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FOREWORD

This interim report presents the results of an investigation
conducted during the period September 1960 through November 1 9‘61
by members of the Fracture Mechanics Group in the Firestone
Flight Sciences ‘Laboratory of the Graduate Aeronautical Laboratories
of the California Institute of Technology (GALCIT). Dr. D. D. Ang
is currently Chairman of the Department of Mathematics, University
of Saigon, South Viet-Nam. The work was performed for the
Aeronautical Research Laboratory under Contract No. AF 33(616)-
7806, '"Research on Mechanics of Crack Initiation, '* Task No. 70524,
"Structures Research at Elevated Temperatures " of Project No.
7063, "Mechanics of Flight." The notes and data for this report
are recorded in GALCIT File No. SM 62-4.

| The authors wish to acknowledge the cooperation of Dr. R. L.
Mayerjak, USAF Project Scientist, during the tenure of this work.
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ABSTRACT

The behavior of a thin sheet having initial curvature is shown
to be associated with that of an initially flat plate resting upon an
elastic foundation of modulus k. Classical Kirchhoff bending solutions
for a normally loaded elastically supported flat plate containing a
semi-infinite straight crack are obtained using an integral equation
formulation. The explicit nature of the stresses near the crack ;;oint
is found to depend upon the inverse half power of the non-~dimensional

distance from the point, r/(D/k)ll4

, where D is the flexural rigidity
of the plate and k the foundation modulus. The particular case of

an infinite strip containing the crack along the negé.tive x-axis and
loaded by constant moments M* along y = + y* is presented to
illustrate this part of the solution. The inverse half-power decay of

stress is additionally damped by an exponentlal factor of the form

exp (- ny*/ Vv 2 ), where ')\ = 12 (1- » )/R2 2 For the case of
a spherical cap of radius R, the modulus k = Eh/R and the bending
1/2

stress singularity is proportional to (r/ v Rh )~
The coupled Reissner equations are then solved for the
in-plane stresses to complete the solution. The character of the
combined extension-bending stress field near the crack tip is
investigated for the special situation of a radial crack in a spherical
cap which is subjected to normal uniform pressure, q, and constant
membrane stress, No , at its simply supported boundary, r
Pending a complete study of the solution, an approximate result for the
combined surface stress near the crack tip normal to the line of crack
prolongation, in terms of the nominal membrane stress (Rq/ 2h), is of
the form '

Gy (&>°) - L \ {\__\_ (‘
Rt /28) W YaGon | FmR *

where H( ')ro,) is a known function.

- i 4 w,)}f
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1. INTRODUCTION

One of the problems which has elicited continual interest in
the field of fracture mechanics is that related to the possible connection
between the behavior of curved and flat sheets. As a practical matter
it is obvious that there would be considerable advantage to knoWing such
a relation for then the test data accumulated on the flat specimens —
which is significantly easier to obtain — could be used to predict the .
fracture of sheets of arbitrary curvature — which is more difficult to
carry out experimentally.

The general theoretical problem is one of combined stress, and
one inquires into the limits of validity of superimposing the separate
bending and extensional stresses for flat sheets using small deflection

(1)

In the present -

theory, as was carried out earlier by Ang and Williams and

(7).

analysis the plate is assumed to possess a finite initial curvature which

investigated experimentally by Swedlow and Liu

automatically leads to a combined stress field, that is, the curvature
causes any stretching to introduce bending and vice versa. Hence
superposition by itself is not in question but, as will be demonstrated,
instead it turns out that the solution for increasingly large curvature
does not tend toward the separate solutions for initially flat plates.
This fact mé.kes it difficult to deduce a simple factor to relate the
two cases and requires further investigation, although several important
features of the initial curvature situation are deduced.

The analysis is broken into several parts, paralleling
the natural divisions of the problem. It will be shown that the effect of
initial curvature is qualitatively equivalent to providing an elastic
foundation for an initially flat plate such that as the radius of curvature
increases, the foundation modulus becomes weaker and weaker. The
mathematical difficulty at present pertains to showing that as the weak
vsp'ring actually vanishes, the initially flat plate solutions are obtained as
a limit case. Itis also interesting to note that the analogy between
curvature and foundation modulus is not new, leading to the well known
discontinuity stress in a circular cylinder with internal pressure. This
association has also been demonstrated experimentally by Sechler and
Williams(é) for a cylinder containing a crack and hence provides some

motivation for the present study. _
Manuscript released March 1962 by the authors for publication as an
ARL Technical Documentary Report.



. .~ FORMULATION OF THE PROBLEM

Consider the deflection and stress situation in a thin flat plate
supported by an elastic foundation and governed by classical equation of

Kirchhoff plate bending , namely

D VWi y) + Kk wix y) = qlxy) (1)

where the flexural rigidity is D = Eh3/ 12 (1- )/2 ) and the foundation
modulus is k. For the time being restrict the attention to homogeneous
solutions of (1) which can be taken as the sum of two solutions of the

homogeneous equations.

(v2% 5 {K/D) wix y) = 0 - @

Denoting these solutions as w. and Wy and defining 14 = k/D,

1

construct the representations

W, (x,{) = g {P.(s)i Q,(s)} &%?{’)(52"“3)%\3[*1.)‘55(-] s (3)

¥

W, (6 37) = g {P,_(s} :Q&)‘% &gi—m(s"—p‘{z‘a\ vinsx | ds T (4)
¥ ' : S

/.2 1]

where o= (i)1 and !6 = (-1) , with positive real parts of the roots
being taken.

