Statistical Intervals Based on a Single Sample

Consider a population with an unknown parameter μ , the mean.

- estimation for μ is a single value that can be considered as a sensible estimate for μ .
- The point estimate is obtained by taking a representative sample and use the corresponding statistics, \overline{x} .
- Because of sampling variability, it is virtually never the case where $\overline{x} = \mu$.
- The statistic \overline{x} does not give any information about how close \overline{x} is to μ . Thus, we need to consider the $\sqrt{\alpha + \alpha}$ around μ .
- An alternative way to a point estimate for μ is to report an entire μ of plausible values, called μ
- A confidence interval reports a range of values where μ is likely to fall.
- A confidence interval depends on α , where $(1-\alpha)100\%$ is which is a measure of the degree of reliability of the interval. A confidence level of 95% implies that 95\% of all samples would give an interval that includes μ .

Basic Properties of Confidence Intervals 7.1

Suppose X_1, \dots, X_n is a random sample of size n. Suppose that the unknown parameter of

It population is normally both buted or or large interest is the population mean μ .

The value of pop. stlev or is known

Then,

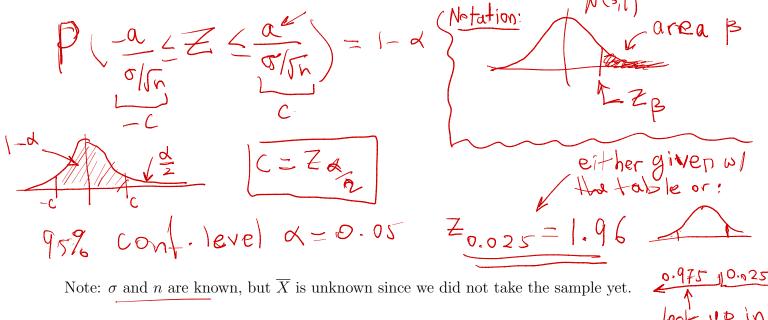
X~N(M,5)

>(matx < m+a) = 1-0

byt for × (Bu wan)

for 95% confidence level

Confidence interval then: (X-a, X+a)



100k up in table to get 1.96

This interval is random because the two endpoints of the interval involve a random variable. The interval's width is $2 \cdot (1.96) \cdot \sigma / \sqrt{n}$, a fixed number; only the location of the interval (its midpoint \overline{X}) is random.

In general, for all CI:

estimate ± eritical value - σ estimate

ormal population distribution

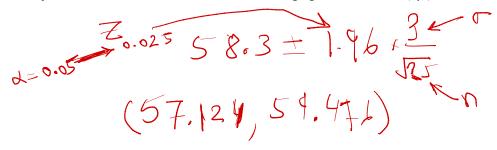
Example 78. (Exercises 1 on textbook page 284) Consider a normal population distribution with the value of σ known.

Question: What is the confidence level for the interval $\bar{x} \pm 2.81\sigma/\sqrt{n}$?

9956 -2.81 2.81 6.995 0.0025 0.995

Example 79. Consider a normal population distribution with the value of $\sigma = 3$.

Question: What is the 95% for the population mean, μ , when n=25 and $\overline{x}=58.3$?



Example 80. A sample of n=31 trained typists was selected, and the preferred keyboard height was determined for each typist. The resulting sample average preferred height was $\overline{x}=80.0$ cm. Assuming that the preferred height is normally distributed with $\sigma=2.0$ cm, obtain the 95% confidence interval for μ , the true average preferred height for the population of all experienced typists.

Solution.

NOTE: How to interpret a CI?

In (-a) 100% of the samples, the population

Mean vill be inside the CI.

Choosing a level of confidence:

- The precision of the CI refers to the width, w, of the interval. The more $\frac{\text{PCLSE}}{\text{a CI is, the SMMLLC}}$ its width. Because the smaller width implies the interval identifies fewer value μ .
- The reliability of a CI refers to its CL. The more reliable the CI is, the reliability of a CI refers to its CL. The more reliable the CI is, the reliability of a CI refers to its CL. The more reliable to the CI is, the
- As the CL ______, the width of the interval also ______. So less precision implies more reliable.
- As the CL ______, the width of the interval also ______. So more precision implies less reliable.