

Test Procedures for Normal Populations with Known Variances 9.1.1

Assume that both population distributions are Normal and the values of 0, 202 distributed, with expected value $M_1 - M_2$ and standard deviation given previous ously. Standardizing $\overline{X}_1 - \overline{X}_2$ gives the standard normal variable 0 =) 52 + 522

Null Hypothesis: Ho!
$$M_1 - M_2 = \Delta_0$$
Test statistic:

$$Z = \frac{X_1 - X_2 - (M_1 - M_2)}{X_1 - M_2}$$
Significance level: Δ

Alternative Hypothesis:

Ha:
$$M_1 - M_2 > \Delta_0$$
 reject if $Z \ge 2\alpha$
 $H(x) M_1 - M_2 < \Delta_0$ reject if $Z \le -2\alpha$
 $H(x) M_2 + \Delta_0$ reject if $|Z| \ge 2\alpha$

Assumptions:

- · Tuo normal populations · O. 2 Oz known
- two samples are inder.

P-value for z Test:

$$P-Valva$$
 $P-Valva$
 $P-Valva$

Example 101. Analysis of a random sample consisting of m=20 specimens of cold-rolled steel to determine yield strengths resulted in a sample average strength of $\overline{x}=29.8$ ksi. A second random sample of n=25 two-sided galvanized steel specimens gave a sample average strength of $\overline{y}=34.7$ ksi. Assuming that the two yield-strength distributions are normal with $\sigma_1=4.0$ and $\sigma_2=5.0$, does the data indicate that the corresponding true average yield strengths μ_1 and μ_2 are different? Test at significance level $\alpha=0.01$.

Solution.

Ho:
$$\mu_1 = \mu_2$$
 Ha: $\mu_1 \neq \mu_2$

$$Z = \frac{29.8 - 34.7}{4^2 + 5^2} = -3.66$$

$$Z_{0.005} = 2.575$$
(reject if $1-3.66$) ≥ 2.575

we do reject the in favor of Ha

$$P-value$$

$$Z_{0.0002} = 2.66$$

$$Z_{0.0002} = 3.66$$

9.1.2 Large-Sample Tests

The assumptions of $\underline{\wedge}$ population distributions and $\underline{\wedge}$ values of σ_1 and σ_2 are fortunately unnecessary when both sample sizes are $\underline{\wedge}$ 1. In this case, the Central Limit Theorem guarantees that $\overline{X_1} - \overline{X_2}$ has approximately a distribution regardless of the underlying population distributions.

Null Hypothesis: $H_0: M_1 - M_2 = \Delta_0$ Test statistic: $Z = \frac{X_1 - X_2 - \Delta_0}{\sum_{j=1}^{2} X_j}$ Significance level:
Alternative Hypothesis: $Same \quad \text{as helone}$ Assumptions: $Samples \quad M \text{ Letended}$ $M_1 = M_2 = \Delta_0$ $M_2 = M_3$

9.1.3 Confidence Intervals for $\mu_1 - \mu_2$

When both population distributions are (at least approximately) normal, standardizing $\overline{X}_1 - \overline{X}_2$ gives a random variable Z with a standard normal distribution. Since the area under the z curve between $-z_{\alpha/2}$ and $z_{\alpha/2}$ is $1-\alpha$, it follows that

$$\begin{array}{c} \overline{\chi}_{1} - \overline{\chi}_{2} \sim \mathcal{N}(\mu_{1} - \mu_{2}), \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}) \\ \overline{\chi}_{1} - \overline{\chi}_{2} \pm \overline{Z}_{2} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} \quad \text{if } \sigma_{1} \neq \sigma_{2} \\ \overline{\chi}_{1} - \overline{\chi}_{2} \pm \overline{Z}_{2} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{2}} + \frac{\sigma_{2}^{2}}{n_{2}}} \quad \text{if } r_{0} \neq 0 \end{array}$$
which implies
$$\begin{array}{c} \overline{\chi}_{1} - \overline{\chi}_{2} \pm \overline{Z}_{2} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{2}} + \frac{\sigma_{2}^{2}}{n_{2}}} \quad \text{if } r_{0} \neq 0 \end{array}$$

This implies that a $100(1-\alpha)\%$ for $\mu_1 - \mu_2$.

Provided that $n_1 > 40$ and $n_2 > 40$, a CI for $\mu_1 - \mu_2$ with a confidence level of $100(1-\alpha)\%$ is

Example 102.

Let μ_1 = the true average tread life for a premium brand of P205/65R15 radial tire, and let μ_2 = the true average tread life for an economy brand of the same size. Independent random samples of tires of each brand were obtained and yielded the summaries below.

	Sample Size	Sample Mean	Sample Std. Dev.
Premium	$n_1 = 45$	$\overline{x}_1 = 42500$	$s_1 = 2200$
Economy	$n_2 = 45$	$\bar{x}_2 = 36800$	$s_2 = 1500$

- (a) Do the samples give enough evidence to conclude that μ_1 will exceed μ_2 by more than 5000 miles? Test $H_0: \mu_1 \mu_2 = 5000$ versus $H_A: \mu_1 \mu_2 > 5000$ using the level of significance $\alpha = 0.05$.
- (b) By how many miles will μ_1 exceed μ_2 ? Calculate a 90% confidence interval to estimate the true value of $\mu_1 \mu_2$.
- (c) Do the tread lives of the two brands need to be normally distributed for the test of hypotheses and the confidence interval to be valid? Why or why not?

Solution.

$$\frac{2200^{2} + 1500^{2}}{45} + \frac{1500^{2}}{45}$$

$$= 1.76$$

$$= 1.76$$

$$= 1.645$$

$$= 1.645$$
reject He in favor of Ha

42500-36800 ± 20.05. 524002 + 15002 1.695 1.695 1.695 1.695 1.695 1.695