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RANDOMLY WEIGHTED
SELF-NORMALIZED SUMS

Let {Y, Y, : 7 > 1} denote a sequence of i.i.d.
random variables, where Y is non—negative with
cumulative distribution function [c.d.f.] G.

Now let {X, X, :7 > 1} be a sequence of i.i.d.
random variables, independent of {Y, Y; : 4 > 1},
where X isin the class X of non-degenerate ran-
dom variables satistying for X € X

E|X| < oc.

For tuture use, let Ay denote those X € X such
that EX = 0. Consider the randomly weighted
self-normalized sum

n n
1=1 1=1



RANDOMLY SIGNED
SELF-NORMALIZED SUMS

Here 1s a motivating special case.

Let{Y, Y; i > 1} and {s, s; : ¢ > 1} beinde-
pendent sequences of random variables, where
the Y;’s are i.i.d. Y positive and the s;’s are
i.i.d. s, where s is the random sign

Pl{s=1}=P{s=—-1} =1/2.

Consider the randomly signed self-normalized
sum

)
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THE ARCSINE LAW

The randomly signed self-normalized sum has
this interesting motivation. In fair coin tossing,
where +1 denotes heads and —1 tails, let Y; be
the time between the (i — 1) and i'" return to
zero of the partial sums S, So, ..., of the coin
toss outcomes. Then

(T, +1) /2

1s the fraction of the time at the n
zero that the sums were positive.

th return to

In this setup (T, 4+ 1) /2 asymptotically has the
arcsine law, namely for all 0 < z <1,

P{(T,+1)/2< 2z} — %arcsin (V).



DOMAIN OF ATTRACTION

In this talk
Y>0andY e D(F),0< 38 <1,

means that for some function L slowly varying
at infinity,

Gly) =y "Lly), y >0,
where for any c.d.f. G

G(y) == P{Y > y}.

In the case 0 < 8 < 1 this is equivalent to Y
being in the domain of attraction of a stable law

of index £.



BREIMAN RESULT

Among other results, Breiman (1965) proved
that T, converges in distribution for EVERY
X € X with at least one limit law being non—
degenerate if and only if

YeD(@B), witho<B<1. (1)



BREIMAN CONJECTURE [BC]

At the end of his paper Breiman conjectured
that if for some X € X, T, converges in distri-
bution to some nondegenerate random variable
1T, written

Ty, =41, as n — oo, with T nondegenerate,

(2)
then (1) holds.



OBSERVATION

By Proposition 2 and Theorem 3 of Breiman
(1965), for any X € X, (1) implies (2), in which
case 1" has a distribution related to the arcsine
law. Using this fact, we see that his conjecture
can restated to be: for any X € X,

(1) is equivalent to (2).



A PARTIAL SOLUTION

It has proved to be surprisingly challenging to
resolve. Using Karamata’'s Tauberian theorem,
M and Zinn [MZ] (2005) partially verified the

Breiman conjecture.

They established that whenever X is nondegen-
erate and satisfies E| X |P < oo for some p > 2,
then (1) is equivalent to (2). The p > 2 moment
condition was imposed in order to conclude that

E(T%)%E(T% < 00, asm — Q.



SLIGHT EXTENSION OF MZ

Here is a slight extention of their proof, show-
ing that E|X|? < oo suffices. Without loss of
generality we can assume that EX = 0. An
casy calculation gives

Yi 2
E (T, )? = X)nE .
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LEMMA

Lemma Assume that
T, =41, as n — oo,

where T is random vartable. Whenever for
somep > 1, E|X|P < oo, then

E|Ty|P - E|T)P < oo, asn — oc.
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IN PARTICULAR

In particular, when E|X|? < oo
E(T%) %E(Tz) < 00, as n — 00,

and thus whenever EX = 0 and 7" is nondegen-
erate, for some 0 < 5 < 1,

E (T%) = var (X)nE (Yl - Yl - Yn>2
— var (X) (1 —p).
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MOMENT RESULT

Arguing as in MZ we get that E|X|* < oo and
(2) suffice for (1), using the following moment

result due to Fuks, loffe and Teugels (2001),
which is proved using Tauberian theorems.