Suppressing for the moment a definition of the path ¥, consider
the specific situation resulting when there exists a crack along the
negative real axis of the elastically supported plate. One must require
that the moment and equivalent shear vanish. Suppose however that one
has already found a particular solution to (1) which is satisfactory except

that there is a residual moment, M , and equivalent shear, Vy’ along

the negative real axis, x <0, of the general Fourier type, say for a



particular term

M ) - D, e'.',o.x (5)
-

@) L%
V% - =D v, e (6)

where m and v, are complex constants. Hence the homogeneous

solution, providing it satisfies certain physical conditions far from the

crack will be required to equal the negative of (5) - (6) along x <0,

- i.es
2 - 2 LOX
My (x,0) =—D[%&;*”§;l (“-+Wz>= D moe oox<e ()
. 3 }3 'D ’0 Lo.\(
2 = ° e * »3
Va(x)_oﬁ =,“D\_.gg3 * (—"-'”);xab—é] (“‘*wl) , , ®=© | (8)

Assuming that the integrals (3) - (4) can be differentiated under
the integral sign and defining ))O =1-V , (7) - (8) are equivalent to

gx %_(?. Q) (o3t a?)+(P, Q,) (ycsa-(sz)E exp C2S X ds R

- - oe e (9)

& gx {_(?, Q) (8- “zbllz (yo‘saj‘\' o(2> + (\’,_‘ * Q,_) (52-_ ?,_)!/a. (po s34 Fl,)} expiysx ds =

(10)

Lo X



which must hold along the crack, x £0. On the other hand, for x >0
the deflection and its derivatives must be continuous across y = 0. The

conditions

A . p B = - ’ V2
b L3 o) 3 oo 5 e 0
(=]

-'may all be satisfied by taking, for x > 0

g - Q, exp RS ds =o ] st Q, Expiysx ds = © : (12)
¥

2 z‘/"? . A ., g 2 ,_‘l‘- . A
; (s> a") P expiysxas | y (s> ) F? exf INSXds = o (13)

Proceeding with the construction, arbitrarily let the following combinations
in (9) and (10) vanish,

gx%-( DO.sl_o(F) Q, + QJ, s f,l) Qz_‘% m?'i.)\sx As_ S : 2 ©(14)

A A .
g{(vo st (g% o) P (Vo5 (s‘) (s> p*) E } exp LS X ds=o Lo x <o
¥ .

(15)
which are evidentally satisfied by taking
2 2 '
Q) = - ( uos - ‘e )Q (s) (16)
2 2
Q, = ( Vo8 T R ) (17)



1/2
_ 2 2 2 2 -
Pl-.—(yos +F>)(s -fb ) P (s) (18)
1/2
2 2 2 2
P,= (s + ) -~ «) PO (19)
where P(s) and Q(s) are new still largely arbitrary functions, leaving
n (9) and (10)
gx{(vosz-—o(“)\)\ +Q’o 5"—‘6") \’,_} expizsx ds = - Lﬂ%— g ;. x<o (20)
II ‘} ' | 0’
ogx{(s‘-d‘) (vosvat) @, +(s*-ff) (ves™+p*) Q,}wr iysxds =2 'g% ML x<o (21)
which using the new functions P(s), Q(s) from (16) - (19) reduce
respectively to
g K &) Pe) an?('\sx ds = - Mo, e;ax' ! X <0 (22)
S e 4
g K« QesY) ex pins % ds —f\< 5 S {23} .

where the kernel is

)

"

(#-3" () = (0™ Grseiy®

(24)

it

L S N GG e

(242)



Retﬁrning to the conditions of continuity across y = 0 for
x % 0, introduce (16) - (19) into (12) and (13) to find

—S (Vo s™+i) R(s) expiysx ds=o 3 g (W 53-1) QU ex\aL)\ch\g =o (25)
4 'Y .

s o
-gx(s“-u) (Vos™i) Ps) expiysx ds=o gx(s"*«l) (ves%1) PG)exp ysxds=o (26)

which can be satisfied by setting

x>0 (27)

e

g Q (s) ex?f.')\sxés =0
¥
g‘& (54“3'/" P(s) expinsxds =0 | %>0 (28)

taking into account that the second derivatives of (27) and (28) with
respect to x are also zero. _
Equa:tions (22), (23) and (27), (28) are therefore the dual
integral equations to be solved for the unknown functions P(s) and
Q(s), which, when substituted into (16) - (19) and subsequently into
(3) and (4) along with the particular solution producing (5) and (6),
give the deflection function which satisfies the Kirchhoff conditions
for a free edge along the crack of the elastically supported plate.



SOLUTION OF THE INTEGRAL EQUATIONS

First of all the path of integration, ¥ , is taken along the real
axis except at the point s = a/y which is circled from above. The
functions (Sz R ) 12 and (sz y 2) 1/2

introducing branch cuts as shown in Figure 1. Specifically. (sz- & 2)

are made single valued by
1/2
leads to the insertion of branch cuts llm s l = | Im | ; with
Res >Rey forIms >0, and Re s < - Re X for Im.s < 0 as 'shqwn

hatched in the figure. K it.s
vIwm

® - plome
a_ -
= EL E ol Rl Ll 2L DD LD LA -
p":..i, TRTX X X M X X X X X X X W X W w X X RAKR = xR

Yy
‘5
729
[

2]

NOAGNUNEN NN N N NN Ny e
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Figure 1.
Similarly, (s?‘ - p 2) 1/2 also leads to cuts along [Im s | = \Im o(\ 3
which are taken as Re s > - Rer@ for Im s » 0 and Re s < Re B for
Im s <0, as shown cross hatched in the figure. It develops that the
portions of the branch cuts for Re s » Re & and Re s < -Re& cancel
each other leaving the K (s) analytic in the entire s~plane except for
two cuts in the upper and lower half planes of length \R.e_s \ < \Re 0(\

We consider first the equations in P(s), namely (22) and (28). It

is found convenient at this stage to define an auxilliary function

K )
L (4=0) Vo ( 5*- s‘a) (s"-—d‘)'/‘"

Fs) = (29)

where I s, are the zeros of K(s) in the first and third quadrants



respectively (this matter will be elucidated in the next section). The

dual equations for P(s) will be solved by an application of the theory of

functions of a complex variable following Clemmow (Ref. 2). Thus,
the equatlon for P(s) of (22) is satisfied if:
L (4-24) vo(s‘-S-‘)(s‘-«‘)l‘ F(S) PGs) = _me . L(s) [ (30)

where

£
i1}
P

and L(s) is a function free from zeros and singularities in the lower half

of the s-plane inclusive of ¥ , and furthermore of algebraic behavior at

infinity. That (30) solves (22) results from W and the

theorem of residues. By the same argument (28) is satisfied if
“ ' ' . .
(s*«) " PGs) = UG (31)

where U(s) is the counter part of L(s) in the upper half-plane.

