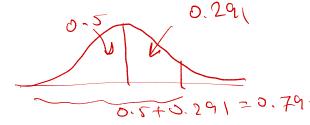
$$\oint (Q = P(Z \leq C))$$

Example 62. Determine the value of the constant c that makes the probability statement correct.

(a)
$$\Phi(c) = 0.9838$$

5,7



(b)
$$P(0 \le Z \le c) = 0.291$$

P(ZGC)=P(ZCO)+P(OGZGC)=0,791

(c)
$$P(c \le Z) = 0.121$$

P(Z 4 L)=1-0.121=0879

1 p(240)=1-P(Z50)

c 2), 17

(d)
$$P(-c \le Z \le c) = 0.668$$

0.668

0.608+ 1-0.668 =0.83Y

1-0.668

(e)
$$P(c < |Z|) = 0.016$$

(e) $P(c \le |Z|) = 0.016$

>7C-C

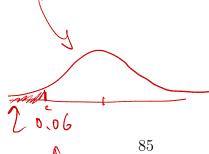
(f) Find the 6th percentile for the standard normal curve

1-0.016 + 0.016 = 0.992

c=2,4)

1-0.016

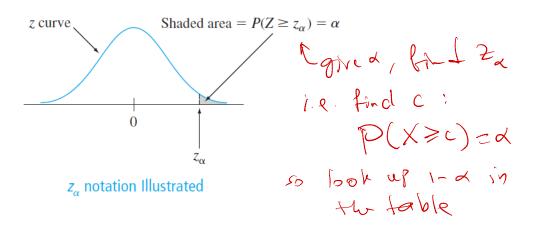
0,01,6



4.3.3 z_{α} Notation for z Critical Values

Notation: z_{α} will denote the value on the z axis for which α of the area under the z curve lies to the right of z_{α} . (See Figure below.)

For example, $z_{.10}$ captures upper-tail area .10, and $z_{.01}$ captures upper-tail area .01.

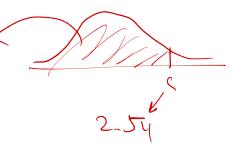


Since α of the area under the z curve lies to the right of z_{α} , $1-\alpha$ of the area lies to its left. Thus z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as z critical values.

Example 63.

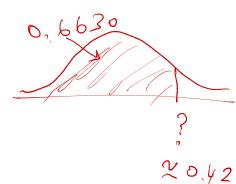
(a) Find $z_{0.0055}$

=0,9995



(b) Find *z*_{0.6630}

0.42



86

4.3.4 Nonstandard Normal Distributions

When $X \sim N(\mu, \sigma^2)$, probabilities involving X are computed by "standardizing."

If X has a normal distribution with mean μ and standard deviation σ , then $Z = \frac{1}{\sigma} \quad \text{we standard of a point of the standard normal distribution. Thus}$ has a standard normal distribution. Thus $P(a + x + b) = P(a + x + b + \mu)$ $P(a + x + b) = P(a + \mu)$ $P(x + b) = P(a + \mu)$ $P(x + \mu) = P(a + \mu)$

By standardizing, any probability involving X can be expressed as a probability involving a standard normal random variable Z, so that Appendix Table A.3 can be used.

Example 64. (Exercise 33 on textbook page 167) X = maximum speed of a car. A normal distribution with mean value 46.8 km/h and standard deviation 1.75 km/h is postulated. Consider randomly selecting a single such car.

- Consider randomly selecting a single such car.

 a. What is the probability that maximum speed is at most 50 km/h?

 b. What is the probability that maximum speed is at least 48 km/h?
- b. What is the probability that maximum speed is at least 48 km/h? $P(x \ge 48) = P(z \ge 48-46.8)$
- c. What is the probability that maximum speed differs from the mean value by at most 1.5 standard deviations?
- d. Find the 75th percentile for the max speed. Solution.

$$P(2 > 0.69)$$

= $1 - P(2 < 0.69)$
= $1 - 0.7549$