Lec 29

8 Tests of Hypotheses Based on a Single Sample

A parameter can be estimated from sample data either by a single number (a point estimate) or an entire interval of plausible values (a confidence interval). Frequently, however, the objective of an investigation is not to estimate a parameter but to decide which of two contradictory claims about the parameter is correct. Methods for accomplishing this is called

8.1 Hypotheses and Test Procedures

A hypothesis is a claim about the value of a population Examples:

- The claim $\mu = 0.75$, where μ is the true average inside diameter of a certain type of PVC pipe.
- The statement p = 0.1, where p is the proportion of defective circuit boards among all circuit boards produced by a certain manufacturer.

In any hypothesis-testing problem, there are two sontes dicting hypotheses under consideration.

- One hypothesis might be the claim $\mu = 0.75$ and the other $\mu \neq 0.75$.
- One hypothesis might be the claim p = 0.1 and the other p < 0.1.

8.1.1 Test Procedures

The objective is to decide, based on sample information, which of the two hypotheses is correct.

A test of wholes a method for using sample data to decide whether the null hypothesis should be rejected.

Step 1: Store the opposing hypotheses

The null hypothesis, H_0 , (in STAT 300)

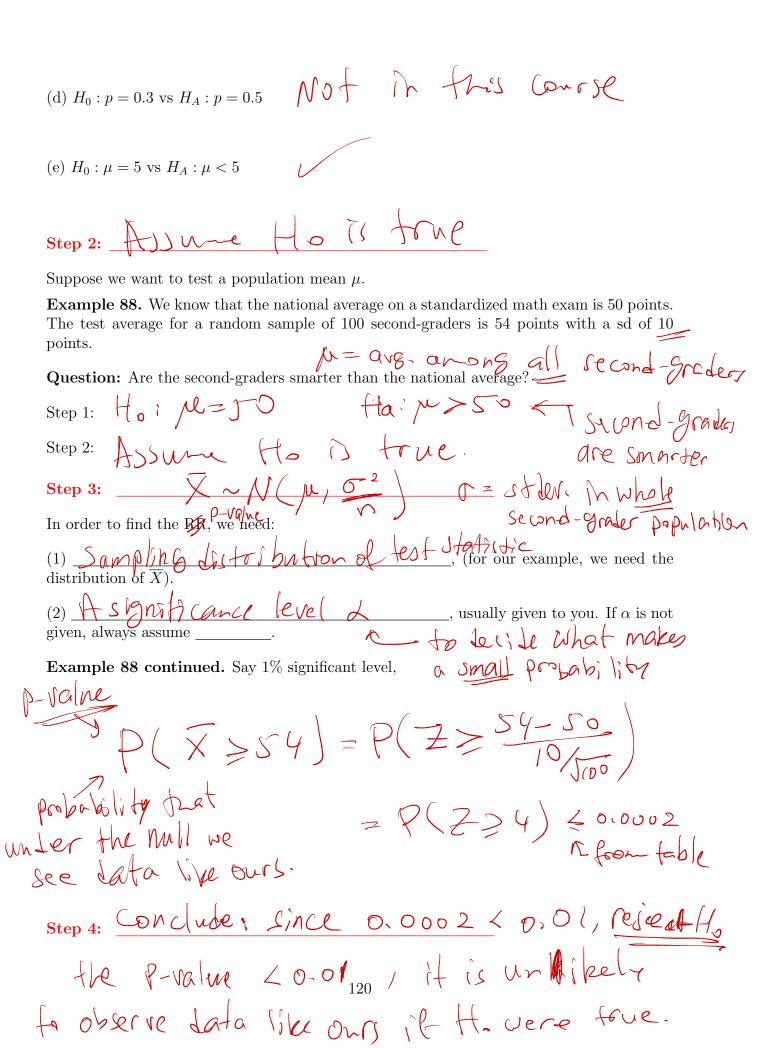
- Statement pop parameter

- always equal, by M = value or P = valueThe alternative hypothesis, H_A ,

- Statement about P = value- What we are trying to prove

For example, suppose the true average time to pain relief for the current best-selling pain reliever is known to be 15 minutes. A new formulation has been developed that it is hoped will reduce this time. The relevant hypotheses are $H_0: \mu = 15$ versus $H_A: \mu < 15$, where μ is the true average time to relief using the new formulation.

· par. > value · par. > value · par. L value · par. + value


NOTE:

- 1. The only difference between the null hypothesis H_0 and H_A is the sign in the middle.
- 2. Only one hypothesis can be true in a given situation.

Example 87. (From HW) Determine whether or not each of the following is a valid pair of hypotheses.

(a) $H_0: \overline{x} = 5 \text{ vs } H_A: \overline{x} < 5$ \tag{A} \t

(b) $H_0: p = 0.7 \text{ vs } H_A: p \neq 0.7$

