A mathematical model and quantitative comparison of the small RNA circuit in the *Vibrio harveyi* and *Vibrio cholerae* quorum sensing systems

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2013 Phys. Biol. 10 046007

(http://iopscience.iop.org/1478-3975/10/4/046007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 155.101.97.169
This content was downloaded on 15/05/2015 at 20:56

Please note that terms and conditions apply.
A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems

G A M Hunter, F Guevara Vasquez and J P Keener

Mathematics Department, University of Utah, 155 E 1400 S, Salt Lake City, UT 84112, USA
E-mail: keener@math.utah.edu

Received 3 April 2013
Accepted for publication 11 June 2013
Published 3 July 2013
Online at stacks.iop.org/PhysBio/10/046007

Abstract
Quorum sensing is the process by which bacteria regulate their gene expression based on the local cell-population density. The quorum sensing systems of Vibrio harveyi and Vibrio cholerae are comprised of a phosphorelay cascade coupled to a small RNA (sRNA) circuit. The sRNA circuit contains multiple quorum regulated small RNA (Qrr) that regulate expression of the homologous master transcriptional regulators LuxR (in V. harveyi) and HapR (in V. cholerae). Their quorum sensing systems are topologically similar and homologous thereby making it difficult to understand why repression of HapR is more robust than LuxR to changes in Qrr. In this work we formulate and parameterize a novel mathematical model of the V. harveyi and V. cholerae sRNA circuit. We parameterize the model by fitting it to a variety of empirical data from both species. We show that we can distinguish all of the parameters and that the parameterizations (one for each species) are robust to errors in the data. We then use our model to propose some experiments to identify and explain kinetic differences between the species. We find that V. cholerae Qrr are more abundant and more sensitive to changes in LuxO than V. harveyi Qrr and argue that this is why expression of HapR is more robust than LuxR to changes in Qrr.

1. Introduction
Quorum sensing is a regulatory system by which a bacterium coordinates its gene expression with neighboring bacteria based on the local cell-population density. Genes regulated by quorum sensing systems include those responsible for the production of toxins, biofilm, type III secretion factors, and bioluminescence. Quorum sensing systems are thought to provide some fitness benefit to bacteria. For example, a bacterial colony coordinating production of toxins would have a better chance of overwhelming a host’s immune response than if each bacterium worked independently [1]. A typical quorum sensing response is characterized by a sudden change in gene expression at some critical cell-population density, although gene regulation is also mediated by environmental factors such as the preferred carbon source [2] and other unidentified factors [3]. Quorum sensing systems are found in a variety of bacteria and, as such, are thought to be common to all bacteria [4–10]. Research into quorum sensing systems continues to expand our understanding of gene expression and has the potential to develop novel therapies to combat bacteria whose virulence factors are quorum regulated [9, 11, 12].

Vibrio harveyi and Vibrio cholerae are pathogenic marine bacteria that use similar quorum sensing systems to regulate their respective virulence factors (see figure 1). Each quorum sensing system is comprised of two distinct pathways: a phosphorelay cascade that integrates cell-population density information and a small RNA (sRNA) circuit that regulates expression of all quorum sensing target genes via a transcriptional regulatory protein called LuxR in V. harveyi and HapR in V. cholerae [9]. In V. harveyi, three distinct autoinducers (HAI-1, AI-2, and CAI-1) are synthesized at
some basal level by enzymes called autoinducer synthases (LuxM, LuxS, CqsA). For each autoinducer, there is a corresponding membrane bound receptor to which it binds: LuxN (binds HAI-1), LuxPQ (binds AI-2), and CqsS (binds CAI-1) [10, 7, 13, 14]. The autoinducers freely diffuse through the cell membrane [15] and disperse into the local environment leaving the receptors unbound at low cell-population density (LCD). When unbound, the receptors function as kinases and dephosphorylate high energy phosphate molecules. The phosphate is transferred to LuxU, a phosphorelay protein, that, again, transfers the phosphate to LuxO [7]. LuxO-P activates transcription of five distinct small RNA (sRNA) called quorum regulated RNA (qrr1-5). Qrr regulate the expression of luxR post transcriptionally by binding the luxm mRNA to prevent its translation [16–19]. Therefore, at LCD, Qrr is abundant and luxR is repressed.

Conversely, at high cell-population density (HCD) intercellular autoinducer concentration rises leading the autoinducer to bind their respective receptor [20, 5, 21]. When bound, the receptors undergo a conformational change that changes their function to a phosphatase [22, 23]. In this state, the flow of the phosphates is reversed as the receptors dephosphorylate LuxU. This results in a decrease in LuxO-P and in Qrr. Therefore, LuxR is derepressed and regulates downstream quorum sensing genes [7, 24–26].

The quorum sensing system of V. cholerae is nearly identical to that of V. harveyi with a few minor topological differences whose effects, we assume, are negligible. V. cholerae has four Qrr (qrr1-4) and two autoinducer receptors (LuxPQ and CqsS) rather than, respectively, the five and three found in V. harveyi. Experiments show that qrr5 in V. harveyi is not quorum regulated [27, 17], so we ignore qrr5 for this work. The additional autoinducer receptor in V. harveyi means that V. harveyi responds to three, rather than two, autoinducers.

However, information from the receptors is integrated into one signal—the ratio of LuxO-P to LuxO [28], so the number of different phosphorelay cascades cannot be distinguished for a given ratio of LuxO to LuxO-P alone. Therefore, we assume that these topological differences do not significantly alter the response of one species relative to the other.

In fact, the V. harveyi and V. cholerae quorum sensing systems are very similar. Sequence analysis of the genes and proteins in the V. cholerae circuit shows that the components in V. cholerae are homologous to those in V. harveyi. Furthermore, AI-2 and CAI-1 have the same chemical structure between both species. This means that V. cholerae responds to AI-2 and CAI-1 taken from V. harveyi and vice versa. Consequently, the nomenclature for the components in each circuit is identical with the exception of HapR in V. cholerae—the V. harveyi LuxR homologue [15, 7]. These topological and genetic similarities make it difficult to determine if and why V. harveyi and V. cholerae respond differently to identical stimuli. In particular, experiments show that HapR repressing in V. cholerae strains with just one Qrr is nearly identical to HapR repression in a wild-type strain [17], yet LuxR repression depends on the number and type of Qrr present in isogenic V. harveyi strains [16].