Eliminating P(s) from (30)- (31) and after some rearrangement we obtain:

VE) e | (s- @3 { (sm (32)
L(s) 20 (4-%) 93> L(ao) (s-20) (s¥5)) Fy (s) (s-s)) \:;.(53

where FU L(s) are respectively U-type and an Li-type functions, and

such that

L) - F (s) = F(s) | (33)



(This latter factorization of (29) will be carried out in the next section)

A solution of (32) is

Lis) = (s-s) Fis) (34)
(s-\-gs}'/’-
l/l ,/;
Us)=- ™. K (o) e 2 S
2n (4-v0) VoA (n.,-S.) F (ae) (s-ao) (s+s)) F (s) (35)

Where the bracketted term follows from (34) evaluated at s = ag

It follows then, from (31) and (35), that P(s) is given by:

')
‘Ia. (S-?) =
PCs) = - o (o+ ) _% ‘ —l
. S) 20 (4—”0) Do 'x’ i co'c‘s\) Fl- (O.u) { (5_0"‘) (5*5\3 (S*-ﬁ-l\ Il Fv- (S) ’ (36)

Next, by following exactly the same steps as abdve, we find for

Q(s):

Q)= — 2o - { ! (37)
2042 2o ) (05 R (2e) (@)™ L (-0 (50 (o> Fuls)

So that finally Pl 2(s) and Ql Z(S) can be deduced from (16) - (19),

and the problem is formally solved. The practical matter of determining

the factorization of F(s) as implied by (33) will now be described.

%/



A FACTORIZATION OF THE KERNEL FUNCTION F(s)

It is proposed to split F(s) as defined in (29) into a product of

a U~ and an L~ type function, i.e.

F Fe) = Ko

L (4a-v) Yo (51_5‘3) (s> o(a) .

F(s)

Define first

G Gy

n

A F () (38)

where for definiteness the logarithm is taken as a principal value. We

decompose G(s) into the sum of a U- and an L- type function

GEt) = Gus)+ G G) = B Fu (s) +2 F s | (39)

from which the product factorization follows immediately. The decompo-
sition (39) can be accomplished once we know the singularities of G(s) —
which are the singularities of F(s), namely the branch cuts ‘Im s| =
‘(Imo(\ ,-Re(&éReséReo/ '

To find the zeros of F(s), we rationalize the equation K(s) = 0,
using (24) obtaining a quadratic equation in 54. Of the eight roots of
this rationalized equation, only four satisfy the original equation

K(s) = 0, namely:

"

‘ ) .
.0 2
S= %5, = % & { 3%, avalavt-auei] (40a)
(a-%) v~
< 'a).;l.
S = ‘_"_Sz = = & \ Sl\

(40b)

10



From the way it was defined in (29) however, F(s) has only the two

zeros in the second and fourth quadrants, namely

$= x5, & & (\.ooo4-> e p (%‘) %w\- Y, = % e »u;}_

where it may be noted that

4

l.ooo < s, & J 1 oaas

because of the physical restrictions on the value of Poisson's ratio.
Thus, G(s) has a strip of regularity namely, \Im s\ £ \Im o(l
Since F(s) was defined in (29) to include the proper constant such that

its asymptotic value for large s gives unity upon expansion of (29), i.e.

F&) = 1+ 0 (L) oo Isl=e (41)

it follows that for s belonging to the strip of regularity, Cauchy's integral

formula gives:

no...i.-»z .a-;.S _
Ges) = - Bl dx o b C 6@ da ._ (42)
: ani z-95 anc z-5 :
"ebq..\.\'( ~ 0-18
where Im s <Y{.< Im« , ~-Im « <-9% < Im s,

The first integral of (42) is identified with %(s), the second integral with
GU(s). We shall put GU(s) in a form convenient for numerical evaluation
by a deformation of the path of integration. The function G(z) is made
single -~ valued in the lower half plane by introducing a cut for the
logarithmic singularity (corresponding to the zero z = - s, ) in addition

to the cut for the function F(z) itself. The cut for the logarithmic

11



singularity is conveniently defined as a semi-infinite line drawn

through z = -5, parallel to the real axis in the negative direction.

We wish first to evaluate GU(S) for s in the upper half-plane and then
continue it analytically to the whole s-plane. For s in the upper half

plane the path of integration can be deformed into the real axis:

(]

GW= o ( Ss@ J, -
aQnt . FeiS | (43)

Since G(z) is an even function in z, hence (43) can be transformed into

the more convenient form

Gu(s) = _s_ g 6E@ {4z (44)
ni Z3-32
which is equivalent to:
%
G, (s) = S &® iz _ s G®@ fz_s\ _S& J;
- ani z2-35* ant , st 2ni ). g2-st
Cec LR (45)

where the paths ¢, c!, ¢, c''"' are shown in Figure 2 on the next page

3¢

_§_<§§ E@  dz - _Q&E@ Yz~ ICO R
2ni 2% s 40y z-s 4ni T

= ° - L))

12
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hence
G, )= @@ _ 3 g Q@ g (46)
2 and , Zi-s*
C+c<

From the properties of the logarithm we have:

- g _ ———553)1 dz = L «V/"\\-—-—-—-—S“S\X (47)
ani ot E-S as S, xS ‘ '
o=
o e ) -s, (path c!)
&Y «
I_-= ":lfrTZ S 2 F (=] bt do ;I =- _\__rT. g L [FCE)]'\'OY o
S; Ls;-b'(.)l— 52 pry anu (s;*_,c)z_ s:.

