‘ $
W 0) + U = -\'l_\;- = S ‘\‘:t _-———j:i dk (29)

Substituting for fl(t) and fz(t) and integrating the following equations

result

\ \
Gy=u, 6 = 2 iR 28 T %‘Y‘_\'-:_E‘ { g_\gm () ()

(30)
Lt R nwel &
b 2 . v £-X
. N \‘ \ a
W) +U, () = _’_"‘r._.‘v. J'\——F—_?‘_.\-LS—‘_-\:—E: X'E { &_\3{-‘(\’5\ Yy LE}%
. (31)

+ \\_ | TR CHENG) bgl _ff_x.
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We thus have reduced our problem to the solution of two Fredholm
integral equations the solutions of which we will seek by the mefhod
of successive approximations. As before for a zero-order approx-

imation let us take the right-hand side of equations 30 and 31, i.e.

g () = g 0) = e (T (32
= M o
Mo B +¥ae Oy = T3 i (33)

and so on. The theory, and likewise the method of solution, of sys-
tems of integral equations, are just the same as for a single equation.
Thus successive approximations converge for small A and in particular

if \ satisfies the inequality (see ref. [14], pp. 30-31)

. — -4
e W o b omex z r%_\\ | K o9 ANS}

1éLém K=\ -\

where

Vo , ' d
Ko = 2 |2 X ?\—7}3 3 (58 wle) x::
-\ 3%

In our particular example the functions g., are of the form:

3,09 73,0923, (2) = - 25378 Ko ) -
(34)

N\ Ay 118 20 L A
Q‘?l‘,7\+Z\Z\) K O412Y Z‘} 4
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8 059) = 3,092, (2) =25 {5 K. )

oz
(35)

- («,\a,@lg\ 2 \3 K, (O=\Z1) +__'} Z

voX'p? KoO\zl) =2 (‘afaf;n?hlfi} gz

(36)

T (9= 9,09 =g, (8) = ’A‘? (a-%) 5(

K, (ne\ xl \«Lx\z\ v _ o\ L
0elZY) - <" ® )+{3 ZX =

\ 4L 2N
3. (0B = §, 000 28, (%) = —)kﬂw)i—” 2" Ko(utizi) =24 (¥ %“;m ;mB
(37)

2 2 A
K, (M \2) —&%ﬁ_\_% K, (ma\z\)+i§ _}.%____} .

The successive approximations follow the same pattern as for the single
integral equation. It is an easy matter fo show that the coefficients ob-
:;1 tained are identical to those obtained by the method employed in sect. 5,
Chapter IV. This therefore establishes the equivalence of the two

|
|
{ methods.
i
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APPENDIX III

Some Details for the Antisymmetric Problem

1, Caseofv_=0,t # 0:
o O

Following exactly the same method as in Chapter IV we list

below the successive steps:

3, =~ (a,-40
Vosz Q-' = - i (Vosz—"» ") QT *-Q),Sz—\-i.):'\ QG\

The continuity conditions are satisfied if we take

ob
S 85 wsxsds =o 5 x>0
° S
obd — + )
S Q¢ cosxsds =o Yy x> |
5

(]

which by inversion give: |

Qs

_r_f_ & w, (%) osES A

Q= —;_\ u, () wsEsdsy
where
'’
\ks(,x\=g 85 osxs ds . A%\ <)
« S
\
- \
W) = g _éE_ cosxs A8 ) Ny =
0

In view of the above the corresponding singular integral equations to

be solved are:

n\w% {‘*a(’ﬂ“‘ - MW (g\}Ag =-Yex ;  Ixi<)

—_ X\ i\‘s“\“‘s * U4 (3) Mq} &'g= o y W<l
- ;
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where the kernels Ml’ MZ’ M3, M4 are defined by

M, =- 2L K, E 2
i O Opa)y 2 K el v

Mo o 2 XL (0 2
2= 25 7))+ X2 (ﬂﬂ+r

M = ¥ Y oAt el ¢ (12
3 ﬁ%Kmm+3+z,(% (x12)

2,2 3,53
- 2R K Opz) - 2 K Oeiz)

M‘~ = e K‘(M\;‘3+_€_‘_‘g_ Rt c_&?s_ K, Qe
Fq A Z §>1z

— 3V X K, .{\{\-—.’.’_2_3.32(_3\/\\ )\o{—\Zl.
o b ) 7 ol )

which for small arguments can be expanded as:

M.=§§+§; g 28 (32012 0 (2 724a171)

2,2 4 3
e 3 07 o) 4 02 S

= - woter _ 33t (8t W) %X \Z) P
My Ve == 7=+ _8—5- (A+Vo) (x+4-l§-§)+0 (¢ Mle

= 253 2 A ) (o) 0 (50
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Following the same method of solution as before we obtain

Woy = (TR 2 A T Gy

"=\

ob
wy () = Tv=x* 2 B Gex)

M=\
where again we find:

A-\ -\'B‘ =‘.!“_t_°_c’._. i_&__,‘__\;_%_z_ + 0(9\4)’\1

MR

K, -

PN
|

— \:oczdz iyo 8‘\'4(4'”'_)2( 4 +Vo /QMA_ '\'O(’}‘L"&"\\"s
NRP V6V, 8 Ve

2. Caseofv #0,t =0
o o

To clarify the point made in the beginning of sect. 1, Chapter

V, we elaborate. The integral representations for vy # 0 and to =0

are

W =3

. JdEadw EmEEW O aw
x {Q.ﬂ + Qe +Q,e }wsm&s
Q

‘7\1 \5\ _,153-4.{.")‘3 ‘\3\ s\
= X b\{Qes -Q, ¢ _kQ*e.s‘\\'cosxs&s

Again following the same method we list below the successive steps:
Q4 =- (Q\- Q;_\
05" Ry =- { (Vo s*=%) @, + (os™+i2") Qa\

The continuity equations are satisfied if we take

Y
S 3.‘.. c.osxSc\s =0 5 I\ >\
(-] Si.

o4

S 8 osxsds = 0© y A 20

° st
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which by inversion give:
LI
Q, = TS L~|(§) CoSE S A‘g
°
as? (' 3 4
Gm | B@ e ds

In view of the above the corresponding singular integral equations to

be solved are:

s {mnmijle e e

\
.-':";.\
5

{ C\ L3+’\1;\—*-} A'g = “Du ; \"\<\

-

where
® fs" i\
al, = S { ,fsz 2 :.‘ =AW - st e—-““‘l } sim (x-g)sc\s
° .
o0 RESC "\‘1\ s\\n\
al, = g {s‘ls‘.—?‘g— e ¢ sé \A“&!}SAS
)
A T ‘\5\ s\
1\_3 = X {(va‘*“:) Sl ste” » s(vs -y )e } Cﬁs-(x—E)s:\s
°
N TR sy o -sl)
X L4 = (Vos-t)\ b3 +t)\" st e -si(y,_s"i.t.);" e 8 (x—g)sJ«S
v
32
Next we must write the kernels Ll and LZ in the form — {3, lyl}
ox

and then take the limit as lyl

xi-g - Unfortunately, we are unable to find this function &(x, lyl) in

— 0 to recover the required singularity

a closed form.
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Photograph of shell after testing.
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