Lec 26

Question: How do we balance precision and reliability?

Answer: Specify both CL and interval width, then determine the Sample Size as needed. Suppose we have a normal population where σ is known. Then

Me want n large enough in that Zz Tr 22 5 W So N > 42 2 Tr Example 81. A new operating system has been installed.

Example 81. A new operating system has been installed, and we wish to estimate the true average response time μ for the new environment. Assuming that response time is normally distributed with $\sigma = 25$ millisec, what sample size is necessary to ensure that the resulting 95% CI has a width of (at most) 10?

distributed with $\delta = 25$ limitsec, what sample size is necessary to ensure that the resulting 95% CI has a width of (at most) 10?

R ~ N (μ , 25°)

N2(0 d=0.05) $\frac{4}{\sqrt{(.96^2, 25^2 - 96.04)}} = 96.04$ $\frac{4}{\sqrt{(.96^2, 25^2 - 96.04)}} = 96.04$

7.2 Large-Sample Confidence Intervals for a Population Mean and Proportion

The CI for μ given in the previous section assumed that the population distribution is with the value of μ with the value of μ whose validity does not require these assumptions.

7.2.1 A Large-Sample Interval for μ

Let X_1, X_2, \dots, X_n be a random sample from a population having a mean μ and standard deviation σ . Provided that n is sufficiently large, the implies that \overline{X} has approximately a first distribution whatever the nature of the population distribution. It then follows that $\overline{Z} = \overline{X} - \overline{M}$ has approximately a standard normal distribution, so that

A practical difficulty with this development is that computation of the CI requires the value of ______, which will rarely be known. Consider replacing the population standard deviation σ by the Sange (Her S, which gives

If n is sufficiently large, the standardized variable

has approximately a standard normal distribution. This implies that

is a large-sample confidence interval for μ with confidence level approximately 100(1- α)%. This formula is valid regardless of the shape of the population distribution.

NOTE: 1 > 3 will be sufficient to justify the use of this interval.

Example 82. A random sample of 110 lightning flashes in a certain region resulted in a sample average radar echo duration of 0.81 sec and a sample standard deviation 0.34 sec. Calculate a 99% (two-sided) confidence interval for the true average echo duration μ , and interpret the resulting interval.

Solution.

$$\bar{\chi} = 0.81$$
 S = 0.34

$$= (0.7265, 0.8935)$$

Table 4.1 on Plb1 of book;

Percentile	90	95	97.5	99	99.5	99.9	99.95
α (upper-tail area)	.1	.05	.025	.01	.005	.001	.0005
$z_{\alpha} = 100(1 - \alpha) \text{th}$	1.28	1.645	1.96	2.33	2.58	3.08	3.27
percentile							

7.2.2 A confidence Interval for a Population Proportion

Consider a population whose members can be divided into 2 separate groups. Let p be the population proportion or the true proportion, which is unknown. To estimate p, we use

X =the number of people in the sample who have a given characteristic, n =sample size.

- X follows a \bigcirc
- Furthermore, if both $np \ge 10$ and $n(1-p) \ge 10$, X has approximately a (1-p) distribution.
- Since \hat{p} is just X multiplied by the constant $\frac{1}{n}$, \hat{p} also has approximately a distribution with mean

$$E(\hat{p}) = \bigcap$$

and variance

$$\operatorname{Var}(\hat{p}) \subset \mathcal{P}(1-\mathcal{P})$$

• If n > 1, then a CI for the proportion p is

Since in general, for all CI:

estimate \pm critical value $\cdot \sigma$ estimate

Example 83. (Exercise 21 on textbook page 294) In a sample of 1000 randomly selected consumers who had opportunities to send in a rebate claim form after purchasing a product, 250 of these people said they never did so. Calculate an upper confidence bound at the 95% confidence level for the true proportion of such consumers who never apply for a rebate. Based on this bound, is there compelling evidence that the true proportion of such consumers is smaller than 1/3? Explain your reasoning.

Solution.