S,

next recall that

LiF) « nlr@|+ g FC2)

hence
= [.’e“‘ FC‘)] + [ . FCZ)] =-2nt
*.of Lv\_.

etc.

13



Thereforé,

F\~ (s) = exy& G cs)}

where

s = &l :
anmd Z*-s*
< .

&&= Az

:/L
(o}

(48a)

In view of numerical computations, the integral (48a) is transformed into

~ a sum of real integrals

|
= A+ B ]
ant iy = _;l{_ g ) A.(’; + By dw 4 |
- ¥ &) - o (49)
é‘- il -
+ 1 g t owm ( \ Lo ( )

where

= (2xE) (3raxt)

(ax+1)x 4 (\-\»ﬁ X)l

&Y -

(50)

N = 4 (ax®)
G Yo (aim )

14



We shall need the values of I(s) for large |[s|. . Its expansion gives for

\S\ >1 £
o0
) ~a (mw)
I) == 2 Cu S | (51)
M=o .
where

{
NeY

- e | (52)

In view of (51), an approximate expansion for FU(S) - c.f. (48) - is:

el R, = -t Corsa QQ_;)] | (53)

and hence -

ISt — p FL(sB

[

- =% i0 C‘%‘aﬂ (54)

% For future reference the reader should note that for small s

1)Y= 2., s
where ’
1
. L
- N -an- 5 Z —2m-2
zn\-c-»\=—‘—g o L A- ¥B- 1 J _ i
= _.\Ji(x ﬁ’) [A"*-B" %+ L (% -\‘-_-_) {tw B‘--hm{'B*«}o\x

15



STRESS DISTRIBUTION NEAR THE CRACK POINT

From equations (16) - (19), (36), (37), (53) and (54), we see
~ that in (3) - (4), Pl ;Z(s) and Q1 Z(S) go to zero, for |s| — oo, at

least as fast as s 1/2. Hence, the integrals (3), (4) converge and the

differentiations under the integral signs are also justified, at least for
y # 0. The values of the derivatives at y = ¢, x < 0 can be obtained by
a proper limiting process.

The stresses are given-in terms of the bending deflection as

Ty = -aqz W » (55)
$

€, = - EZ 3w Sw

* 1-p* K_ K> Y B%‘] (56)

(57)

where here z is the distance through the thickness, h, of the plate

measured from the middle surface. No subsequent confusion with the

complex variable will result. Then in terms of (3), (4), (16 - 19), (36),
(37), (53), (54) the stresses (55) - (57) can be expressed as a linear

combination of integrals of the form:

o0

g RCs) exp 5\-_ Ayl (s> L\ '/z_‘_;,}‘sx } ds (58)

-

where R(s) behaves for large s, i.e. [s| —»oc0 as:

16



‘ ReG) =R, 3"/1+ o s'%>

and R"o being a suitable constant. It is obvious_,lllo?zr changing variables
s' ~ sx, that the stresses tend to infinity as r for r —0 which is
characteristic of crack problems. Furthermore by expanding the
integrands for large (s| we can find the variation of stresses with
angular position as r —0. Thus, we get expressions of the form:

M, h wf{-"x\‘a\h\*ﬂ*s}
and

“¥

N, st 57yl l@%?{—‘)\\a\\s\+i.>\xs}.

Here, we should mention that, the exact expansion of the stress integrals

should be of the form:

==k e
,ijro [’g—“feqwsio»\ for 'Qﬂﬁgc s) ds + Sl-t(w e %Q-r. Smoll (s+‘)) ds +
-t | e (58")
<+ g (.e,"F %ﬂ‘, sl 53 Aa -\.g (‘%? g(e’:. S ol (.5—-\\_5 A.s *
-1z ‘ i
P
e 2]
. ° S S .
- SM (cur o )
h——zva-bl b—z:—v( S-ru:-.\ N\
- S=-1| S=o0 S=4) =% 4 o0

The contribution of the 2nd and 4th terms can easily be shown to
vanish. . At the present we consider the singular part of the solution
arising from the lst and 5th term. Furthermore, for convenience, we
integrate over ( -co, oo ) instead of ( -c0, ~1-& )and ( 1+e, o )in
order to express the integrals in terms of known functions, namely the
I” -functions. |

It can be shown that the differences between (58) and the integrals

17



o0
M Vullsh xiaxs

— ‘ -V Ya |
U, Cxay) Eg { M lsh N sy m\%l} - ds (59)

- od

are bounded for all r, in particular for small r, and by an appropriate
deformation of the path of integration To (x, y) can be expanded in terms
of ['- functions. Without going into the details, we list the results for

the stresses on the plate surface z = 3 h/2 below.

