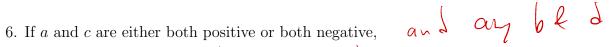
P(X,Y) close to (

- 4. If the covariance and correlation are ≈ 0 , then there is _ between X and Y.
- 5. For any two random variables X and Y, $-1 \le \rho \le 1$.



 $\left(\operatorname{cr}(X,Y)^{-}\right) \beta(\alpha X + b, c Y + d) = \mathcal{B}(X,Y)$ (if ac<0 then $\beta(\alpha X + b, c Y + d) = -\beta(X,Y)$)

- 7. If X and Y are independent or uncorrelated, then 9 = 0 does not 0 = 0, but $\rho = 0$ does not imply independence. It just means that there is no **linear** association between X and Y. But it can also mean that X and Y may have a non-linear association.
- 8. $\rho = 1$ or -1 if and only if $y = \alpha x + b$ for some numbers a and bwith $a \neq 0$. 2 correlation * Causation
- Statistics and Their Distributions

Definition 28. The random variables X_1, X_2, \dots, X_n are said to form a (simple) random sample of size n if

- 1. identical distribution
- 2. In dependent

Consider taking a random sample from a population, and compute the sample mean, \overline{y} , for the observations.

- Because the sample is <u>Andra</u>, the observations will also be <u>Mandra</u>.
- Because \overline{y} is random, it has a <u>May</u>) $\frac{1}{1}$ Associated with it. This distribution plane at \overline{y} distribution plays an important role in drawing conclusion about the population, This is what we called Interestal Statistics

what value of any particular statistic will result. Therefore, a statistic is a $\frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} = \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} = \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} = \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha} = \frac{\alpha}{\alpha} + \frac{\alpha}$

Definition 29. A statistic is any quantity whose value can be calculated from

<u>2α ~ ρ le</u>. Prior to obtaining data, there is uncertainty as to

• The distribution of \overline{X} becomes more concentrated about μ as Sample Size η i.e. averaging moves probability in toward the middle.

NOTE: The standard deviation $\sigma_{\overline{X}}$ is often called the **standard error of the mean**; it describes the magnitude of a typical or representative deviation of the sample mean from the population mean.

NOTE: These formulas are true for any distribution.

Example 74. The inside diameter of a randomly selected piston ring is a random variable with mean value 12cm and standard deviation 0.04cm.

- a. If \overline{X} is the sample mean diameter for a random sample of n=16 rings, where is the sampling distribution of \overline{X} centered, and what is the standard deviation of the \overline{X} distribution?
- b. Answer the questions posted in part (a) for a sample size of n = 64 rings.
- c. For which of the two random samples, the one of part (a) or the one of part (b), is \overline{X} more likely to be within 0.01cm of 12cm? Explain your reasoning.

Solution. $E(X_1) = 12$ $s+lev(X_1) = 0.04 = 0.01$ $s+lev(X_1) = 12$ $s+lev(X_2) = 12$ $s+lev(X_1) = 3.04 = 0.04$ $s+lev(X_2) = 3.04 = 0.04$ $s+lev(X_1) = 3.04 = 0.04$ $s+lev(X_2) = 3.04 = 0.04$ $s+lev(X_1) = 3.04 = 0.04$ $s+lev(X_2) = 3.04 = 0.04$ $s+lev(X_1) = 3.04 = 0.04$ $s+lev(X_1) = 3.04 = 0.04$ $s+lev(X_1) = 3.04 = 0.04$ $s+lev(X_2) = 3.04 = 0.04$ $s+lev(X_1) = 3.04$ $s+lev(X_1) = 3.0$

5.4.1 Samples from Normal Distribution

Let X_1, X_2, \dots, X_n be a random sample from a normal distribution with mean μ and standard deviation $\underline{\sigma}$. Then for any n, \overline{X} is a normal distribution with mean μ and standard deviation $\underline{\sigma}$. Then for any n, \overline{X} is a normal distribution with mean μ and standard deviation $\underline{\sigma}$.

Example 75. (Example 74 continued) For the random sample in part (a), suppose X_i 's are normally distributed, what is the probability that \overline{X} is within one standard error of the mean?

mean? Solution. $P(|X-m| \leq t) \approx 0.68$ $P(|X-m| \leq t) \approx 0.68$

Por X, X2, X3-Por A X

The Central Limit Theorem 5.4.2

When the X_i 's are normally distributed, so is \overline{X} for any sample size n. Even when the population distribution is highly non-normal, if n is large, a normal curve will approximate the actual distribution of \overline{X} .

The Central Limit Theorem (CLT)

Let X_1, X_2, \cdots, X_n be a random sample from **any** distribution with mean μ and vari-

- ance σ^2 . Then if n is sufficiently large,

 X is approximately X where Y is the perfect the approximation.

In summary, small sample lorger sample size 5526: n £30 1030 XaN(M, T) X1-Xn rot X ~ (approxinately) MMOS N(M, +2)