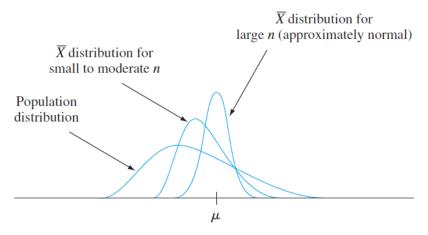
Lec 24



The Central Limit Theorem illustrated

Figure above illustrates the Central Limit Theorem. According to the CLT, when n is large and we wish to calculate a probability such as $P(a \leq \overline{X} \leq b)$, we need only "pretend" that \overline{X} is normal, standardize it, and use the normal table.

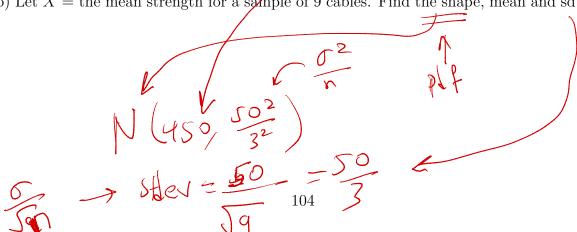
Example 76. Suppose that a certain type of cable strength is normally distributed with mean $\mu = 450$ lb and sd= $\sigma = 50$ lb. $\times \sim \mathcal{N}(450) \mathcal{S}0^2$

(a) Find the probability that the strength of the cable is greater than 536lbs.

$$P(X \ge 536) = P(Z \ge \frac{536-450}{50})$$

= 1-0.9573=0.0427

(b) Let \overline{X} = the mean strength for a sample of 9 cables. Find the shape, mean and sd of \overline{X} .



(c) Find the probability that the sample mean of 9 cables will be between 423lbs and 480 lbs.

$$P(423-450) = P(423-450) = 0.9641 - (1-0.9474) = 0.9115$$

(d) Suppose we have 35 cables, find $P(\overline{X} < 428)$.

$$P(X < 428) = P(Z < \frac{428 - 450}{50/\sqrt{35}})$$

= 0.0197

- (e) Suppose that the population is not normal (or unknown)
 - Can we still solve part(a)?
 - Can we still solve part (c)?
 - Can we still solve part (d)?

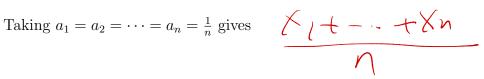
The Distribution of a Linear Combination 5.5

Definition 31. Given a collection of n random variables X_1, \dots, X_n and n numerical constants a_1, \dots, a_n , the random variable

$$Y = \alpha_1 \times_1 + \alpha_2 \times_2 + \cdots + \alpha_n \times_n$$

is called a linear combination of the X_i 's.

Taking $a_1 = a_2 = \cdots = a_n = 1$ gives



Let X_1, X_2, \dots, X_n have mean values $\mu_1, \mu_2, \dots, \mu_n$, respectively and variances σ_1^2 , $\sigma_2^2, \cdots, \sigma_n^2$, respectively.

1. Whether or not the X_i 's are independent,

There or not the
$$X_i$$
's are independent,

$$\begin{bmatrix}
\begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n) \\
(X_n + \cdots + Q_n X_n)
\end{bmatrix} = Q_i \begin{bmatrix}
(X_1 + \cdots + Q_n X_n)$$

The Case of Normal Random Variables

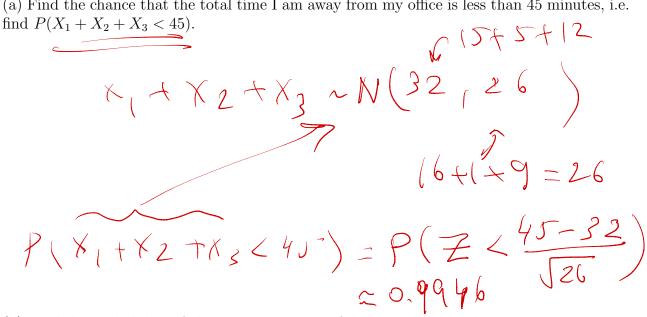
If X_1, X_2, \dots, X_n are independent normally distributed random variables (with possibly different means and variances), then any linear combination of X_i 's is With mean and variance as given earlier.

Example 77. (From homework)

I have two errands to take care of on campus. Let X_1 and X_2 represent the times that it takes for the first and second errands, respectively. Let X_3 = the total time in minutes that I spend walking to and from my office and between the errands. Suppose that X_1, X_2, X_3 are independent and normally distributed with $\mu_1 = 15$, $\sigma_1 = 4$, $\mu_2 = 5$, $\sigma_2 = 1$, $\mu_3 = 12$, and $X_{1} \sim N(15,16)$ $X_{2} \sim N(5,1)$ X_{1}, X_{2} mdep $\sigma_3=3$.

X2~ N(12,9)

(a) Find the chance that the total time I am away from my office is less than 45 minutes, i.e.



(b) Find the probability of the average amount of time it takes less than 12 minutes.

$$P(X_{1}+X_{2}+X_{3} \leq (2) = --- = 0.7823$$

$$N(S+S+1^{2}, \frac{16+1+9}{9})$$

$$3^{2}$$

(c) Find the probability $P(X_1 - X_3 > 0)$.

Find the probability
$$P(X_1 - X_3 > 0)$$
.

$$N \left(|5 - |2|, |1^2|, |6 + |6|^2, 9 \right)$$

$$N \left(|3|, |25| \right)$$

$$P(X_1-X_3>_5)=P(Z>0-3)=0.7257$$