Ty v LODEECDTE [y (ang i), cng o 3 -0 )]
Ldae
(60)

r() a? (-0x3a, . P b et }
L) = {z(z—v,)(msg -\-Sw\%)-*-))o cos?(cns?‘l “Sin _ai) +

6, = - rCA)EL Y, (t«\-L)’)\JQ_(Cos.S_ +5in j_}._ osg (CoSﬁ + 5\*\%)}
' ai Gwy) Jo
(61)

+ COA)ERG-)R R {4 (;-y,)(c;s.g. , si-n%>+”° wsg (ol - siniE )‘} *
av () Jae

6 = TCAER (b)) X% {au-vo)(msﬁi*s‘\w%}-”a“s‘s (‘“ﬁ.—%““‘\?}ﬂ
o T
(62)

r(3/2)‘Ea (\—'\.) Vo)?'Qo oS Qbaéaj_ - S;"’\ 3—2&_3 4 s
v ()

where the upper and lower signs correspond to y > 0 and y L 0 respectively,

and the angular coordinate has been defined using

(63)

4
I
rk

’g LR
lx
|

2 F]
IN

—
IN

v|3
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Further, the general expression for the complex constants P _and Qo

are deduced as

|/=_ i .
o iwme (3 +p) (64)

2 G vt (53) (%)

e vmo Canep)
2N (4-v0) Y2 (Ao—S,) FL(as)

- -~ i,

- LV,
oo 93 (a5 (e R R 2 ooy 5 (502 (5~ V- Rg) )

along with certain limiting cases of interest, namely
Casei: ~\»0buta # 0

Po = - M, Jan |4 Si*Sav Cox PA A o (22 % A (642)
20 (4-¥) Yo A% o o - oe)
8 = v { S,4S, 4 Co + %/, N
°an (a-¥%) Y. 9 ava \+ - A+ O (%;} (65a)

Case ii:* 24 0 buta—» 0

. %
Po = - LMo € (Q-Vo)ao R _\_ +_l_ — o &
2n (4-¥) VY, 34> l V3 { b=+ <af_” - s, s, - Co) = * o (%\’;)} (64b)

) 4
- L 7V e (4-vo) o AN | = > 65
I reu B S DG S SRR SLIC S N

% For small s,

L3 50
and \j_-‘= e Ve s V- = e /av

il

F.isy= B e [i+owy) ; & - 2 (66)

(4—\)‘,) Yy s, 1% (67)
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The expressions for the stresses given above are approxi-
mations to the first term of the horﬁogeneous solution. To this the
contribution of the particular should be added. It should be noted,
that along the crack (i.e. ¢ = -7/2) equation (62) gives .Gy = 0, In
addition to this we have from (5) the contribution of the particular

solution namely the term:

Ez Mo Loux

G-v*) %
It thus appears as if the sum of the GY contributions is not zero
along the crack, which would not satisfy the boundary condition. Such

a deduction however is not true because in the expansion of the

stress integrals, we neglected the expansion for small s. For small s,

point s = 0 is a pole, hence by taking the contribution around the
fr 2 e
faze-s fe-26-9)
. . [ '
S==1\ S=o0 S=+1

semi~circle we cancel half of the particular contribution. The other
-,
half must come from g
ST

-
+g . The integrand however is a
Xo
power series with complex constants which makes an explicit analytical

evaluation very difficult and computationally tedious.
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- III, A PARTICULAR SOLUTION .

As an illustration of how the local solution may be combined in
a particular case, consider a rectangular strip, infinitely long in the
x - direction and of finite width y* in the y direction. Furthermore, let
the plate be subjected to a constant moment M* and zero shear at y:fy*,
and simultaneously subjected to a uniform normal loading Qg We

proceed to write down a solution of (1) as follows

¥ “ Acos DY cosi (68)
W ( s cosh AY im Y o3 2y
3] = + = s NG +RBsim 23 = Simh o
and using
™)
M, = —pl ¥ W 69)
3 .DE 3%1 + V bx‘-x (
() 3
Vi ==D| 29 _ ra.5) 2W ] .
3 e~y (70)
compute

) < ) et ) ) )]

-0 )« 2 LA ) Ry ehey]
(72)

L) ot ) o sty

21



Equating (71) to —D"IM’?< and (72) to zero and solving for the constants

one finds
" e
A= MY _sim (AF) cos? (¥) el (%) swl (%) (73)
DN «
siml (9 Iy ANy * H *
Go) et (3F) + con (2320 s (2%)
- S e - s ~
e 0 o () st () v o (3 Y eos@ (22 (74)
DA* $y & ¥
Cos'a(%__)S\-n-Q\ (l\%_- >+ Sim (% ) cos 1‘\;;)
2
along the crack, y=0, it is found that
4 % . % *
D« w220 2t () 30 ()t 03 (75)
use(%s si««&(’%)-\-s\w(%> Cos ’z‘._}_}f-
®) |
V, (x,9)= © | (76)
a .
from which, comparison with (5) and (6) indicates that
-D. ('Wlovr.* L"‘MOJ> (c.oson(+ LS'\’V\QX> = Mm* § ( Lﬁ;) ‘ {77)
(78)

—b( '\)ot-ﬂ-tfuo‘j) <C,OSO«><-\-LS\'~\ Q,X> = O
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or

(79)
o = "uo_‘ = ’U°_) ’YVloJ =0
= — M* =y *
"= = B §(2E) (80)
where using (74),
NEY M*

Retur'ning now to the stresses along the crack prolongation,
for example the normal stress GY (x, 0), one finds using (62) and (64b)

-

that

Mg (L)

6y (x0 _ _ b , A o (82)
EQ YT VER VG () (wy)  Ax
or in terms of the stress
AyF
Sy (%0 _ _ $ T)i:) -y 1 b o & (83)
o Y mw VA |

It is interesting to compare this result to the one obtained for
the classical bending stress obtained at the end of a finite crack of half
length b, (Ref. 1l ) when the initially flat (non-elastically supported)
plate is subjected to a uniform bending moment or stress GY* far from
the crack — for comparative purposes here, y* large. It was found
(Ref. 1 ) that
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C3(%0) _ _ -y Loy z\ _ 0.20 ’ (84)
|

3
ga %Y ]:L X/B

In order to obtain a fair comparison for the elastically supported plate,

consider (83) normalized on the average stress through the uncracked
portion, viz Gy* f{Ay*/ \I_Z—‘)

Sy (x0) - S o 0.13 ’ (85)

¢ s ()| e Ve

Hence with respect to local conditions near the crack point, one
conjectures that the spring constant (D/ k )1/4 of the elastically supported -
plate plays the same role as an effective crack length b in an unsupported
plate, providing the crack is reasonably far from the boundary at y
and is sufficiently long compared to the plate thickness.