In this work, we formulate and parameterize a novel mathematical model of the sRNA circuit to identify and explain the mechanisms underlying the kinetic differences between V. harveyi and V. cholerae. First we use data from at least four experiments for each species to find 35 and 33 physiologically relevant parameters representing V. harveyi and V. cholerae, respectively, by solving a constrained, nonlinear least-squares problem. We solve the problem using Matlab’s nonlinear least-squares solver ‘lsqnonlin’ aided by the exact Jacobian of the model of each experiment and show that our model is representative of the V. harveyi and V. cholerae sRNA circuits.
We then propose a series of simple experiments that would help to identify novel kinetic differences between the species. We find that Qrr are more abundant in *V. cholerae* than in *V. harveyi* and that *V. harveyi* and *V. cholerae* Qrr are sensitive to changes in LuxR and LuxO, respectively. As a corollary of these results, we argue and demonstrate that this explains why dosage compensation is stronger in *V. cholerae* than in *V. harveyi*. Our results refine the hypothesis of Svenningsen et al who suggested that the differences in LuxR/HapR repression were a consequence of stronger dosage compensation in *V. cholerae* than in *V. harveyi*. [29]. Lastly, we argue that saturation of Hfq, a protein chaperon that stabilizes Qrr, by Qrr is essential for the robust repression of target mRNA.

2. Materials and methods

In what follows, we derive a set of differential equations that model the reaction kinetics of the sRNA circuit. Although the focus of this work is on the sRNA circuit in *V. harveyi* and *V. cholerae*, we need a simple model of the *V. harveyi* phosphorelay cascade to incorporate more experimental data into the parameterization of our model of the *V. harveyi* sRNA circuit. To this end, Swem et al parameterized a model of the *V. harveyi* autoinducer receptors and found that the difference in free energy between the kinase and phosphatase states is

\[
\frac{\Delta G}{k_B T} = -2.3 + \ln \left(\frac{1 + 6A}{1 + 10^{-6}A} \right),
\]

(1)

where AI is the concentration (nM) of autoinducer [30]. Assuming there is only one phosphorelay cascade, the input for the sRNA circuit is the ratio of LuxO-P, OP, to LuxO, O [28]. At steady-state, \(\Omega = \Gamma \Gamma \), where the equilibrium constant, \(\Gamma \), is of the form \(\Gamma = \exp \left(- \frac{\Delta G}{k_B T} \right) \). Therefore, our simple model of the phosphorelay cascade is:

\[
\Gamma = \exp \left(2.3 - \ln \left(\frac{1 + 6A}{1 + 10^{-6}A} \right) \right).
\]

(2)

If the autoinducer concentration is known, then we use (2) to relate the concentration of autoinducer to \(\Gamma \), otherwise we treat \(\Gamma \) as a parameter representative of the cell-population density. Note that LCD corresponds to large \(\Gamma \), while HCD corresponds to small \(\Gamma \).

2.1. Overview of the sRNA circuit

The sRNA circuit is central to the *V. harveyi* and *V. cholerae* quorum sensing system (see figure 2). Small RNA are short fragments of non-coding RNA that regulate gene expression post-transcriptionally [18]. Qrr repress mRNA expression by binding the ribosomal binding site of target mRNA, thereby, preventing its translation [16, 19]. The *V. harveyi* and *V. cholerae* Qrr are highly conserved within and between each species including an identical 32bp sequence responsible for its association with mRNA [16]. At the start of the sRNA circuit, qrr expression is regulated by the ratio of LuxO-P to LuxO [28]. LuxO-P binds the qrr promoter to activate its expression. Each Qrr is rapidly degraded unless they bind Hfq [31], a protein chaperon, which also aids qrr to bind target mRNA. The pairing of qrr with mRNA results in their mutual degradation and leaves Hfq unchanged [16].

There are four regulatory pathways in the sRNA circuit to maintain precise control of luxR/hapR expression [7]. The first two pathways are autoregulatory loops. LuxR/HapR regulates its own expression by forming as a dimer and binding its own promoter to limit transcription. LuxR (as a dimer) enhances qrr expression by binding the qrr promoter via the LuxR-Qrr feedback. Lastly, qrr target and prevent translation of luxO mRNA via the LuxO-Qrr feedback. The *V. cholerae* sRNA circuit is topologically identical and homologous to *V. harveyi* except that *V. cholerae* has four, rather than five, sRNA and HapR is the LuxR homologue.

The remaining two pathways involve feedback between Qrr and the target mRNA and, as such, are called the LuxR/HapR-Qrr and LuxO-Qrr feedback. LuxR/HapR enhances the expression of qrr when LuxO-P is present [34, 27]. This is done by LuxR binding directly to the qrr promoter, while HapR does so indirectly via a currently unknown intermediary. Lastly, Qrr regulate LuxO expression in the same manner as Qrr regulates LuxR/HapR expression and is called the LuxO-Qrr feedback [29, 19]. These autoregulatory and feedback regulatory pathways control the onset and transition to/from LCD and HCD [29, 19].

2.2. Model of the sRNA circuit

In this section we derive our model of the sRNA circuit. We begin with the reactions governing the expression of luxO, o, and luxR/hapR, \(r \), in the absence of qrr. These reactions are summarized in figure 3.

![Figure 2. Overview of the V. harveyi sRNA circuit. LuxO-P activates qrr expression, which bind to target mRNA via Hfq to prevent translation of the mRNA into an active protein. Four different regulatory mechanisms aid to control precisely the expression of target mRNA. LuxR (as a dimer) and LuxO are autoregulatory as each binds their own promoter to limit transcription. LuxR (as a dimer) enhances qrr expression by binding the qrr promoter via the LuxR-Qrr feedback. Lastly, qrr target and prevent translation of luxO mRNA via the LuxO-Qrr feedback.](image-url)
We assume that there is a basal rate of expression of luxO that is inhibited equally by both LuxO and LuxO-P [19]. Therefore, the transcription rate of luxO is

\[\kappa_o(O, O_p) = \frac{V_o}{1 + K_{O}(O + O_p)}. \]

The luxO mRNA is transcribed at a rate proportional to its concentration and degraded at a rate proportional to its concentration and similarly for LuxO. The reactions governing the expression of luxR are identical in form to those governing expression of luxO. The main difference is that the luxR transcription rate is partially inhibited by a LuxR dimer [33, 32], so we take

\[\kappa_r(R) = V_{O} + \frac{V_r}{1 + (K_{R})^2}. \]

The reactions governing the expression of the nth species of qrr expression are summarized in figure 4. LuxO-P activates qrr expression and a LuxR/HapR dimer enhances this expression. To model this process, we introduce four different states for the qrr promoter that represent the probability that the promoter is unbound, \(P_n \), bound by LuxR/HapR dimer, \(P_{nH} \), bound by LuxO-P, \(P_{n0} \), or bound by LuxO-P and a LuxR/HapR dimer, \(P_{n0H} \). [7]. We also assume that the rates of qrr transcription for the latter two states are different.