Proposition We have Y € D (), with 0 <
8 < 1, if and only if

Y; :
nlk — 1 — 0.
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CRUCIAL TO THE PROOF

Crucial to the proof of this result was the rep-

resentation
Y 2
nlk

—n /O " u () (i ()" du,

where ¢ (u) = Eexp (—uY]), for u > 0.
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KEVEI-M RESULT

Kevei and M (2015) have further extended the
MZ partial solution to the BC. In the following
¢ x (t) denotes the characteristic function of X.

Theorem Assume that for some X € A,
1 < a < 2, positive slowly varying function
L at zero and ¢ > 0,

—log (Rex (1))
¢ L (|])
Whenever (2) holds then Y € D(B) for some
B el0,1).

> c, ast — 0. (3)
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COROLLARY

Let F denote the class of random variables that
satisfy the conditions of the theorem. Applying
our theorem in combination with Proposition 2
and Theorem 3 of Breiman (1965) we get the
following corollary.

Corollary Whenever X — EX € F, (1) is
equivalent to (2).
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IMPORTANT OBSERVATIONS

It can be inferred from Theorem 8.1.10 of Bing-
ham, Goldie, and Teugels (1987) that for X &
Xp, (3) holds for some 1 < a < 2, positive
slowly varying function L at zero and ¢ > 0 if
and only if X satisfies

P{IX| > } ~ L(1/)r el (a) = sin ().

T
Note that a random variable X € A in the
domain of attraction of a stable law of index
1 < a < 2 satisfies (3).

Also a random variable X € X[y with variance
0 < 02 < oo fulfills (3) with @ = 2, L = 1
and ¢ = ¢2/2. This means that the Kevei-M
theorem contains the MZ result.
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PROPOSITION 1

The theorem is a consequence of the two propo-
sitions that follow. First we need more notation.
For any o € (1, 2] define for n > 1

_ i Y
(301 Y3
Proposition 1 Assume that the assumptions

of the theorem hold. Then for some 0 < v <
1

Sp(a)

ESn(a) = v, asn — oo. (4)
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PROPOSITION 2

The next proposition is interesting in its own
right. It is an extension of Theorem 5.3 of Fuchs,
Joffe and Teugels (2002), where oo = 2 (see also
Proposition 3 of MZ).

Proposition 2 If (4) holds with some v €
(0,1] then Y € D(B), for some 5 € [0,1),
where —B € (—1,0] is the unique solution of
[la—DI(1-5) 1
(o = B) Y =1)
In particular, Y € D(0) for v =1.

Conversely, if G € D(B), 0 < 8 < 1, then
(4) holds with

_ T(a-p)
T N1 =5y
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KEY RESULT USED IN PROOF

Set foreachn > 1, forte=1,...,n
n
Ri,n — YZ/ZYZ
[=1

Consider the sequence of strictly decreasing con-
tinuous functions {¢p },,>1 on |1, 00) defined for
y € [1,00) by

n
1=1
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LEMMA

Note that each function ¢, satisfies ¢, (1) = 1.
By a diagonal selection procedure for each sub-
sequence of {n} <1 there is a further subse-
quence {ng}r>; and a right continuous non-
increasing function ¢ such that (Op,. converges
to ¢ at each continuity point of 1.

Lemma FEach such function 1) 1s continuous
on (1,00).
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KEY STEP USED IN PROOF

One can show that

0
n / qu—lE (e—quyloz) (Ee—qu)n—ldu’
(@) Jo

which if it converges to v € (0, 1], then
t@_lfooo G(u)u® e v dy

— > v, as t \, 0.
D) i Glu)e~¥du 7oAt
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APPLICATION OF DRASIN-SHEA
THEOREM

An application of a version of the Drasin-Shea
theorem shows that (5) implies G € D(f3), where
0 < B < 1 satisfies

_ T(a—p)
T N1 =By
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MELLIN TRANSFORM
-CONVOLUTION

Mellin transform Given a measurable kernel
k:(0,00) = R, its Mellin transform is

. —z—1
F(2) = /(Om)t k(1) dt

for z € C, such that & (2) is finite.