Having disposed now of the preliminary problem of a plate
on an elastic foundation, we proceed to show how this problem is
intimately connected with the more complicated one of an initially

curved spherical cap containing a radial crack.
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IV. FORMULATION OF THE COMBINED STRESS PROBLEM
FOR A SHALLOW SPHERE

Consider a portion of a thin shallow spherical shell subjected

to internal pressure, q (x, y), which contains a radial crack. Following

(5)

deflection, w (x,y), and membrane stress function, F (x, y), are

Reissner , the coupled differential equations governing the bending

- E_j{_' VZN % N F (% = 86
4
Vowlag) + 2 VR - Al (87)
RD D

where R is the initial radius of curvature of the spherical segement and
3
D=Eh /12 (1 -V 2 ) is the flexural rigidity.
Along the edge of the unloaded crack, x <« 0 the classical bending

boundary conditions require

~ M,D(x,o) _ iw' + 3 %ﬁ"; = © (88)
32 5
3
_ Uy (%,0) — Ow + (2-v) W - . (89)
> >y 273

and vanishing normal and tangential membrane stresses per unit length

require, x <0,

o = ZF = )
Na(x) ) Z e = o (90)
N X = - B:LF pu—
"3( »9) bx%a ) (91)

As we will be interested mainly in the local conditions at the
crack point, we shall suppress detailed consideration of specific
boundary conditions far from the crack, and merely require that they
be physically reasonable. '

The coupled equations may be separated by suitable multiplication

of the Laplacian operator to yield
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4
T w+nw = —qD——-\-c% ' (92)

VAF—*-’)\“F - % : - (93)

2

where § , 1s an arbitrary harmonic function,@z is the solution

to a Laplace or Poisson equation depending upon the applied normal

loading, namely Vzc} 5 = ')\4Rq(x, y), and the stiffness parameter

3:‘ = 1B g\—ui‘) , - (94)
R* .
has been defined. It is now desired to solve the separated equations
and their associated boundary conditions. |

Within a particular solution, the bending part of the problem is »

identical to the problem of an initially flat cracked plate upori an |

elastic foundation of modulus k = Eh/_R'2 such that ’7% = k/D. The
'stress distribution in the vicinity of the crack point has been discussed,

and it will now be shown that the membrane solution for the similar
situation can be obtained from it by a simple association of parameters.

Following the previous solution, let F = Fl + F, where

F (x)31>=§a{{ ﬁ(s)xa,(s)} e p E—u(si— N‘)\/zlx\,ﬁi.)\sx] ds (95)

B (%" =§x§i<s> < 8.9 enp [ 131 e ] 4 (96)

and S 32, 6= (-1)1/2

If then we have a particular solution such that along x < 0

with positive real parts of the roots being taken.

& Lax '

N = m e | (97)
®) z '

N"a = t, e o (98)
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where ng and t, are complex constants, then the homogeneous

solution must equal the negative of (97) and (98) along the crack.
Carrying out the derivatives of (95) and (96) according to (90) and
(91) respectively, find that for x < 0 |

S R[E A (=] & expinon ds = oo™ o9
” :
g ~ ‘/a. 2. ~ '2_ . LQ-X |
+ g n\?[(ﬁ Q) (%) + (R78) (s‘—@‘)/ ‘_\ Sexpinsx ds =-t,e (100)
g
or upon differentiating the latter with respect to x
~ ~ () ‘~ e 2 a l/:a_ a X 2 LaAxX
([l (=@ 28 () [ err inexdom-tati ™ o0
¥
Continuity conditions along x >0, y = 0 require that
o “
Do X AN (v.u\:;)} o 3 Mme.n2,3. (101)
Dy Y .
$>o 4 a . :
which may be satisfied by setting for x >0
S (5\24?(,)\5)( ds =o 5 S azm\’ L)S % ds =o . (102)
g Ry ;
I/"~ . . 2 Y = | .
S (s‘_oﬁ)' P exp insx ds =o . (s-(f) P expinsx ds= o (103) .
1 3 .

Equations (99) (100a), (102) and {103 )are the integral equations' to be
solved for Pi(s) and 5i(s) i=1, 2).
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At this point it may be noted that these are the same integral
equations as were obtained for the elastically supported plate problem
except that the integrands are slightly changed. It can be shown *%* that

the Pi R Qi can be constructed from the Pi , Qi‘s as follows:

(1) Consider P, (104a)

(2) define P = y,P (104b)

(3) then P, =t B (104c)
Y=o @

A similar construction holds for the 6i‘s.~ For the present, physical
restrictions on Poisson's ratio are not pertinent in taking VO = 1-V— oo,
since Y, can be viewed as a parameter under the integral sign. Note

also that D which is a function of v (Poisson's ratio) has been absorbed

into the parameter 3 . In view of the above we can say:

F= % w(r . e") = 3w (7, 3q) (105)

L L
Vo= 9

where gis a constant.

**% For example in the supported plate work, the moment expression.
can be written as

WSO o ) (2 )l 0 (- )] wer 20 ds m oo™

or upon setting P* = v P, Q= yOQi and taking the limit for Y - ©

there results
1‘8 Szf\;;: 5.) +C\‘>;:&“pz>13 s* e,,;? LS a8 ms — Wy @
g

which is to be compared to ( 99 ).
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Whence, insofar as the mathematical processes are concerned,
the solution of the extensional problem may be written down from the

bending solution by replacing

- m, by M, °, - Vo by "-QA:Q ~ (106)
Hence
3 s A
?c = D ))‘,ZPQ = -ﬁm { tne Vo (—:’\—*P) }, (107)
s vose L an (a-va) o (& -5, F(%)
Q= Lw  22Q, = Lim { e, I - (108)
s s Lan (o) 2 (5-9) (505 R (3)
A consideration of the same two limit cases as before produces
Case i: )~ 0 buta #0.
B CEN <. s B )
T L Mo N Co: X F’a. -li
o e \ = '_)\-\-O( Q‘,_)‘% (109)
~ - ~ Ny
L wT L BrYe g0 ()] (110)
210 3 o & : /
O | | %
Case ii: ]%Obuta—’bo.