The corresponding equations governing the states of the qrr promoter are:

\[1 = P_{nH} + P_{n0} + P_{n0H} + P_n. \]

\[\frac{dP_{nH}}{dt} = (k_{Rn} R)^2 P_n + k_{-Rn} P_{n0} - (k_{-L_n} + O_p k_{Pn}) P_{nH}, \]

\[\frac{dP_{n0}}{dt} = k_{Pn} P_{n0} + (k_{-L_n} - k_{-Rn}) P_{n0} - ((k_{Ln})^2 + k_{-n} P_{n0}, \]

\[\frac{dP_{n0H}}{dt} = k_{Pn} P_{n0H} + (k_{Ln})^2 P_{n0} - ((k_{-Ln})^2 + k_{-n}) P_{n0H}, \]

\[\frac{dP_n}{dt} = V_p P_n + V_{L_n} (k_{Ln})^2 P_n - \delta_o q_n. \]

We solve for the steady-state probabilities \(P_{n0H} \) and \(P_{n0} \) and rewrite (9) as:

\[\frac{dP_n}{dt} = \frac{K_p P_n}{1 + K_p P_n} V_p + V_{L_n} (k_{Ln})^2 P_n - \delta_o q_n. \]

\[\frac{dP_n}{dt} = \frac{K_p O_p}{1 + K_p O_p} V_o + V_{L_n} (k_{Ln})^2 P_n - \delta_o q_n. \]

\[\frac{dP_n}{dt} = \frac{K_p O_p}{1 + K_p O_p} V_o + V_{L_n} (k_{Ln})^2 P_n - \delta_o q_n. \]

\[H_0 + q_n \xrightarrow{\beta_o} H_n \]

\[H_n + r \xrightarrow{\mu_n} H_0 \]

\[\text{Figure 3. Reactions governing the expression of luxO and luxR in the absence of qrr.} \]

\[\text{Figure 4. Qrr promoter model. We define four states representing the probability that the promoter is bound by LuxR and/or LuxO-P.} \]

The reactions governing the expression of the nth species of qrr expression are:

\[\frac{dR}{dt} = \kappa_{RR} r - \delta_R R, \]

\[\frac{dO}{dt} = \kappa_{OO} O - \delta_O O, \]

\[\frac{dq_n}{dt} = \frac{K_p \Gamma R}{1 + K_p \Gamma R} V_p + \frac{V_{L_n} (k_{Ln})^2}{1 + (k_{Ln})^2} P_n - \delta_o q_n. \]

\[\frac{dH_n}{dt} = \beta_n \left(\frac{H_0 - \sum_{i=1}^{4} H_i}{1 + \sum_{i=1}^{4} H_i} \right) q_n - \delta_h q_n. \]

\[\text{Figure 5. Reactions for the degradation of mRNA by qrr. Each qrr binds Hfq that then targets luxR and luxO mRNA. Once bound, the sRNA–mRNA dimers unbind from Hfq and are degraded while Hfq remains intact. The net result of this reaction is the loss of one qrr for each mRNA.} \]

The final part of the sRNA model describes the repression of target mRNA by Qrr and is summarized in figure 5. Given that Hfq is pleiotropic and abundant in cells [35, 36], we assume that the total concentration of Hfq available for quorum sensing is constant, \(H_0 \). Hfq aids in repressing target mRNA by stabilizing qrr and facilitating qrr to bind target mRNA. Once qrr binds its target mRNA, the sRNA–mRNA dimer unbinds Hfq leaving it intact, and the sRNA–mRNA dimer is eventually degraded [16]. The net result of this reaction is the loss of one sRNA and mRNA.

In summary, the complete set of equations governing the sRNA circuit is,
We then rescale the variables in our model using the characteristic concentrations as follows:

\[r = r_0 \hat{r}, \quad R = R_0 \hat{R}, \quad H_n = H_0 \hat{H}_n, \]

\[o = o_0 \hat{o}, \quad O = O_0 \hat{O}, \quad q_n = Q_n \hat{q}_n. \]

(19)

Next, we define the following dimensionless parameters:

\[E_{q_0} = \frac{H_0}{\delta_n}, \quad E_{q_1} = \frac{H_0}{\delta_r}, \quad E_{o_0} = \frac{H_0}{\delta_o}, \]

\[V_{q_0} = \frac{V_o}{V_{p_0}}, \quad V_{q_1} = \frac{V_o + V_r}{V_{p_0}}, \quad V_o = \frac{V_o}{V_o + V_r}, \]

\[\hat{K}_p = K_p O_0, \quad \hat{K}_L = K_L R_0, \quad \hat{K}_O = K_O O_0, \]

\[\hat{K}_R = K_R R_0, \quad r_0 = \frac{V_o}{V_o + V_r}. \]

At steady-state, the model simplifies to:

\[\Gamma = \exp \left(2.3 - \ln \left(\frac{1 + A I}{1 + 10^{-6} A I} \right) \right), \]

(21)

\[0 = r_0 + \frac{1 - r_0}{1 + (\hat{K}_R r)^2} - \left(\frac{4}{\sum_{n=1}^{4} E_{o_n} H_n + 1} \right) r, \]

\[0 = \frac{1}{1 + \hat{K}_O (1 + \Gamma o)} - \left(\frac{4}{\sum_{n=1}^{4} E_{o_n} H_n + 1} \right) o, \]

(22)

(23)

\[0 = \frac{\hat{K}_p \Gamma o + V_{q_0} \hat{K}_L r^2}{1 + \hat{K}_p \Gamma o + \hat{K}_L r^2} - \left(\frac{4}{\sum_{m=1}^{4} H_m + 1} \right) q_n, \]

\[0 = E_{q_0} \left(1 - \sum_{m=1}^{4} H_m \right) q_n - V_{q_0} \left(E_{r_n} r + V_{o_n} E_{o_n} o \right) H_n. \]

(24)

(25)

\(\hat{K}_R \) and \(\hat{K}_O \) represent the LuxR/HapR and LuxO autoregulation, respectively. \(V_{q_0} \) and \(\hat{K}_L \) represent the LuxR/HapR-Qrr feedback, and \(E_{o_n} \) and \(V_{o_n} \) represent the LuxO-Qrr feedback. For simplicity, we drop the ‘\(^{-}\)’ notation on \(o, r, q_n, \) and \(H_n. \)

3. Results and discussion

In this section we describe how the empirical data from \(V. \) harveyi and \(V. \) cholerae were used to parameterize our model. Furthermore, we show that our model with a parameterization for each species agrees well with the data and that the model is representative of quorum sensing in \(V. \) harveyi and \(V. \) cholerae. Lastly, we use our model to predict novel behavior in \(V. \) harveyi and \(V. \) cholerae. To parameterize our model, we formulated and solved the following constrained nonlinear least-squares problem:

\[\min_{p \geq a} |\mathbf{F}(p) - d|^2. \]

(26)

Here \(d \) is a vector containing the raw data from each experiment and \(p \) is a vector representing the wild-type parameterization. The constraint \(p \geq a \) is necessary to ensure that \(V_{q_n} \geq 1 \) for all \(n \) (i.e. so that LuxR/HapR only enhances Qrr expression) and that all of the remaining parameters are non-negative. We define \(F_i(p) \) as a model of the experiment corresponding to the \(i \)th data point. We then store all the models together in the vector \(\mathbf{F}(p) \). Therefore, \(|\mathbf{F}(p) - d_i|^2 \) is the error associated with modeling the \(i \)th experiment, while \(\sum_i |\mathbf{F}(p) - d_i|^2 \) represents the total error between our model and all of the experiments for the given wild-type parameterization. A detailed discussion of the data and how we modeled each experiment are provided in the sections that follow. We solved the problem using Matlab’s ‘lsqnonlin’ function. To improve the accuracy and rate of convergence, we calculated the Jacobian of \(\mathbf{F}(p) \) exactly by differentiating (22)–(25) and using these derivatives to compute \(\nabla F_i(p) \).

