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RANDOMLY WEIGHTED
SELF–NORMALIZED SUMS

Let {Y, Yi : i ≥ 1} denote a sequence of i.i.d.
random variables, where Y is non–negative with
cumulative distribution function [c.d.f.] G.

Now let {X, Xi : i ≥ 1} be a sequence of i.i.d.
random variables, independent of {Y, Yi : i ≥ 1},
whereX is in the classX of non-degenerate ran-
dom variables satisfying for X ∈ X

E|X| <∞.
For future use, let X0 denote those X ∈ X such
that EX = 0. Consider the randomly weighted
self–normalized sum

Tn =

n∑
i=1

XiYi/

n∑
i=1

Yi.
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RANDOMLY SIGNED
SELF–NORMALIZED SUMS

Here is a motivating special case.

Let {Y, Yi : i ≥ 1} and {s, si : i ≥ 1} be inde-
pendent sequences of random variables, where
the Yi’s are i.i.d. Y positive and the si’s are
i.i.d. s, where s is the random sign

P {s = 1} = P {s = −1} = 1/2.

Consider the randomly signed self–normalized
sum,

Tn :=

n∑
i=1

siYi/

n∑
i=1

Yi.
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THE ARCSINE LAW

The randomly signed self-normalized sum has
this interesting motivation. In fair coin tossing,
where +1 denotes heads and −1 tails, let Yi be
the time between the (i− 1)th and ith return to
zero of the partial sums S1, S2, . . . , of the coin
toss outcomes. Then

(Tn + 1) /2

is the fraction of the time at the nth return to
zero that the sums were positive.

In this setup (Tn + 1) /2 asymptotically has the
arcsine law, namely for all 0 ≤ x ≤ 1,

P {(Tn + 1) /2 ≤ x} → 2

π
arcsin

(√
x
)
.
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DOMAIN OF ATTRACTION

In this talk

Y ≥ 0 and Y ∈ D (β) , 0 ≤ β < 1,

means that for some function L slowly varying
at infinity,

G(y) = y−βL(y), y > 0,

where for any c.d.f. G

G(y) := P {Y > y} .

In the case 0 < β < 1 this is equivalent to Y
being in the domain of attraction of a stable law
of index β.
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BREIMAN RESULT

Among other results, Breiman (1965) proved
that Tn converges in distribution for EVERY
X ∈ X with at least one limit law being non–
degenerate if and only if

Y ∈ D (β) , with 0 ≤ β < 1. (1)
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BREIMAN CONJECTURE [BC]

At the end of his paper Breiman conjectured
that if for some X ∈ X , Tn converges in distri-
bution to some nondegenerate random variable
T , written

Tn→d T, as n→∞, with T nondegenerate,
(2)

then (1) holds.

7



OBSERVATION

By Proposition 2 and Theorem 3 of Breiman
(1965), for any X ∈ X , (1) implies (2), in which
case T has a distribution related to the arcsine
law. Using this fact, we see that his conjecture
can restated to be: for any X ∈ X ,

(1) is equivalent to (2).
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A PARTIAL SOLUTION

It has proved to be surprisingly challenging to
resolve. Using Karamata’s Tauberian theorem,
M and Zinn [MZ] (2005) partially verified the
Breiman conjecture.

They established that whenever X is nondegen-
erate and satisfies E|X|p <∞ for some p > 2,
then (1) is equivalent to (2). The p > 2 moment
condition was imposed in order to conclude that

E
(
T2
n

)
→ E

(
T 2
)
<∞, as n→∞.
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SLIGHT EXTENSION OF MZ

Here is a slight extention of their proof, show-
ing that E|X|2 < ∞ suffices. Without loss of
generality we can assume that EX = 0. An
easy calculation gives

E (Tn)2 = var (X)nE
(

Y1

Y1 + · · · + Yn

)2

.
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LEMMA

Lemma Assume that

Tn→d T , as n→∞,
where T is random variable. Whenever for
some p ≥ 1, E |X|p <∞, then

E |Tn|p→ E |T |p <∞, as n→∞.
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IN PARTICULAR

In particular, when E|X|2 <∞

E
(
T2
n

)
→ E

(
T 2
)
<∞, as n→∞,

and thus whenever EX = 0 and T is nondegen-
erate, for some 0 ≤ β < 1,

E
(
T2
n

)
= var (X)nE

(
Y1

Y1 + · · · + Yn

)2

→ var (X) (1− β) .
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MOMENT RESULT

Arguing as in MZ we get that E|X|2 <∞ and
(2) suffice for (1), using the following moment
result due to Fuks, Ioffe and Teugels (2001),
which is proved using Tauberian theorems.

