Lec 21

5 Joint Probability Distributions and Random Samples

5.1 Jointly Distributed Random Variables

There are many experimental situations in which more than one random variables will be of interest to an investigator. For example, X and Y might be the height and weight, respectively, of a randomly selected individual.

5.1.1 Two Discrete Random Variables

Recall: The probability mass function (pmf) of a single discrete random variable X specifies how much probability mass is placed on each possible X value.

The joint pmf of two discrete random variables X and Y describes how much probability

mass is placed ______.

Definition 24. Let X and Y be two discrete random variables defined on the sample space S. The joint probability mass function p(x,y) is defined for each pair of numbers (x,y) by (x,y) = (x,y

To make it a valid pmf:

$$_{1}$$
 0 $\leq p(x, y) \leq 1$

$$\sum_{\chi_1, \chi} P(\chi_1, \chi) = 1$$

Let A be any particular set consisting of pairs of (x, y) values. Then the probability $P[(X,Y) \in A]$ is $P(X,Y) \in A$ $= \sum_{(x,y) \in A} P(x,y)$

Example 69. The joint pmf is given as

$$\times 630,1,27$$

x = 0 0.1 0.04	0.02
	0.02
x = 1 (0.08) 0.2	0.06
x = 2 / 0.06 0.14	0.3

$$P(1,0) = 0.08$$

 $P(1,0) = 0.08$
 $P(1,0) = 0.08$

Question:

a. Is it a valid pmf?

b. Find
$$P(X = 1 \text{ and } Y = 1) = P(1, 1) = 0.2$$

c. Find $P(X \le 1 \text{ and } Y \le 1)$.

d. Find $P(X \neq 0 \text{ and } Y \neq 0)$.

$$P_{X}(x) = P(X = x) = P(X = x, Y = y)$$

$$= 0.2 + 0.06 + 0.14 + 0.3$$

$$= X = x^{2} = U + X = x, Y = y$$

$$= y$$

Definition 25. The marginal probability mass function of X, denoted by $p_X(x)$, is given by

$$P(x) = \sum_{y} p(x,y)$$

for each possible value x. Similarly, the marginal probability mass function of Y is

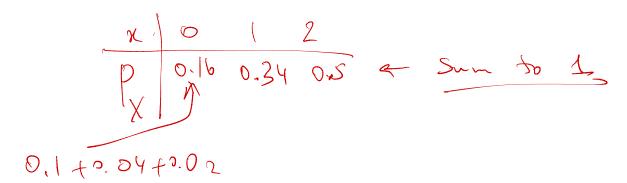
$$P_{y}(y) = \sum_{y} P(x,y)$$

for each possible value y.

The marginal pmf of X gives the distribution of X if it is observed without Y, and the marginal pmf of Y gives the distribution of Y if it is observed without X,

Example 70. (Example 69 continued)

e. Find the marginal pmf of X.



f. Find
$$P(X \le 1) = P(0) + P(1) = 0, |6+0.3| = 0.5$$

g. Find the marginal pmf of Y .

 $P(0,0) + P(0,2) + P(0,2) + P(0,2) + P(0,2)$
 $P(0,0) + P(0,2) + P(0,2)$

$$P(X=x, y=y) = P(X=x) P(y=y)$$

Definition 26. Two discrete random variables are independent if **for every pair** of (x,y), we have (x,y) = (x,y)

If $p(x,y) \neq p_X(x) \cdot p_Y(y)$ for at least one pair of (x,y), then X and Y are dependent.

Example 71. (Example 69 continued)

h. Are X and Y independent?

and Y independent?

$$P(0,0) = 0.1$$

$$P(0,0) = 0.1$$

$$O.1 + 0.16 \times 0.24$$

$$D.16 \times 0.24$$

i. Find P(X < Y).

$$(0,1),(0,2),(1,2)$$
; $0.04+0.02+0.66=0.12$

j. Find $P(5X + Y \leq 7)$.

$$0,0 \rightarrow 5,0+0=0.67$$

$$\frac{2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} = -\frac{1}{2}$$

1. Find
$$E(Y)$$
. $=$ $\geq \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) + \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) + \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) + \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) + \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y}) + \Im \mathcal{P}(\mathcal{Y}) = \Im \mathcal{P}(\mathcal{Y})$

$$E[h(x,y)] = \sum_{x,y} h(x,y) P(x,y)$$

$$E[\chi,y] = \sum_{x,y} P(x,y) = \sum_{x} \sum_{y} P(x,y)$$

$$= \sum_{x} \sum_{y} P(x,y)$$

$$= \sum_{x} \sum_{y} P(x,y)$$

$$= \sum_{x} \sum_{y} P(x,y)$$

5.2 Expected Values, Covariance, and Correlation

For example,
$$E(XY) = \sum_{X,Y} P(X,Y)$$

5.2.1 Covariance

When two random variables X and Y are not independent, it is frequently of interest to assess if the two random variables are linearly dependent and if so, how strongly they are related to one another.

Definition 27. The covariance is a measure of the strength between two random

variables X and Y of A as A which is defined as A as A and A of A as A and A of A as A and A of A of

Example 72. The joint and marginal pmf's for X = automobile policy deductible amount and Y = homeowner policy deductible amount are

			y	
	p(x, y)	500	1000	5000
	100	0.3	0.05	0
\boldsymbol{x}	500	0.15	0.20	0.05
	1000	0.10	0.10	0.05

				y			
$p_X(x)$	0.35	0.4	0.25	$p_Y(y)$	0.55	0.35	0.10

Find the Cov(X, Y). Solution.