In an attempt to find the global minimum, we solved the problem using several different initial guesses that spanned a feasible set containing the solution. Each initial guess is a vector of uniformly distributed random numbers generated over the feasible set of wild-type parameters. To find a reasonable feasible set for all of the parameters, we started with a large feasible set and manually refined it so that the solutions from randomly generated parameter vectors remained inside the new feasible set. We terminated the nonlinear least-squares solver either when the residual was below a certain threshold (i.e. \(|\mathbf{F}(p) - d|^2 \leq 10^{-4} \)) or after some finite number of iterations. The parameterization for each species and corresponding final feasible set is summarized in table 1.

In the next two sections we describe the experiments and how we modeled them in each function \(F_i(p) \). Although the details of \(F_i(p) \) are different, they all have the following general structure. We created a parameterization for each mutant strain in the experiment by modifying the wild-type parameterization. For example, to model a strain without the LuxO-Qrr feedback, we set \(E_{o_n} = V_{o_n} = 0 \) in the wild-type parameterization. Next, we computed the steady-state solution of each strain by solving (22)–(25) and using the exact Jacobian of the nonlinear system of equations. Lastly, we measured the steady-state quantities in our model that corresponded to those measured in the experiments such as the ratio of the steady-state concentration of LuxR/hapR in a wild-type strain relative to a mutant strain.

3.1. \(V. \) harveyi parameterization

In this section we describe the \(V. \) harveyi data we used to fit the model to. The first two experiments below are used to parameterize \(r_0, K_R, \) and \(K_L (n = 1, 2, 3, 4) \) because those data are uniquely determined by those parameters. \(K_R \) and \(K_L \) are related to their dimensionless counterparts by the characteristic concentration of LuxR, \(R_0 \). We simultaneously fit the rest of the parameters to the remaining data using the formulation described by (26) treating \(R_0 \) as an unknown parameter rather than \(\hat{K}_L \) and \(\hat{K}_R \). The full \(V. \) harveyi parameterization is shown in table 1.

3.1.1. LuxR autoregulation. Chatterjee et al identified the regions of the luxR promoter involved in the autoregulation of LuxR and used mobility-shift assays to measure the proportion of luxR promoters bound at a given concentration of LuxR.
and shows that LuxR binds its own promoter. We used this data to parameterize our model of the LuxR promoter, \(r_0 + (1 - r_0)/(1 + (K_r R)^2) \), and found that \(K_r = 0.0250 \) (\(\mu g^{-1} \)) and \(r_0 = 0.38 \).

We used this data to parameterize our model of the lucR promoter model, \(r_0 + (1 - r_0)/(1 + (K_r R)^2) \). The data (dots) and the results from our parameterization (solid curve) are shown in figure 6. We found that \(K_R \approx 0.0250 \) (\(\mu g^{-1} \)) and that \(r_0 \approx 0.38 \).

3.1.2. LuxR affinity to the qrr promoters. Tu et al used mobility-shift assays to show that LuxR enhances qrr expression by binding directly to each qrr promoter [27]. We set \(K_{qrr} = 0 \) nM^{-1}, \(K_{qrr} = (25 \text{ nM})^{-1}, K_{qrr} = (40 \text{ nM})^{-1}, \) and \(K_{qrr} = (19 \text{ nM})^{-1} \) based on visual inspection of the data in figure 2 of their work [27].

3.1.3. LuxR-Qrr feedback at low and high cell density. Tu et al showed that LuxR enhances Qrr expression in V. harveyi when it binds the qrr promoter [27]. They created a \(\Delta luxR \) and a \(qrr2, 3, 4_{luxR-\Delta} \) strain, which has a scrambled LuxR binding site in each qrr promoter to limit/prevent LuxR binding. Using quantitative real-time PCR analysis, they measured the level of qrr at low and at high cell density in a wild-type strain and each mutant strain. They present their results by normalizing the concentration of qrr by their corresponding wild-type concentration at LCD. The data, shown in figure 7 (left), shows that LuxR enhances qrr2-4 expression and that there is little difference in qrr concentration between the mutant strains.

To model this experiment, we modified the wild-type parameterization to model the two mutant strains in the experiment: \(\Delta luxR \) \((E_{n} = K_{qrr} = V_{qrr} = 0) \), and \(qrr2, 3, 4_{luxR-\Delta} \) \((\tilde{K}_{qrr} = V_{qrr} = 0) \). We also parameterize two different values of \(\Gamma \) that correspond to the different ratios of LuxO::LuxO-P at low and at high cell density (i.e. \(\Gamma_{LCD} > \Gamma_{HCD} \)). For each strain, we computed the steady-state concentration of each qrr at \(\Gamma_{LCD} \) and at \(\Gamma_{HCD} \). Lastly, we normalized each qrr concentration by its corresponding concentration in the wild-type strain at LCD. Our final results (middle) and corresponding error (right) are shown in figure 7. The model agrees well with the data at both low and high cell density, although there is less agreement at HCD.

