
Part (c) in Example 64 can be answered without knowing either µ or �, as long as the
distribution is known to be normal, the answer is the same for any normal distribution:

Example 65. The breakdown voltage of a randomly chosen diode of a particular type is
known to be normally distributed. What is the probability that a diode’s breakdown voltage
is within 1 standard deviation of its mean value?

Solution.

If the population distribution of a variable is (approximately) normal, then
1. Roughly of the values are within 1 SD of the mean.

2. Roughly of the values are within 2 SDs of the mean.

3. Roughly of the values are within 3 SDs of the mean.

4.3.5 Normal Approximation to the Binomial Distribution

• Let X be a binomial random variable based on n trials with success probability
p. So X ⇠ b(n, p).

• If the binomial probability histogram is not too skewed, and both np and n(1�p)
are � 10.

Then X has approximately a normal distribution with µ = np and � =
p

np(1� p).
Then
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Note: 0.5 is the correction for continuity. Let’s see why we want this correction in the next
example.

Example 66. If X ⇠ b(25, 0.6), We can approximate X with

Therefore,

P (X  13)

while the exact binomial calculation gives:

P (X  13)

The approximation is good! But still can be improved.

Normal approximation with the continuity correction.

Figure above shows that when we use P (Y  13) to approximate P (X  13), the normal
approximation is than the exact binomial value. The area of the bars to
the left of 13.5 gives P (X  13); the area under the curve to the left of 13 gives P (Y  13).

Correction:

P (X  13)

The result is improved greatly!

Summary:
P (X  x) ⇡ P (Y  x+ 0.5)

P (X � x) ⇡ P (Y � x� 0.5)
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Example 67. (Exercise 55 on textbook page 169) Suppose only 75% of all drivers in a certain
state regularly wear a seat belt. A random sample of 500 drivers is selected. What is the
probability that

a. Between 360 and 400 (inclusive) of the drivers in the sample regularly wear a seat belt?

b. Fewer than 400 of those in the sample regularly wear a seat belt?

Solution. Let X = the number of drivers regularly wear a seat belt.
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