Part (c¢) in Example 64 can be answered without knowing either p or o, as long as the
distribution is known to be normal, the answer is the same for any normal distribution:

Example 65. The breakdown voltage of a randomly chosen diode of a particular type is
known to be normally distributed. What is the probability that a diode’s breakdown voltage
is within 1 standard deviation of its mean value?

Solution. O[_TJ/

If the population glistribution of a variable is (approximately) normal, then
1. Roughly & {% I of the values are within 1 SD of the mean.

>
2. Roughly Q! ) ( ; of the values are within 2 SDs of the mean.

3. Roughly l l . ‘( 6of the values are within 3 SDs of the mean.

4.3.5 Normal Approximation to the Binomial Distribution [ i
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e Let X be a binomial random variable based on n trials with success probability ! /\\
p. So X ~ b(n,p). NS
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e If the binomial probability histogram is not too skewed, and both np and n(1—p)
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are > 10.
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Then X has approximately a normal distribution with p = np and o = y/np(1 — p). @
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Note: 0.5 is the correction for continuity. Let’s see why we want this correction in the next

example. _ —
Example 66. If X ~ b( i 0.6), Wgcan approximate X with Ziic? = ‘E }( 0
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The approximation is good! But still can be improved.
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Normal approximation with the continuity correction.

Figure above shows that when we use P(Y < 13) to approximate P(X < 13), the normal
approximation is than the exact binomial value. The area of the bars to
the left of 13.5 gives P(X < 13); the area under the curve to the left of 13 gives P(Y < 13).

Correction:
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Example 67. (Exercise 55 on textbook page 169) Suppose only 75% of all drivers in a certain
state regularly wear a seat belt. A random sample of 500 drivers is selected. What is the
probability that

a. Between 360 and 400 (inclusive) of the drivers in the sample regularly wear a seat belt?

b. Fewer than 400 of those in the sample regularly wear a seat belt?

Solution. Let X = the number of drivers regularly wear a seat belt.
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