Table 1. Parameters and their corresponding feasible set for V. harveyi and V. cholerae. All parameters are dimensionless except for \(R_0 \) as indicated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V. harveyi</th>
<th>V. cholerae</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_0)</td>
<td>(3.67 \times 10^{-1})</td>
<td>(3.67 \times 10^{-1})</td>
</tr>
<tr>
<td>(K_{qrr})</td>
<td>(1.38 \times 10^{-1})</td>
<td>(9.03 \times 10^{-1})</td>
</tr>
<tr>
<td>(K_{qrr})</td>
<td>(1.80)</td>
<td>(1.55 \times 10^{-1})</td>
</tr>
<tr>
<td>(\Gamma_{LCD})</td>
<td>(1.82 \times 10^{-2})</td>
<td>(2.15 \times 10^{-1})</td>
</tr>
<tr>
<td>(\Gamma_{HCD})</td>
<td>(1.94 \times 10^{-1})</td>
<td>(9.36 \times 10^{-1})</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(3.62 \times 10^{-1})</td>
<td>(2.65)</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(3.60)</td>
<td>(3.94 \times 10^{1})</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(7.30)</td>
<td>(9.36 \times 10^{-1})</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(1.13)</td>
<td>(8.89)</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(0)</td>
<td>(1.84 \times 10^{2})</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(2.21 \times 10^{1})</td>
<td>(3.04 \times 10^{1})</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(1.38 \times 10^{1})</td>
<td>(1.08 \times 10^{1})</td>
</tr>
<tr>
<td>(\tilde{K}_{qrr})</td>
<td>(2.95 \times 10^{1})</td>
<td>(4.77 \times 10^{1})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(5.05 \times 10^{-4})</td>
<td>(8.36 \times 10^{-3})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(1.83 \times 10^{-3})</td>
<td>(2.87 \times 10^{2})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(2.31 \times 10^{-1})</td>
<td>(2.98 \times 10^{2})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(1.08 \times 10^{2})</td>
<td>(4.76 \times 10^{1})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(1.35 \times 10^{2})</td>
<td>(1.07 \times 10^{1})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(1.20 \times 10^{2})</td>
<td>(6.99 \times 10^{1})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(2.33 \times 10^{2})</td>
<td>(1.21 \times 10^{2})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(8.18 \times 10^{1})</td>
<td>(2.95 \times 10^{1})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(4.65 \times 10^{-1})</td>
<td>(2.98 \times 10^{-1})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(3.31)</td>
<td>(2.31 \times 10^{-3})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(9.57 \times 10^{-3})</td>
<td>(1.58 \times 10^{2})</td>
</tr>
<tr>
<td>(E_{n})</td>
<td>(1.74 \times 10^{-1})</td>
<td>(4.33 \times 10^{1})</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>0</td>
<td>4.99</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(1.90)</td>
<td>(1.91)</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(2.28)</td>
<td>(1.41 \times 10^{1})</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(2.56)</td>
<td>(3.65)</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(1.44)</td>
<td>(7.81 \times 10^{-2})</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(5.80)</td>
<td>(8.49 \times 10^{-4})</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(5.83 \times 10^{-1})</td>
<td>(2.51 \times 10^{-1})</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(4.63)</td>
<td>(5.57 \times 10^{-1})</td>
</tr>
<tr>
<td>(V_{qrr})</td>
<td>(1.28 \times 10^{1})</td>
<td>(2.42)</td>
</tr>
<tr>
<td>(R_0) (nM)</td>
<td>(5.16 \times 10^{2})</td>
<td>(0)</td>
</tr>
</tbody>
</table>
3.1.4. Role of LuxO regulation in V. harveyi. Tu et al showed that LuxO regulation affects the onset of the LCD to HCD transition and the dynamic range of expression of quorum sensing target gene expression [19]. They introduced a LuxR-mCherry protein fusion into the V. harveyi chromosome at the native luxR locus in four different strains: wild-type, −LuxO-Auto, −LuxO-Qrr feedback, and −LuxO regulation strains. They used single cell fluorescence microscopy to measure LuxR-mCherry in individual cells over a range of autoinducer concentrations for each strain as a means to infer luxR expression. Their results, in figure 8 (left), show that the onset of the LCD to HCD transition is shifted to larger autoinducer concentrations when LuxO regulation is
Figure 9. A comparison between the data [19] (left) and our results (middle) showing the fluorescence of the LuxR-mCherry construct over different autoinducer concentrations in wild-type, −LuxO-Auto, −LuxO-Qrr feedback, and −LuxO regulation strains containing qrr4 only. We normalized the data and our results to the LuxR-mCherry fluorescence in the wild-type strain at an autoinducer concentration of 10^4 nM. The error (right) shows that the repression of LuxR at low autoinducer concentrations in our model is much larger than that observed in the data.

removed. The data also show that there is little difference in LuxR expression between the −LuxO-Auto and −LuxO-Qrr feedback strains.

To model this experiment, we created parameterizations of each strain. Taking the parameterization of the wild-type strain, we set $\hat{E}_n = 0$ for the −LuxO-Auto strain, $E_n = V_{\alpha n} = 0$ for the −LuxO-Qrr feedback strain, and $\hat{E}_n = E_n = V_{\alpha n} = 0$ for the −LuxO regulation strain. Since fluorescence is expressed as a function of autoinducer concentration, we used (2) to relate Γ to the concentration of autoinducer in the data. We then computed the steady-state concentration of LuxR in each strain at every autoinducer concentration. Our results (middle) and corresponding error (right) are shown in figure 8. Our results reproduce the shift in the LuxR dose response curve for the various mutant strains. We note that the error is largest at LCD where there is more uncertainty in the data as well.

Tu et al repeated the experiment using strains with qrr4 only. Their results in figure 9 (left) show a shift in the onset of the LCD to HCD transition similar to their previous results. Additionally, there is a three rather than a fivefold change in fluorescence from LCD to HCD. To model this experiment, we repeated the previous experiment taking $\hat{K}_{P1} = \hat{K}_{P2} = \hat{K}_{P3} = 0$ in all of the strains. Our results, figure 9 (middle), reflect a similar shift in the onset as the data, however, our results also show more repression of LuxR at LCD than what is reflected in the data.

3.2. V. cholerae parameterization

We parameterized the model to all of the V. cholerae data simultaneously by solving the problem described by (26). The V. cholerae experiments were all performed at the same optical density corresponding to LCD so there is only one value of Γ in our V. cholerae parameterization. In what follows, we describe the four V. cholerae experiments, how we modeled them, and discuss our results. The complete V. cholerae parameterization is shown in table 1.

3.2.1. HapR repression. Svenningsen et al showed that one qrr is sufficient to repress hapR to near wild-type levels [29]. They created four mutant strains that had only one type of qrr and a mutant strain without any qrr. Using real-time PCR analysis, they measured hapR concentration in each strain and normalized the hapR concentration by its concentration in the wild-type strain. Their results, figure 10 (left), show that all Qrr significantly repress hapR similar to wild-type levels especially qrr4.

To model this experiment, we used the wild-type parameterization and set $\hat{K}_{P1} = 0$ for each of the n qrr knocked out in the mutant strains, i.e. for the +qrr2 strain, we used the wild-type parameterization and set $\hat{K}_{P1} = 0$ for n = 1, 3, 4. To parameterize the Δqrr strain, we set $\hat{K}_{P1} = 0$ for all n. We then found the steady-state concentration of hapR in each strain then normalized each by the hapR concentration in the wild-type strain. A comparison between the data (left), model (center), and the relative error (right) is shown in figure 10. Our results show that the model agrees well with the data.

