
Figure above illustrates the Central Limit Theorem. According to the CLT, when n is large
and we wish to calculate a probability such as P (a  X  b), we need only “pretend” that
X is normal, standardize it, and use the normal table.

Example 76. Suppose that a certain type of cable strength is normally distributed with
mean µ = 450lb and sd=� = 50lb.

(a) Find the probability that the strength of the cable is greater than 536lbs.

(b) Let X = the mean strength for a sample of 9 cables. Find the shape, mean and sd of X.
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(c) Find the probability that the sample mean of 9 cables will be between 423lbs and 480
lbs.

(d) Suppose we have 35 cables, find P (X < 428).

(e) Suppose that the population is not normal (or unknown)

• Can we still solve part(a)?

• Can we still solve part (c)?

• Can we still solve part (d)?
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5.5 The Distribution of a Linear Combination

Definition 31. Given a collection of n random variables X1, · · · , Xn and n numerical
constants a1, · · · , an, the random variable

is called a linear combination of the Xi’s.

Taking a1 = a2 = · · · = an = 1 gives

Taking a1 = a2 = · · · = an = 1
n gives

Let X1, X2, · · · , Xn have mean values µ1, µ2, · · · , µn, respectively and variances �2
1,

�2
2, · · · , �2

n, respectively.

1. Whether or not the Xi’s are independent,

2. If X1, · · · , Xn are independent,

The Case of Normal Random Variables

If X1, X2, · · · , Xn are independent normally distributed random variables (with
possibly di↵erent means and variances), then any linear combination of Xi’s is

with mean and variance as given earlier.

Example 77. (From homework)

I have two errands to take care of on campus. Let X1 and X2 represent the times that it
takes for the first and second errands, respectively. Let X3 = the total time in minutes that
I spend walking to and from my o�ce and between the errands. Suppose that X1, X2, X3

are independent and normally distributed with µ1= 15, �1 = 4, µ2 = 5, �2 = 1, µ3= 12, and
�3=3.
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(a) Find the chance that the total time I am away from my o�ce is less than 45 minutes, i.e.
find P (X1 +X2 +X3 < 45).

(b) Find the probability of the average amount of time it takes less than 12 minutes.

(c) Find the probability P (X1 �X3 > 0).
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