In this case, note that we have two limiting processes, i.e.

Y e and a — 0. The first one implies s, —> 0, and the second
implies a =~ 0. A study of the related expression, e.g. (32) of the

previous section, shows that the pole becomes a zero, and of third

order, i.e. L(ao) should be L”(ao), and hence

ﬁ . L e ~“."‘7/‘§ (111)
207

- - -

Q° = ____t‘“_._ e : (112)
an a\* ;

* where N Lo L3/
Co= LUimm Cp® 0.0R7+0L0 022 ; X=e R +
Vo2 3
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This method of solution therefore permits us to write down
the membrane part of the solution for a shallow spherical cap
providing the boundary conditions on the crack, imposed by the
particular solution associated with the loading @2 , are expressible

as components of a Fourier expansion, exp(ianx).

30



Vs THE COMBINED STRESS DISTRIBUTION IN
THE SHELL NEAR THE CRACK

MEMBRANE STRESSES

The membrane stresses are defined in terms of F(x, y) by

N - QZF
%3 Bxba

N " - o F
Ba’-

N ) 3F
4 S x>

from which upon using
§ = btay X AR A

the stresses become

ng$&eu= T N (\+L}>\I‘;(3/:.) Po { s g &cos _3_5_ % %;_)}

’)\1— r(B/é-) (‘*"} 60 02 R 1 ‘} s
= (c,os_g..,.sm%_)_o:sc((ms%?«-s\w'é;) +

AR (W) P . . .
‘Nx et L JNE : {& (m%*s‘"’ %‘)— ©s9 <<‘°55'§ ¥ s‘”‘zéf}')}

2 mr(%/jfé\*g R, {4('(_05%_5.\“%)_@5% (Wb?ii-s;".\%—;‘-)% eis %%
N _ L’;\’-\'Ca/;) (wi) (A {;{( s % 4 5\M3_>+ COsﬁQC‘ebé_i-\-'s‘s«r\g—i')}
IRV, e = e 2 7] .

= . }zr(%)(\"‘i‘)an &c‘,s (J)S,a_i — Si’v\é& } R
F e 5 ( = 2)

(113)

(114)

(115) °

(116)

(117)

(118)

(119)

where the upper and lower signs refer toy » 0 and y < 0 respectively.
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BENDING STRESSES
In a similar fashion, the classical linear bending stresses °

are defined in terms of the deflection function w (x, y) by

' DWW
= -2z 2N . 120
Ty “ 2%y : : (20
G =Lz P‘W ‘o fﬂ (121)
=y Sx* ga‘a.
6. - - Ez | 3w ., P (122)
d I-»* 2y* dx* :

where z is the distance through the thickness of the plate, h.
Repeating the results of the earlier section for convenience, we have
for the stresses on the plate surfaces z = I h/2, and using the

previously defined relations between ( = , ¢ ) and (x, y),

_ T(}A) Gh (i) A .
Ty = 3 LI L) o o)
(123)
M%) @h (=9 %@, . ;
—_ = 3(4‘”0)(‘05§-fSm:f{_)-i-v.,usc‘(mﬁ%& +Sw\"§§-)} RS
_ TGLYERw, Q)W | . o 7 . ‘}
cum - AR LT [ (sg ming) - wng (e s 3)
(124)
+ r(a/l) E'E\L\"b\ ,>\2- Qo 4 (2~ (_Qsj__si\‘v\j_ +), oS @SB —-Si‘\\c‘}j i%"“"
at (1) [ b (e ) “( . '2>
TCAYER (W) WP }S
_ V) w3 L psim L) = im3
GA a2y (W) I {1 (4 v)<m5:‘+sv\’~> e ws?(ms%+sm’%>
(125)

TCAY R (D) VW @,
L () e

‘95%(“’5?—} —-SS*\?’-}> 4 o
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COMBINED STRESSES

In general the combined stresses will depend upon the contri-
butions of the particular solutions reflecting the magnitude and
distribution of the applied normal pressure. On the other hand the
singular part of the solution, that is the terms producing infinite
elastic stresses at the crack tip will depend only upon the local
stresses existing along the locus of the crack before it is cut, which
of course are precisely the stresses which must be removed or
cancelled by the particular solutions described above in order to .
obtain the stress free edges as required physically. Hence the
distribution of q (x, y) does not — to the first order — affect the

character of stress at the crack point.

ILLUSTRATIVE EXAMPLE

An obvious problem to illustrate the characteristics of the
solution might be that of, say, a simply supported circular plate of
radius T containing a crack along §= -w/2, and loaded by uniform
normal pressure ¢ & and a uniform radial extension Nr(ro) =N

5 (6)

For this problem, Reissner

o "
gives the solution of the coupled

extension - bending equations for the uncracked plate as
W v = C\ \ovv.(\\'.) -\-C:_lge,"_(\z) +Cx ‘ . (126)

P = %{_ 2, helinx) = Cz\oex_('xt.{l - (127)

where

bex (3T2) = (\-V) (YCJ-‘ \o?-'l-’(xto)
bet (o) + (1-v) (%)™ bex' (~x.)