3.2.2. Dosage compensation. Svenningsen et al showed that qrr expression increases in the absence of one or more qrr in V. cholerae—a phenomenon they called dosage compensation
[29]. Using real-time PCR analysis, Svenningsen et al measured the concentrations of hapR and qrr in a wild-type, Δqrr3, Δqrr2, 3, and in a Δqrr1, 2, 3 strain at LCD. These data were then normalized to their corresponding wild-type levels. Their results show that, as each qrr is removed, the expression of the remaining qrr increases, while hapR remains relatively constant [29].

We model this experiment as follows. For the mutant strains, we modified the wild-type parameterization by setting \(\hat{K}_{qrr} = 0 \) for the nth Qrr removed. We then computed the steady-state concentration of qrr and HapR in each strain and normalized them by their wild-type values. The data (left), results from our model (middle), and corresponding error (right) are shown in figure 11. Our results are in good qualitative and quantitative agreement with the data.

3.2.3. Dosage compensation and Qrr feedback

To show qualitative and quantitative agreement with the data. Assuming the stability of each compensation, Svenningsen et al showed that regulation in the sRNA circuit is responsible for dosage compensation, Svenningsen et al measured luminescence in a wild-type, \(\Delta qrr, \Delta lux \), and in a \(\Delta qrr, \Delta lux \) strain (a strain lacking the LuxO-Qrr feedback) with and without all Qrr. Assuming the stability of each qrr-lux construct is the same and that fluorescence is proportional to the concentration of qrr, we normalized their data by the fluorescence from the qrr1-lux construct in the \(\Delta hapR, \Delta qrr1 \) strain. The data, in figure 12, show that removing one or more qrr increases expression of the remaining qrr.

To model this experiment we created a parameterization of each strain. For the \(\Delta hapR \) strain, we set \(E_{hapR} = \hat{K}_{hapR} = 0 \) for all \(n \) and, for the \(\Delta lux \) strain, we set \(E_{lux} = V_{lux} = 0 \) for all \(n \). To remove Qrr from these strains, we set \(\hat{K}_{qrr} = 0 \) for all \(n \). The model of each qrr-lux construct is identical to our model of the Qrr promoter in (24), i.e.

\[
C_n(r, o) = \frac{\hat{K}_{qrr} \Gamma o}{1 + V_{qrr} (\hat{K}_{qrr} r)^2}.
\]

We computed the steady state concentration of \(r \) and \(o \) in each strain with and then without Qrr then evaluated (27) at each steady state. We then normalized the luminescence from each promoter by its corresponding luminescence from the wild-type promoter. Our results, figure 12 (middle), show that the model agrees well with the data both qualitatively and quantitatively.

As an extension to the above experiment, Svenningsen et al created a strain without the LuxO-Qrr feedback and examined the fold change in qrr-lux luminescence in a strain with versus without Qrr. Their results, in figure 13 (left), show that qrr3 is most sensitive to changes in qrr whereas there is a more modest change in the remaining qrr.

To model this experiment, we took the wild-type strain parameterization and set \(E_{hapR} = 0 \) for all \(n \) to remove the LuxO-Qrr feedback. We then found the steady-state concentrations of HapR and LuxO in a strain with and then without qrr. We used these steady-states to evaluate (27) to, again, determine the luminescence from each qrr-lux construct. Lastly, we normalized the luminescence of each qrr-lux in the \(\Delta qrr1 \) strain by the luminescence in the strain with all qrr. Figure 13 shows that our model (middle) agrees well with the data (left).

3.3. Parameter uncertainty

To get an idea of what parameters are reliably estimated from the experiments by our model, we studied the linearization of \(F(p) \) at the parameterization determined in the previous section. If \(\delta p \) is small, then \(F(p + \delta p) = F(p) + DF(p)\delta p + O(||\delta p||^2) \). Therefore, if each element in the column of \(DF(p) \) corresponding to parameter \(p_j \) is small (i.e. \(\left| \frac{\partial F}{\partial p_j} \right| \ll 1 \) for all \(j \)), then the data is not very sensitive to \(p_j \) and we cannot expect to estimate the parameter reliably using the data.

We found that \(F(p) \) and \(DF(p) \) are accurate up to an order of \(10^{-10} \). Evaluating \(F(p) \) and \(DF(p) \) involves solving for the
Figure 11. Comparison of the dosage compensation response for each Qrr between the data [29] (left) and our results (middle). Expression of each qrr increases relative to their wild-type concentrations at LCD when Qrr are sequentially removed. The error (right) shows that the model agrees well with the data overall.

Figure 12. Comparison between the data [29] (left) and our results (middle) showing the fold change in qrr-lux luminescence in strains with and/or without Qrr and/or HapR. Luminescence from each construct is presented relative to qrr1-lux luminescence in the ΔhapR strain. The error (right) shows that our results agree well with the data.

steady-states with a nonlinear solver that starts with a random initial guess. Hence even with the same parameterization p the values of the forward map and its Jacobian may be slightly different from one simulation to another. We evaluated $F(p)$ and $DF(p)$ multiple times using the same parameterization and found that they differ up to 10^{-10} element-wise. Therefore, we assume that the jth parameter is a stationary solution of $F(p) = d$ if $\frac{\partial F_i(p)}{\partial p_j} \leq 10^{-9}$ for all i. We examined each column of the Jacobian and found that there was at least one element in each column greater than 10^{-9}. This suggests that we could identify all of the parameters for each species using the data. Our results are summarized in figure 14 where we show the column norm of the Jacobian for the corresponding parameter.

This result also shows that $V. cholerae$ parameters are more easily distinguished than the $V. harveyi$ parameters and that $V. harveyi E_r$ is the hardest parameter to distinguish in the data. This may explain why E_r is around 10^2 fold larger than the other E_r in $V. harveyi$. This is somewhat expected given that the bulk of the $V. harveyi$ data were very similar (i.e. showing LuxR-mCherry fluorescence as a function of autoinducer) rather than the output from a variety of mutant strains.
Figure 13. Comparison between the data [29] (left) and our results (middle) showing the fold change in qrr-lux luminescence when Qrr are removed in a strain without the LuxO-Qrr feedback. The error (right) shows that the model agrees well with the data.

Figure 14. Comparison of the column norms of $DF(p)$ for each parameter in V. harveyi and V. cholerae. The parameter corresponding to the column of the Jacobian is shown on the vertical axis, while the norm of the column is on the horizontal axis.

To understand the parameter identification further, we computed the singular value decomposition of the Jacobian matrix to see what linear combination of parameters was associated with the smallest singular values and, hence, weak search directions. Overall, we found that the parameters associated with the smallest column norm of the Jacobian are also the main components of the right-singular vectors associated with the smallest singular values (see table 2). These results again show that $E_{q1}, E_{q2}, E_{q3},$ and E_{o3} are difficult to identify in the V. harveyi data whereas $E_{q1}, E_{q2}, E_{q3}, E_{q4}, E_{q5}, E_{q6}, \Gamma, K_{p3},$ and V_{q2} are difficult to identify for V. cholerae. These results show that both the V. harveyi and V. cholerae parameterizations will benefit from new experiments that target these specific parameters.

