
9.1.1 Test Procedures for Normal Populations with Known Variances

Assume that both population distributions are and the values of
. Thus the di↵erence X1�X2 is also

distributed, with expected value and standard deviation given previ-
ously. Standardizing X1 �X2 gives the standard normal variable

Null Hypothesis:
Test statistic:

Significance level:
Alternative Hypothesis:

Assumptions:

•

•

•

P -value for z Test:
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Example 101. Analysis of a random sample consisting of m = 20 specimens of cold-rolled
steel to determine yield strengths resulted in a sample average strength of x = 29.8 ksi. A
second random sample of n = 25 two-sided galvanized steel specimens gave a sample average
strength of y = 34.7 ksi. Assuming that the two yield-strength distributions are normal with
�1 = 4.0 and �2 = 5.0, does the data indicate that the corresponding true average yield
strengths µ1 and µ2 are di↵erent? Test at significance level ↵ = 0.01.

Solution.
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9.1.2 Large-Sample Tests

The assumptions of population distributions and values of
�1 and �2 are fortunately unnecessary when both sample sizes are .
In this case, the Central Limit Theorem guarantees that X1 � X2 has approximately a

distribution regardless of the underlying population distributions.

Null Hypothesis:
Test statistic:

Significance level:
Alternative Hypothesis:

Assumptions:

•

•

9.1.3 Confidence Intervals for µ1 � µ2

When both population distributions are (at least approximately) normal, standardizing X1�
X2 gives a random variable Z with a standard normal distribution. Since the area under the
z curve between �z↵/2 and z↵/2 is 1� ↵, it follows that

which implies
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This implies that a 100(1� ↵)% for µ1 � µ2.

Provided that n1 > 40 and n2 > 40, a CI for µ1 � µ2 with a confidence level of
100(1� ↵)% is

Example 102.

Solution.
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