Mellin convolution For suitable functions f
and ¢ : (0,00) = R,
M

¥ g = /( g
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BOUNDED DECREASE

The lower Matuszewska index S (f) is the
supremum of those (8 for which there exists a
constant d = d () > 0 such that for each A >
1, as x — oo, uniformly in A € [1, A],

FOx)/f(x) >d{l+o0(1)} A\,

Bounded decrease [BD] A positive func-
tion f has bounded decrease if 5 (f) > —oo.
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DRASHIN-SHEA THEOREM

Theorem Let £ be a non-negative kernel whose
Mellin transform k has maximal convergence
strip a < Rz < b, where a < 0. If a is finite,
assume that k (a+) = oo, if b is finite assume

k(b—) = oco. Let f be a non-negative, locally
bounded on [0, 00) . Assume that f € BD. If

kﬂff(x)/f(x)%c,asx%oo,

holds, then ¢ = k (p) for some p € (a,b), and
[ € R), meaning that f is regularly varying at
infinity with index p.
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OUR KERNEL

The particular kernel that we use is

_1@—2 —a+1 > 1
D [ e
0, 0<u<l.

Its Mellin-transform is

k(z) = /100 (u— 12y~ 2y

:F(oz—l)F(1+z)
MNa—2z)

which is convergent for z > —1.
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FURTHER RESULTS

Kevei and M (2012) studied the asymptotic dis-
tribution of randomly weighted sums T, along
subsequences {n'} of {n}.

Our basic result is the following extension of
Proposition 3 of Breiman (1965), who proved it
in the case Y € D (), with 0 < f < 1, and
for the full sequence {n}.

Assume that E|X| < oo and for a subsequence
{n’ } there exists a sequence of positive norming
constants a,, such that

/
1 n
_ZYZ g Wo, asn' — oo,
an/ :
1=1
where Ws is an ¢d(0,b, A) infinitely divisible
random variable.
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id(0,b,A\) RANDOM VARIABLE

This means that 15 is an infinitely divisible ran-
dom variable taking values in |0, 0o) with char-
acteristic exponent

log Ee'#/2

— ub + / (eiw—l—iu:ﬁ](m < 1)) A(dz),

b > fol rA(dz) and Lévy measure A concen-
trated on (0, 00).
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CONCLUSION

Then along the same subsequence {n’ }, asn’ —
00

)

n/ TL/
" XY o Y
< =1 Za Zl—l Z) D; (Wla W2)7

Q! Q!
where

(W1, Wa) 2 (a1 + Uyaz + V)
with (a1, a9) =

(<b /Olmdx)) EX.b— /Olmdx))

and Eei(91U+(92V) _

oxp { [ [25, (000 — 1) aF (x/y) A (dy) }
= exp {0 (61,0)}
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IMPLICATION

We see that whenever

/
1 — D /
—Z}QHWQ, as n'’ — oo,
an/,
1=1
and P {Wy > 0} = 1, then as n’ — oo
/ /

n n
D
T=Y X;Vi/» Y. — W/Ws.
1=1 1=1

In particular this happens when Y is in the cen-
tered Feller class, since in this case necessarily
W5 has a Lebesgue density:.
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FELLER CLASS

¢ is in the Feller class if for the sequence of par-
tial sums {Sp},~1 of i.i.d. & there exist norm-
ing and centering constants B (n) > 0, A (n)
such that every subsequence of {n;} of {n}
contains a further subsequence nys — oo with

Snk/ o A(”k’) D
B(ﬂk/)

where IV is a finite nondegenerate rv depending

on the subsequence n;s, which by a result of
Pruitt (1983) has a Lebesgue density.

We shall write this as “¢ € F'C”.

> W,
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CENTERED FELLER CLASSES

[f the centering function A (n) can chosen to be
identically equal to zero, we shall say:

¢ is in the centered Feller class, written “¢ &
FCy.
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THE CASE Y € F(,

Whenever Y € FCj one can show that a1 =
ao> = 0 and thus all of the subsequential distri-

butional limits of T, are of the form U/V with
P{V >0} =1.