Up to now we have only used the Jacobian of the forward map. To account for the nonlinearity of the problem we also generated 250 different realizations of the data by randomly perturbing the data by at most 10% with a uniformly distributed random number. We then parameterized the model to each realization of the data by solving the problem in (26)
Figure 15. The standard deviation of each parameter in V. harveyi (left) and V. cholerae (right) relative to its corresponding value in table 1. We generated 250 new synthetic data by randomly perturbing the empirical data by at most 10%.

Table 2. Coefficients of the right-singular vectors associated with the small singular values of the Jacobian for V. harveyi and V. cholerae that are 10^{-7} smaller than the largest singular value. We ignored coefficients smaller than 0.1 in absolute value.

<table>
<thead>
<tr>
<th>V. harveyi</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{n-3}</td>
<td>σ_{n-2}</td>
<td>σ_{n-1}</td>
<td>σ_n</td>
</tr>
<tr>
<td>E_{r1}</td>
<td>1.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r2}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r3}</td>
<td>–</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>E_{r4}</td>
<td>–1.0</td>
<td>–0.1</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. cholerae</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{n-7}</td>
<td>σ_{n-6}</td>
<td>σ_{n-5}</td>
<td>σ_{n-4}</td>
</tr>
<tr>
<td>E_{r1}</td>
<td>–</td>
<td>–0.2</td>
<td>–0.5</td>
</tr>
<tr>
<td>E_{r2}</td>
<td>–0.1</td>
<td>1.0</td>
<td>–0.3</td>
</tr>
<tr>
<td>E_{r3}</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>E_{r4}</td>
<td>–</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>E_{r5}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r6}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r7}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r8}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r9}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E_{r10}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>K_{r1}</td>
<td>–1.0</td>
<td>–0.1</td>
<td>–</td>
</tr>
<tr>
<td>V_{r1}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

using the parameterization of each species in table 1 as the initial estimate. We divided the standard deviation of each parameter by its corresponding value in table 1 and present our results in figure 15. We see that most of the parameters change on an order similar to the order of the error in the data. Therefore, with the exception of a few parameters, the parameter estimation for both V. harveyi and V. cholerae is robust, in the sense that errors in the data give similar parameters. To quantify the uncertainty in the parameters given the measured data more rigorously we would need to do a Bayesian estimation (Monte Carlo analysis). Because the cost of evaluating the forward problem and the necessary number of realizations involved in a Monte Carlo analysis was prohibitive, such analysis was not carried out here.

Therefore, some parameters in our model cannot be reliably estimated from the experimental data that we consider. However, new experiments could be designed to specifically target these unresolved parameters and complete the model.

3.4. Species comparisons and qualitative predictions

Although the sRNA circuits in V. harveyi and V. cholerae are topologically equivalent, the parameterization for each species is different. Here we use our model to consider a series of experiments designed to identify qualitative differences in the responses of V. harveyi and V. cholerae and to understand the mechanisms responsible for these differences. Our results show that abundance of Hfq-Qrr and changes to LuxO via the LuxO-Qrr feedback drive changes in V. cholerae Qrr concentration at LCD. Conversely, Hfq-Qrr is less abundant and Qrr less sensitive to changes in target mRNA in V. harveyi. We, therefore, argue and show that dosage compensation is stronger in V. cholerae than in V. harveyi and that HapR is less sensitive than LuxR to changes in Qrr.

In what follows, we compare the fold change of qrr4 concentration with the fold change in qrr4 promoter activity between various strains. We measure qrr4 concentration by modeling a real-time PCR analysis experiment and measure qrr4 promoter activity by modeling the luminescence from a qrr4-lux construct. If the fold change in qrr4 concentration
is similar to the fold change in qrr4-lux luminescence, then the change in qrr4 concentration is driven by a change in its expression rather than a change in its degradation via Hfq. Therefore, by comparing the fold change in qrr4 concentration with the fold change in qrr4 promoter activity, we can understand the degree to which changes in Hfq affect qrr4 levels.

We begin by modifying the wild-type parameterization to create parameterizations for three different mutant strains: ΔLuxO-Qrr feedback (Eo = 0), ΔQrr feedback (Eo = KΔ = 0), and ΔQrr feedback—LuxR/HapR (Eo = En = KΔ = 0). For each strain including the wild-type strain, we compute the steady-state concentration of qrr4, luxR/hapR, and luxO at LCD (γ = γLCD). We use the steady-state concentration of luxR/hapR and luxO in (27) to measure the qrr4-lux luminescence for that particular strain. The qrr4-lux construct has the same mutations as the mutant strain (i.e. the model of the qrr4-lux construct for the ΔQrr feedback strain has KΔ = 0). Lastly, we compare the fold change in qrr4 concentration and in qrr4-lux luminescence between the strains indicated in table 3. The results identify how Hfq and Qrr feedback regulate the concentration of qrr4 in V. harveyi and V. cholerae at LCD.

The first row of table 3 shows that addition of LuxR/HapR decreases qrr4 in V. cholerae more than in V. harveyi because Hfq-Qrr is less abundant in V. cholerae than in V. harveyi in the absence of Qrr feedback. Note that qrr4-lux luminescence is constant because Qrr feedback is absent from both strains, so the change in qrr4 concentration is driven by the change in Hfq-Qrr. In a ΔQrr feedback—LuxR/HapR strain, there is no target mRNA for Qrr to repress, so all available Hfq is bound by Qrr (i.e. ∑n=1 En = 1). On reintroducing LuxR/HapR, Qrr unbinds Hfq to repress LuxR/HapR. This diminishes the concentration of Hfq-Qrr and qrr4 because more Hfq is available for it to bind. Therefore, Hfq-Qrr is less abundant in V. cholerae than in V. harveyi in the absence of Qrr feedback because qrr4 decreases more in V. cholerae than in V. harveyi.

The second row of table 3 shows that qrr4 increases when the LuxR/HapR-Qrr feedback is reintroduced because LuxR/HapR enhances qrr4 expression. This also shows that the concentration of Hfq-Qrr in the ΔLuxO-Qrr feedback strain is similar to that in a ΔQrr feedback strain because the change in qrr4-lux luminescence is similar to the change in qrr4 concentration. Therefore, although qrr4 increases more in V. harveyi than in V. cholerae, V. cholerae qrr4 remain less abundant than V. harveyi qrr4.