Proposition We have Y ∈ D (β), with 0 ≤
β < 1, if and only if

nE
(

Y1

Y1 + · · · + Yn

)2

→ 1− β.
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CRUCIAL TO THE PROOF

Crucial to the proof of this result was the rep-
resentation

nE
(

Y1

Y1 + · · · + Yn

)2

= n

∫ ∞
0

uϕ′′ (u) (ϕ (u))n−1 du,

where ϕ (u) = E exp (−uY1) , for u ≥ 0.
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KEVEI-M RESULT

Kevei and M (2015) have further extended the
MZ partial solution to the BC. In the following
φX(t) denotes the characteristic function of X .

Theorem Assume that for some X ∈ X0,
1 < α ≤ 2, positive slowly varying function
L at zero and c > 0,

− log (<φX(t))

|t|αL (|t|)
→ c, as t→ 0. (3)

Whenever (2) holds then Y ∈ D(β) for some
β ∈ [0, 1).
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COROLLARY

Let F denote the class of random variables that
satisfy the conditions of the theorem. Applying
our theorem in combination with Proposition 2
and Theorem 3 of Breiman (1965) we get the
following corollary.

Corollary Whenever X − EX ∈ F , (1) is
equivalent to (2).
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IMPORTANT OBSERVATIONS

It can be inferred from Theorem 8.1.10 of Bing-
ham, Goldie, and Teugels (1987) that for X ∈
X0, (3) holds for some 1 < α < 2, positive
slowly varying function L at zero and c > 0 if
and only if X satisfies

P {|X| > x} ∼ L(1/x)x−αcΓ(α)
2

π
sin
(πα

2

)
.

Note that a random variable X ∈ X0 in the
domain of attraction of a stable law of index
1 < α < 2 satisfies (3).

Also a random variable X ∈ X0 with variance
0 < σ2 < ∞ fulfills (3) with α = 2, L = 1
and c = σ2/2. This means that the Kevei-M
theorem contains the MZ result.
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PROPOSITION 1

The theorem is a consequence of the two propo-
sitions that follow. First we need more notation.
For any α ∈ (1, 2] define for n ≥ 1

Sn(α) =

∑n
i=1 Y

α
i

(
∑n
i=1 Yi)

α.

Proposition 1Assume that the assumptions
of the theorem hold. Then for some 0 < γ ≤
1

ESn(α)→ γ, as n→∞. (4)
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PROPOSITION 2

The next proposition is interesting in its own
right. It is an extension of Theorem 5.3 of Fuchs,
Joffe and Teugels (2002), where α = 2 (see also
Proposition 3 of MZ).

Proposition 2 If (4) holds with some γ ∈
(0, 1] then Y ∈ D(β), for some β ∈ [0, 1),
where −β ∈ (−1, 0] is the unique solution of

Γ(α− 1)Γ(1− β)

Γ(α− β)
=

1

γ(α− 1)
.

In particular, Y ∈ D(0) for γ = 1.

Conversely, if G ∈ D(β), 0 ≤ β < 1, then
(4) holds with

γ =
Γ(α− β)

Γ(α)Γ(1− β)
.
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KEY RESULT USED IN PROOF

Set for each n ≥ 1, for i = 1, . . . , n

Ri,n = Yi/

n∑
l=1

Yl.

Consider the sequence of strictly decreasing con-
tinuous functions {ϕn}n≥1 on [1,∞) defined for
y ∈ [1,∞) by

ϕn(y) = E

 n∑
i=1

R
y
i,n

 .
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LEMMA

Note that each function ϕn satisfies ϕn(1) = 1.
By a diagonal selection procedure for each sub-
sequence of {n}n≥1 there is a further subse-
quence {nk}k≥1 and a right continuous non-
increasing function ψ such that ϕnk converges
to ψ at each continuity point of ψ.

Lemma Each such function ψ is continuous
on (1,∞).
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KEY STEP USED IN PROOF

One can show that

E
∑n
i=1 Y

α
i

(
∑n
i=1 Yi)

α =

n

Γ(α)

∫ ∞
0

uα−1E
(
e−uY1Y α1

)
(Ee−uY1)n−1du,

which if it converges to γ ∈ (0, 1], then

tα−1

∫∞
0 G(u)uα−1e−utdu

Γ(α)
∫∞

0 G(u)e−utdu
→ γ, as t↘ 0.

(5)
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APPLICATION OF DRASIN-SHEA
THEOREM

An application of a version of the Drasin-Shea
theorem shows that (5) impliesG ∈ D(β), where
0 ≤ β < 1 satisfies

γ =
Γ(α− β)

Γ(α)Γ(1− β)
.
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MELLIN TRANSFORM
-CONVOLUTION

Mellin transform Given a measurable kernel
k : (0,∞)→ R, its Mellin transform is

k̃ (z) =

∫
(0,∞)

t−z−1k (t) dt

for z ∈ C, such that k̃ (z) is finite.

