

Example 88 continued.

Example 89. (From HW) Determine whether or not each of the following statements is correct.

- (a) The value of the test statistic does not lie in the rejection region. Therefore, we accept the null hypothesis.
- (b) The value of the test statistic lies in the rejection region. Therefore, there is sufficient evidence to suggest the alternative hypothesis is true.
- (c) The value of the test statistic does not lie in the rejection region. Therefore, there is evidence to suggest the null hypothesis is true.
- (d) The value of the test statistic does not lie in the rejection region. Therefore, there is insufficient evidence to suggest the alternative hypothesis is true.

Errors in Hypothesis Testing 8.1.2

A type I error; reject Ho when it is true

A type II error fail to reject Ho when if is

Example 90.

- 1) $H_0: \mu = 100$ (This is true) vs $H_A: \mu > 100$. If our test fails to reject H_0 , Good job!
- 2) $H_0: \mu = 100$ (This is true) vs $H_A: \mu > 100$. If our test reject H_0 ,

Type & eggs

eg.	Reject Ho if P(X = sample over lata) < a Ho: p= value Ha: p> value) p-value	
	P-Value = P(type Γ error) So λ is an appendix bound Usually α is given in our test. If α is not given, we use $\alpha=0.05$.	

3) $H_0: \mu = 100 \text{ vs } H_A: \mu > 100 \text{ (This is true)}.$ If our test fails to reject H_0 ,

B=P(Apr I error) (-B = power of test.

4) $H_0: \mu = 100 \text{ vs } H_A: \mu > 100 \text{ (This is true)}$. If our test reject H_0 ,

Example 91. Water samples are taken from water used for cooling as it is being discharged from a power plant into a river. It has been determined that as long as the mean temperature of the discharged water is at most $150^{\circ}F$, there will be no negative effects on the river's ecosystem. To investigate whether the plant is in compliance with regulations that prohibit a mean discharge water temperature above $150^{\circ}F$, 50 water samples will be taken at randomly selected times and the temperature of each sample recorded. The resulting data will be used to test the hypotheses $H_0: \mu = 150$ versus $H_A: \mu > 150$. In the context of this situation, describe type I and type II errors.

Solution.
Type II: We reject that in favor of HI: N>150
Type II: We feil to reject the when it is true

Step 6: _____ "Based on our evidence, at α significant level, we conclude that

Example 92. (Exercise 19 on textbook page 333) The melting point of each of 16 samples of a certain brand of hydrogenated vegetable oil was determined, resulting in $\bar{x} = 94.32$. Assume that the distribution of the melting point is normal with $\sigma = 1.2$.

Question: Test $H_0: \mu = 95$ versus $H_A: \mu \neq 95$ using a two-tailed level 0.01 test.

 V/P-Valve: P([X-95] > 0.68) 95-94-32=0.68 $F \sim N(95, 1.2)$