The last row of table 3 shows that qrr4 decreases more in V. cholerae than in V. harveyi when the LuxO-Qrr feedback is reintroduced because V. cholerae qrr4 is more sensitive to changes in LuxO. The LuxO-Qrr feedback represses LuxO, so we expect that qrr4 concentration will decrease as it does for both species. We see that the change in qrr4-lux luminescence is comparable between the two species, so the changes in qrr4 concentration arise from differences in the sensitivity of their respective qrr4 promoter to changes in LuxO. Given the significantly greater decrease in V. cholerae qrr4 relative to the V. harveyi qrr4 concentration, we, therefore, conclude that V. cholerae qrr4 is more sensitive to changes in LuxO than V. harveyi qrr4. When we compare the fold changes in qrr4 concentration between the second and third rows of table 3, we also conclude that V. harveyi and V. cholerae are approximately equally sensitive to changes in LuxR/HapR, but that V. cholerae qrr4 is significantly more sensitive than V. harveyi qrr4 to changes in LuxO. These results were similar across all Qrr in V. harveyi and V. cholerae.

The above results suggest that dosage compensation is driven by changes in LuxO only in V. cholerae and by changes in LuxR and/or LuxO in V. harveyi. To test this, we measured the fold change in qrr4, luxR/hapR, and luxO in V. harveyi and V. cholerae in a wild-type strain relative to a Δqrr1–3 strain. As expected, qrr4 concentration increases in the Δqrr1–3 strain for both species (see table 4). We also see that luxR and luxO increased significantly, whereas only hapR increased marginally. These results reflect the different sensitivities of the Qrr promoter to target mRNA. Dosage compensation of Qrr (i.e. the fold change in qrr4) arises when the expression of Qrr is sensitive to changes in target mRNA and when target mRNA is sensitive to changes in Qrr via Hfq. Given that V. cholerae qrr4 is significantly more sensitive to changes in LuxO than HapR, dosage compensation in V. cholerae is primarily driven by changes in LuxO. Similarly, V. harveyi Qrr are sensitive to changes in both LuxR and LuxO, so dosage compensation in V. harveyi is driven by changes in LuxR and LuxO.
4. Conclusion and outlook

Quorum sensing systems are gene regulatory mechanisms that enable bacteria to regulate their gene expression based on the local cell-population density. *V. harveyi* and *V. cholerae* are virulent marine bacteria that use a quorum sensing system to regulate expression of their respective virulence factors and, for *V. harveyi*, bioluminescence. Their quorum sensing systems are comprised of a phosphorelay cascade that integrates cell-population density information and an sRNA circuit that regulates expression of quorum sensing target genes [7]. Studies show that, even though their quorum sensing systems are topologically equivalent and homologous, HapR is more robust than LuxR to changes in Qrr [16, 17]. In this work, we formulate and parameterize a novel mathematical model of the *V. harveyi* and *V. cholerae* sRNA circuit to explain these kinetic differences.

We showed that our model and parameters are representative of the *V. harveyi* and *V. cholerae* sRNA circuit. We derived our model using known reaction kinetics and then fit the model to a variety of empirical data by solving a nonlinear least-squares problem. We found that the model agrees well with all of the available data and the data is sufficient to identify most of the parameters. The overall good correspondence between the model and data along with the general reliability of our parameterization implies that the current understanding of the biology is sufficient to explain a wide variety of behaviors. In particular, the details of how HapR enhances Qrr expression and the role of a third phosphorelay cascade in *V. cholerae* are unnecessary to understand its quorum sensing response.

We have shown that our model can be used to identify novel kinetic differences and their underlying mechanisms, whereas the topological and genetic similarities make this difficult to do so experimentally. We considered a set of experiments that compare the change in Qrr concentration with the change in luminescence from a qrr-lux construct. Comparing these measures allows us to determine the degree to which a change in Qrr levels is driven by a change in Hfq rather than a change in the Qrr promoter activity.

Svenningsen et al showed that Qrr feedback causes dosage compensation of Qrr and, therefore, argued that Qrr feedback is the mechanism underlying the robust repression of LuxR/HapR [29]. In view of our results, we argue that, if dosage compensation is the mechanism underlying redundancy and repression of LuxR/HapR is robust, then dosage compensation is driven by changes in LuxO via the LuxO-Qrr feedback. Dosage compensation requires that Qrr expression is sensitive to changes in target mRNA and that target mRNA expression is sensitive to changes in Qrr via Hfq-Qrr. If repression of LuxR/HapR is robust, then LuxR/HapR remains relatively constant to changes in Qrr, so LuxO is the only target mRNA remaining to change Qrr expression and, hence, drive dosage compensation. Therefore, if repression of LuxR/HapR is robust to changes in Qrr, then dosage compensation of Qrr is necessarily driven by changes in LuxO.

Our model can be used to design novel experiments to improve our parameterizations and to validate the model with independent data (for similar discussions see [37–40]). Our parameterizations will be improved by designing experiments that specifically target the parameters with the greatest uncertainty because, as we have shown, there is little benefit parameterizing the model to new realizations of the same data. To this end, we have provided the tools and framework to identify the least certain parameters and how new experiments may yield more information about those parameters. In particular, we have shown how to model a variety of different experiments with our model, which can be extended to model new experiments. The columns of the Jacobian of $F(p)$ and its SVD can then identify the parameters that will remain uncertain after the experiments. Lastly, the marginal benefit associated with each realization of the data can be assessed by computing the relative standard deviation of each parameter in the process described previously.

Our work supports the hypothesis that the *V. harveyi* and *V. cholerae* quorum sensing circuits are topologically equivalent, yet tuned differently to elicit different responses [7]. With the aid of our model, we identified how *V. harveyi* and *V. cholerae* are tuned differently. To our knowledge, this is the first detailed model of the *V. harveyi* and *V. cholerae* sRNA circuits with physiologically-based estimates of the parameters. As such, our parameters can be used in similar models and our model can help design more quantitative experiments in the future.

5. Abbreviations list

sRNA, small RNA; Qrr, quorum regulated RNA.

Acknowledgments

The authors thank Dr Bonnie Bassler, Dr Kim Tu, and Dr Sine Svenningsen for helpful discussions and for sharing their raw data. We also thank Dr Kelly M Winterberg and Dr Elizabeth D Copene for their helpful comments preparing this manuscript. The work of Dr James P Keener was partially supported by the National Science Foundation grant DMS-1122297 and the work of Dr Fernando Guevara Vasquez was partially supported by the National Science Foundation grant DMS-0934664.

References

[26] Shao Y and Bassler B L 2012 Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets Mol. Microbiol. 83 599–611
[29] Svenningsen S L, Tu K C and Bassler B L 2009 Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing EMBO J. 28 429–39
[33] Lin W, Kovacikova G and Skorupski K 2005 Requirements for vibrio cholerae HapR binding and transcriptional repression at the hapR promoter are distinct from those at the aphA promoter J. Bacteriol. 187 5013–9
[34] Svenningsen S L, Waters C M and Bassler B L 2008 A negative feedback loop involving small RNAs accelerates Vibrio cholerae transition out of quorum-sensing mode Genes Dev. 22 226–38