Mellin convolution For suitable functions f
and g : (0,∞)→ R,

f
M∗ g (x) =

∫
(0,∞)

t−1f (x/t) g (t) dt.
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BOUNDED DECREASE

The lower Matuszewska index β (f ) is the
supremum of those β for which there exists a
constant d = d (β) > 0 such that for each Λ >
1, as x→∞, uniformly in λ ∈ [1,Λ],

f (λx) /f (x) ≥ d {1 + o (1)}λβ.

Bounded decrease [BD] A positive func-
tion f has bounded decrease if β (f ) > −∞.
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DRASHIN-SHEA THEOREM

Theorem Let k be a non-negative kernel whose
Mellin transform k̃ has maximal convergence
strip a < <z < b, where a < 0. If a is finite,
assume that k̃ (a+) = ∞, if b is finite assume

k̃ (b−) = ∞. Let f be a non-negative, locally
bounded on [0,∞) . Assume that f ∈ BD. If

k
M∗ f (x) /f (x)→ c, as x→∞,

holds, then c = k̃ (ρ) for some ρ ∈ (a, b), and
f ∈ Rρ, meaning that f is regularly varying at
infinity with index ρ.
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OUR KERNEL

The particular kernel that we use is

k(u) =

{
(u− 1)α−2u−α+1, u > 1,

0, 0 < u ≤ 1.

Its Mellin-transform is

k̃ (z) =

∫ ∞
1

(u− 1)α−2 u−α−zdu

=
Γ (α− 1) Γ (1 + z)

Γ (α− z)
,

which is convergent for z > −1.
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FURTHER RESULTS

Kevei and M (2012) studied the asymptotic dis-
tribution of randomly weighted sums Tn along
subsequences

{
n′
}

of {n}.
Our basic result is the following extension of
Proposition 3 of Breiman (1965), who proved it
in the case Y ∈ D (β) , with 0 < β < 1, and
for the full sequence {n}.
Assume that E|X| <∞ and for a subsequence{
n′
}

there exists a sequence of positive norming
constants an′ such that

1

an′

n′∑
i=1

Yi
D−→ W2, as n′→∞,

where W2 is an id(0, b,Λ) infinitely divisible
random variable.
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id(0, b,Λ) RANDOM VARIABLE

This means thatW2 is an infinitely divisible ran-
dom variable taking values in [0,∞) with char-
acteristic exponent

logEeiuW2

= iub +

∫ (
eiux − 1− iuxI(|x| ≤ 1)

)
Λ(dx),

b ≥
∫ 1

0 xΛ(dx) and Lévy measure Λ concen-
trated on (0,∞).
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CONCLUSION

Then along the same subsequence
{
n′
}

, as n′→
∞,(∑n′

i=1XiYi
an′

,

∑n′
i=1 Yi
an′

)
D−→ (W1,W2),

where

(W1,W2)
D
= (a1 + U, a2 + V )

with (a1, a2) =((
b−

∫ 1

0
xΛ(dx)

)
EX, b−

∫ 1

0
xΛ(dx)

)
and Eei(θ1U+θ2V ) =

exp
{∫∞

0

∫∞
−∞

(
ei(θ1x+θ2y) − 1

)
dF (x/y) Λ (dy)

}
=: exp {φ (θ1, θ2)} .
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IMPLICATION

We see that whenever

1

an′

n′∑
i=1

Yi
D−→ W2, as n′→∞,

and P {W2 > 0} = 1, then as n′→∞

Tn′ =

n′∑
i=1

XiYi/

n′∑
i=1

Yi.
D−→ W1/W2.

In particular this happens when Y is in the cen-
tered Feller class, since in this case necessarily
W2 has a Lebesgue density.
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FELLER CLASS

ξ is in the Feller class if for the sequence of par-
tial sums {Sn}n≥1 of i.i.d. ξ there exist norm-
ing and centering constants B (n) > 0, A (n)
such that every subsequence of {nk} of {n}
contains a further subsequence nk′ →∞with

Snk′ − A(nk′)

B(nk′)

D−→ W,

where W is a finite nondegenerate rv depending
on the subsequence nk′, which by a result of
Pruitt (1983) has a Lebesgue density.