C =2C

\

(128)

. -y
CS - ngrbei' (3x0) + bex (W) = (1=») () be i (3e) bex (x“’;j (129)
| be i (0Ng,) + (=) (o)™ Lex' (ko)

oo R /eey ] U NG = 3 96 R]

ber (wee) = (1=%) (W) bei’ (xel)
bet L)\‘Co) + C\-)a‘) (\to)-‘ L&‘C' ()\to)

C =

2

(130)

L
bel (we.) - by,
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Along any radial ray, and in particular along ¢= -7/2,
the bending and extensional shear vanish by symmetry, and the

circumferential bending and stretching stresses are, respectively

Ny =57 0{ , [rbeion) - () () berGm)] - €] bew ) + (o) <m“ggc’®]} (131)

7). 1"
Ne = T"z— 1R +i::. { <, kc.i.”(;\t)— c, bet C‘xz)% (132)

The homogeneous solutions must therefore negate these
values from the particular solution and, upon expanding in the Fourier
series to obtain the typical trigonometric loading components, there

would result

@ (m) cQnk
M (r-3) <o b 3 )
P~
™ ™) L, i
(™) (m)

from which the coefficients m and ng can be determined. The

bending and extension shear coefficients, ’Uo(n) and '\:,O(n) respectively

are zero for the prescribed set of boundary conditions.

In principle then, the problem has been solved. As a
practical matter however, it may be recalled that the functions, e. g. P(s),
were determined in terms of the loading coefficients, e.g. m . When the
loading is general instead of 3 single Fourier component,  one would have

summations essentially of the form (see Part II, equation(64 a).

() ) A -y -
PCs) .—_g P sy f,r.% s (Q.,,\)'xé o, {Hx( ))‘o“‘l-a- 0(7\2&:\2)} (135)

Now as in a Fourier expansion a =n, n= 1, 2, 3,7"", and as only the

first terms of Po(n)(an) have been computed due to the involved nature

of F(n)(s), practical accuracy of the expansion, particularly for small n,
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may require more terms for P, than have been given herein.

In order to obtain some idea of the stresses in the vicinity
of the crack point however, consider the local conditions r = & — 0.
Using the series expansion for the Bessel functions and taking the

first term,

1 )
=0 M (emg) -y () 3 e £ O = s (136)
o) = R, EZ e ) (137)
Ne (e, %) = ] o T C\+O(z"'>+‘--= M. ( )
so that *
(=) '
m, = () ¢, : (138)
V\o - ﬂo —5.“ ¥ Z—{L— Cx ( )
(o) (o)
Vo = t, = © (140)
whereupon the combined stresses can now be found.
* to be exact we should have:
R
(o) P - e 3 2
wm, = - go Me de o= = 7Y p\c‘\{@.ﬂ A'=-+”'A'K+ RX CZY_()I-‘)AA-*D-A;X

R e . ey

A =§ b Gre)dE 5 AL g \:@c('x;?;g) 1
: GE)

Ay = SO e (RE) 25 3 Afg Lmﬁ) " A

R =4\§\;1C1-y‘) *
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-

For example, along the line of crack prolongation, (_( = nw/2, 7Q

T(3R) EX Q+i) 6 K 4 (4-%)

6 oy = © ==
EC" .1) ‘&(X> ’°> 2L () m_' J=27 \ae-vul'\w%.

(141)

(A (i) L > \;; 4 ¢
N erdiy KJTX extemsion

whereupon substituting the limit values of P, and P _ for a — 0,

% #0, one finds

& [xnoe) _ (R/»\)S/'1 ‘ {'\__\_(‘_i-ﬂg_>H(7\*c )}J,... (142)
%o T alW Yoo TR )

where

! ey
bex (ieo) = (1-¥) (o) be o (o) ‘kt kagaw)(\w.)

\F)

H (’)‘r(_O) =Q->\»(_°) bel (Weo) + (1-») (o)™ bex’ (Weo)

bei (e \ ber (weo) = (-») Ove) ‘_&"E’.‘/(XC“)—\& - bex' (ko) (143)
bel (o) ¥ (-3) O%eY bex! (o)

The foregoing example illustrates the main features of the
solution which has yet to be studied in detail. In conclusion however
it is worth calling attention to a few specific points.

First, it is important to note that the preceeding typical
result (142) was deduced assuming that only the leading term of the
particular solution contributed to the solution, (rather than using the
average value from zero to ro) whereas a more precise computation
of the leading Fourier coefficient can be determined readily by using
the formulas of the footnote on the bottom of page 35.

Second, it is implicit in the solution that the singular solution
dies out rapidly far from the crack. At the intersection of the crack
with the circumferential boundary r = r howe‘lver, the y-distance
from the crack approaches zero and deviations in the solution should

be expected.
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Third, the bending part of the solution is based upon classical
linear bending theory wherein only the integrated Kirchhoff shear
condition is satisfied along a free edge. One might therefore anticipate
differences between the classical and higher order theory very similar

(7) linear bending problem for the crack

(8)

to the changes in the Williams
as found by Knowles and Wang In this latter case, i% which the bent
plate was initialiy flat, the stress singularity remained of the inverse
square root type in both solutions, but in the higher order theory, the
distribution of stress around the crack point became identical with that

(9).

The similar improved solution for the non-Kirchhoff solution for an

predicted for an initially flat plate subjected solely to extension

initially curved plate however is a considerably'mo're difficult problem,
and temporarily then one might assume that the difference reflected
for the flat plate case will also hold if a more refined theory were
developed for the curved sheet.

Finally an interesting paradox should be stressed. It has
appeared from several pieces of indirect evidence that the solution
for an initially curved plate will not smoothly approach the solution
for an initially flat plate as the curvature in the former problem,
i.e. 7\ , approaches zero. This seems strange because the solution
for a beam resting upon an elastic foundation will approach that of a
non-elastically supported beam as the foundation modulus becomes
vamshingly weak. ‘ )

These matters properly form the sub_]ect matter for

continuing study.
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