Moreover, by using a result of Griffin (1986) it
can be shown that these distributional limits
have Lebesgue densities on R.
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GOING THE OTHER WAY

Going the other way, Kevei and M (2013) show
that if all of the subsequential laws of T,, are
continuous for any choice of X € X, then nec-

essarily Y € F'C.
[n particular, if Y € FC, but Y ¢ FCy then

there exists a subsequence {n’ } such that

n/ TL,
ZXiY;/ZYZ- LN EX, asn' — oo.
1=1 1=1
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ASSOCIATED BIVARIATE LEVY
PROCESS

Under the assumptions of our basic result we
can readily prove that for any ¢t > 0, as n’ —
OO?

(Zl<z’<n’tXiYi Zl<i<n’tYi>

Q! Q!

D
— (alt + Uy, aot + Vt),

where (U, V), t > 0, is the bivariate Lévy pro-
cess with characteristic function

Eel1UH02V) —: exp {t¢ (61, 62)}
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ASYMPTOTIC DISTRIBUTION OF
RATIO

Kevei and M (2013) have characterized when
under regularity conditions that the ratio

T, = UV = T.

converges in distribution to a nondegenerate ran-
dom variable T" as t — oo or t \, 0.
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KEVEI-M RESULT

They obtained the following analog for 1% of the
MZ result:

Suppose X is non-degenerate and satisfies E| X | <
oo for some p > 2, then the ratio as t — o0

(£ 0)

Ty .= U/ V4 b T, nondegenerate,

(in the case t | 0 we assume A(0+) = oo.) if
and only if for some 0 < 8 < 1,

A () is regularly varying at infinity (zero) with
index — 3.
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LEVY PROCESS FELLER CLASS

A Lévy process Y% is said to be in the Feller
class at infinity if there exists a norming func-
tion B (t) and a centering function A (¢) such
that for each sequence t;. — oo there exists a
subsequence t;{ — 00 such that

(Y;;{ _ A(t%)) /B(t) = W, as k — oo,

where W is a nondegenerate random variable.

For the definition of Feller class at zero replace
tk%ooandt;{%oo, bytk\Oandtz\O,
respectively.
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LEVY PROCESS CENTERED
FELLER CLASS

The Lévy process Y: belongs to the centered
Feller class at infinity if it is in the Feller class
at infinity and the centering function A (¢) can
be chosen to be identically zero.

For the definitions of centered Feller class at
zero replace . — oo and t;{ — 00, by 1. N\, 0
and t;{ N\, 0, respectively.
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CONTINUOUS LIMITS

Theorem All subsequential distributional lim-
its of U/ Vi, ast (0, (ast — 00) are con-
tinuous for any cdf F' in the class X, if and
only if V¢ 1s in the centered Feller class at 0

(00).
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REPRESENTATION

Now let { Xs}¢( be a class of i.i.d. F random
variables independent of the V4 process. It turns
out that for each t > 0 the bivariate process

D
(U Vi) = | Y XAV, > AVL |, (6)
0<s<¢ 0<s<t

where AVy = Vs — V.
Notice that in the representation (6) each jump
of V4 is weighted by an independent X3 so that

U can be viewed as a randomly weighted Lévy
process.
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A PICTURE OF THIS PROCESS

Here is a graphic way to picture this bivari-
ate process. Consider AVs as the intensity of
a random shock to a system at time s > 0 and
XAV as the cost of repairing the damage that
1t causes.

Then V4, Uy and Uy/Vy represent, respectively,
up to time ¢, the total intensity of the shocks,
the total cost of repair and the average cost of
repair with respect to shock intensity.
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A MOTIVATING EXAMPLE

Let AVy represent a measure of the intensity
of a tornado that comes down in a Midwestern
American state at time s during tornado season
and X the cost of the repair of the damage per
intensity that it causes.

Note that X is a random variable that depends
on where the tornado hits the ground, say a
large city, a medium size town, a village, an
open field, etc.

It 1s assumed that a tornado is equally likely to
strike anywhere in the state.
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