We shall write this as “ξ ∈ FC”.
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CENTERED FELLER CLASSES

If the centering function A (n) can chosen to be
identically equal to zero, we shall say:

ξ is in the centered Feller class, written “ξ ∈
FC0”.
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THE CASE Y ∈ FC0

Whenever Y ∈ FC0 one can show that a1 =
a2 = 0 and thus all of the subsequential distri-
butional limits of Tn are of the form U/V with
P {V > 0} = 1.

Moreover, by using a result of Griffin (1986) it
can be shown that these distributional limits
have Lebesgue densities on R.
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GOING THE OTHER WAY

Going the other way, Kevei and M (2013) show
that if all of the subsequential laws of Tn are
continuous for any choice of X ∈ X , then nec-
essarily Y ∈ FC0.

In particular, if Y ∈ FC, but Y /∈ FC0 then
there exists a subsequence

{
n′
}

such that

n′∑
i=1

XiYi/

n′∑
i=1

Yi
P−→ EX, as n′→∞.
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ASSOCIATED BIVARIATE LÉVY
PROCESS

Under the assumptions of our basic result we
can readily prove that for any t > 0, as n′ →
∞, (∑

1≤i≤n′tXiYi
an′

,

∑
1≤i≤n′t Yi
an′

)
D−→ (a1t + Ut, a2t + Vt),

where (Ut, Vt), t ≥ 0, is the bivariate Lévy pro-
cess with characteristic function

Eei(θ1Ut+θ2Vt) =: exp {tφ (θ1, θ2)} .

36



ASYMPTOTIC DISTRIBUTION OF
RATIO

Kevei and M (2013) have characterized when
under regularity conditions that the ratio

Tt := Ut/Vt
D−→ T.

converges in distribution to a nondegenerate ran-
dom variable T as t→∞ or t↘ 0.
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KEVEI-M RESULT

They obtained the following analog for Tt of the
MZ result:

SupposeX is non-degenerate and satisfies E|X|p <
∞ for some p > 2, then the ratio as t → ∞
(t↘ 0)

Tt := Ut/Vt
D→ T, nondegenerate,

(in the case t ↓ 0 we assume Λ(0+) = ∞.) if
and only if for some 0 ≤ β < 1,

Λ (x) is regularly varying at infinity (zero) with
index −β.
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LEVY PROCESS FELLER CLASS

A Lévy process Yt is said to be in the Feller
class at infinity if there exists a norming func-
tion B (t) and a centering function A (t) such
that for each sequence tk → ∞ there exists a
subsequence t′k →∞ such that(
Yt′k
− A(t′k)

)
/B(t′k)

D−→ W, as k →∞,

where W is a nondegenerate random variable.

For the definition of Feller class at zero replace
tk →∞ and t′k →∞, by tk ↘ 0 and t′k ↘ 0,
respectively.

39



LEVY PROCESS CENTERED

FELLER CLASS

The Lévy process Yt belongs to the centered
Feller class at infinity if it is in the Feller class
at infinity and the centering function A (t) can
be chosen to be identically zero.

For the definitions of centered Feller class at
zero replace tk → ∞ and t′k → ∞, by tk ↘ 0
and t′k ↘ 0, respectively.
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CONTINUOUS LIMITS

Theorem All subsequential distributional lim-
its of Ut/Vt, as t ↘ 0, (as t → ∞) are con-
tinuous for any cdf F in the class X , if and
only if Vt is in the centered Feller class at 0
(∞).
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REPRESENTATION

Now let {Xs}s≥0 be a class of i.i.d. F random
variables independent of the Vt process. It turns
out that for each t ≥ 0 the bivariate process

(Ut, Vt)
D
=

 ∑
0≤s≤t

Xs∆Vs,
∑

0≤s≤t
∆Vs

 , (6)

where ∆Vs = Vs − Vs−.

Notice that in the representation (6) each jump
of Vt is weighted by an independent Xt so that
Ut can be viewed as a randomly weighted Lévy
process.
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A PICTURE OF THIS PROCESS

Here is a graphic way to picture this bivari-
ate process. Consider ∆Vs as the intensity of
a random shock to a system at time s > 0 and
Xs∆Vs as the cost of repairing the damage that
it causes.

Then Vt, Ut and Ut/Vt represent, respectively,
up to time t, the total intensity of the shocks,
the total cost of repair and the average cost of
repair with respect to shock intensity.
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A MOTIVATING EXAMPLE

Let ∆Vs represent a measure of the intensity
of a tornado that comes down in a Midwestern
American state at time s during tornado season
and Xs the cost of the repair of the damage per
intensity that it causes.

Note that Xs is a random variable that depends
on where the tornado hits the ground, say a
large city, a medium size town, a village, an
open field, etc.

It is assumed that a tornado is equally likely to
strike anywhere in the state.
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