Intervals Based on a Normal Population Distribution

We know how to estimate μ when n is large. But what should we do when n is small?

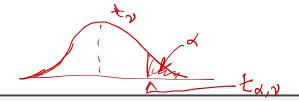
Assumptions:

- (1) The population of interest has to be normal. (or what to hormal)
- (2) Population mean, μ , is unknown.
- (3) Population SD, σ , is unknown.

Theorem 7.1. When \overline{X} is the mean of a random sample of size n from a distribution with mean μ , then the random variable

T= X-12 S/50

has a probability distribution called ____


Properties of t distribution:

Let t_{ν} denote the t distribution with ν df.

1. Each t, curve is bell-curve shaped centered at o

- 2. Each t_{ν} curve is more spread out than the Standard North
- 3. As ν ______, the spread of the corresponding t_{ν} curve _____
- 4. As $\nu \to \infty$, the sequence of t_{ν} curves approaches the Standard Asmal Curve Usually when n > 30, then we can use the z curve.

- t₅ curve t, and z curves 115

Notation:

Let $t_{\alpha,\nu}=$ the number on the x-axix for which the area under the t_{ν} curve to the of $t_{\alpha,\nu}$ is α . $t_{\alpha,\nu}$ is called a Critical value

Example 85. (HW question 8) Given the sample size n=15 and the confidence level is 90%. Assume σ is unknown. Find the $t_{\alpha/2}$ critical value for the confidence interval $x \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$?

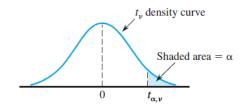
Solution.

ta,n-1 = to.05,14

Let \overline{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a $\underline{\cap}$ population with mean μ . Then a $100(1-\alpha)\%$ confidence interval for μ is

If instead co want a CUB: X+ta,n-1 or CLD: X-ta,n-1 Se

Example 86. (HW question 9) A random sample of 10 brands of vanilla yogurt was selected and the calorie count per serving was recorded, resulting in the following data:


130, 160, 150, 120, 120, 110, 170, 160, 110, 90

Calculate a 90% confidence interval to estimate the true mean calorie count.

Solution.

$$X = 132$$

 $S = 26.583$
 $0.05,9 = 1.833$
 $132 \pm 1.833.26.583$

Table A.5 Critical Values for t Distributions

3 1.638 2.353 3.182 4.541 5.841 10. 4 1.533 2.132 2.776 3.747 4.604 7. 5 1.476 2.015 2.571 3.365 4.032 5. 6 1.440 1.943 2.447 3.143 3.707 5.	
2 1.886 2.920 4.303 6.965 9.925 22. 3 1.638 2.353 3.182 4.541 5.841 10. 4 1.533 2.132 2.776 3.747 4.604 7. 5 1.476 2.015 2.571 3.365 4.032 5. 6 1.440 1.943 2.447 3.143 3.707 5.	.0005
3 1.638 2.353 3.182 4.541 5.841 10. 4 1.533 2.132 2.776 3.747 4.604 7. 5 1.476 2.015 2.571 3.365 4.032 5. 6 1.440 1.943 2.447 3.143 3.707 5.	31 636.62
4 1.533 2.132 2.776 3.747 4.604 7. 5 1.476 2.015 2.571 3.365 4.032 5. 6 1.440 1.943 2.447 3.143 3.707 5.	326 31.598
5 1.476 2.015 2.571 3.365 4.032 5. 6 1.440 1.943 2.447 3.143 3.707 5.	213 12.924
6 1.440 1.943 2.447 3.143 3.707 5.	173 8.610
	893 6.869
7 1.415 1.895 2.365 2.998 3.499 4.	208 5.959
	785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.	5.041
<u>9</u> 1.383 (1.833) 2.262 2.821 3.250 4.	297 4.781
	144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.	025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.	930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.	852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.	787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.	733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.	686 4.015

Summary:

 $\int arge(n \ge 30)$ Vounderoun: X + Za S (P + 202 [P(1-P))

n small & pop. 1) normal or cline to normal:

O known; X + Zaz C

O anknown: 8 2 to 1 1-1 Va a small & pop. is not normal; lant