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Vertical oscillatory Neumann data

Consider the boundary data homogenization problem{
∂uε

∂t = ∆uε in B+
1

∂uε

∂x1
= f (u

ε

ε ) on B ′
1.

(Pε)

Here B+
1 := B1 ∩ {x1 > 0} is the right half-ball in Rd and

B ′
1 = B1 ∩ {x1 = 0}. The medium f is 1-periodic.

This is a simple model for an evolution of an interface in a
heterogeneous medium, especially we are thinking of contact lines
where the physical dimension is d + 1 = 3.
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Pinning phenomenon in d = 1

Normal slopes in the interval [min f ,max f ] are pinned.
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Pinning phenomenon in d = 1

So the limit uε → u as ε → 0 will solve

∂u

∂t
−∆u = 0 in B+

1

and
∂u

∂x1
∈ [min f ,max f ] on B ′

1.

But there is a bit more to it...
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Pinning phenomenon in d = 1

Advancing only at the maximal slope
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Pinning phenomenon in d = 1

Advancing only at the maximal slope
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Pinning phenomenon in d = 1

Receding only at the minimal slope
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Rate-independent Neumann condition in 1-d

In d = 1 the associated homogenized problem is the heat equation

∂u

∂t
= ∆u in B+

1

with the boundary condition on B ′
1

▶ (pinned slope) min f ≤ ∂u
∂x1

≤ max f

▶ (advancing slope condition) if ∂u
∂t > 0 then ∂u

∂x1
≥ max f

▶ (receding slope condition) if ∂u
∂t < 0 then ∂u

∂x1
≤ min f



Rate-independent Neumann condition 1-d

This problem can be written compactly, and in a way which
respects the energetic structure:{

∂u
∂t = ∆u in B+

1 × (0,∞)
∂u
∂x1

∈ ∂R(∂u∂t ) on B ′
1 × (0,∞),

(1)

where ∂R is the subdifferential of the one-homogeneous
dissipation rate functional

R(z) = (min f )min{z , 0}+ (max f )max{z , 0}.

R(z)



Energetic interpretation

Such flows arise in the theory of rate independent systems and
modelling of dry friction. For example the minimizing movements
scheme

v(k+1)τ = argmin

{ˆ
B+
1

|∇v |2 dx +
1

2τ
∥v − vkτ∥2L2(B+

1 )

· · ·+
ˆ
B′
1

R(v − vkτ ) dx
′
}

limits, as τ → 0, to the flow{
∂v
∂t = ∆v in B+

1 × (0,∞)
∂v
∂x1

∈ ∂R(∂v∂t ) on B ′
1 × (0,∞).

(2)

These energetic evolutions are (partially) motivated by the
homogenization description above, but only derived by a rigorous
limit of this type in d = 1.



Anisotropic pinning in higher dimensions

In dimensions d ≥ 2 the homogenization limit for this problem is in
fact much more singular.



Anisotropic pinning in higher dimensions

In dimensions d ≥ 2 the homogenization limit for this problem is in
fact much more singular{

∂u
∂t = ∆u in B+

1 × (0,∞)
∂u
∂x1

∈ ∂R(∂u∂t ;∇
′u) on B ′

1 × (0,∞).
(Phom)

The rate function now depends on the tangential gradient

R(z ; p′) =

{
⟨f ⟩ p′ ̸= 0

(min f )min{z , 0}+ (max f )max{z , 0} p′ = 0



Pinning interval

The rate function now depends on the tangential gradient

R(z ; p′) =

{
⟨f ⟩ p′ ̸= 0

(min f )min{z , 0}+ (max f )max{z , 0} p′ = 0

Plot of ∂R(0, p′), the pinning interval, as a function of p′:

⟨f ⟩

min f

max f



Intuitive description

As before the interior PDE is the heat equation

∂u

∂t
= ∆u in B+

1

with the boundary condition on B ′
1

▶ (pinned slope: non-laminar) If ∇′u ̸= 0 then ∂u
∂x1

= ⟨f ⟩.
▶ (pinned slope: laminar) If ∇′u = 0 then min f ≤ ∂u

∂x1
≤ max f

▶ (advancing slope condition) if ∂u
∂t > 0 then ∂u

∂x1
≥ ⟨f ⟩ and,

“somewhere on the flat part”, ∂u
∂x1

≥ max f

▶ (receding slope condition) similar to advancing condition



Main results

Homogenized problem{
∂u
∂t = ∆u in B+

1 × (0,∞)
∂u
∂x1

∈ ∂R(∂u∂t ;∇
′u) on B ′

1 × (0,∞).
(Phom)

Theorem (F. and Huang, 2025, arXiv)

Comparison principle holds for the problem (Phom).

Theorem (F. and Huang, 2025, arXiv)

Solutions uε of (Pε) with continuous boundary data g(x , t) on

∂B1 ∩Rd
+ converge locally uniformly on B+

1 × [0,∞) to the unique
solution u of (Phom).



Brief comment on literature

Some literature (incomplete sorry!):

▶ Closest work, by Caffarelli, Lee, and Mellet (CPAM, 2006)
studies heat propagation free boundary problem

∂tu −∆u = 0 in {u > 0}, |∇u| = f (x/ε) on ∂{u > 0}

and related reaction diffusion singular limits. Homogenization
only proved in d = 1 due to lack of sufficient barriers /
comparison in higher dimensions. Our work partially resolves
this issue, partially since the medium is still laminar.

▶ Other interface homogenization problems (i.e. curvature
flows, or Allen-Cahn-type) have also been addressed in higher
dimensions by taking advantage of laminar setting, but they
are not as closely related. Barles, Cesaroni, Novaga (SIMA,
2011), Gao and Kim (ARMA, 2019), Morfe (ARMA, 2022).



Outline of the proof of homogenization

Proof of homogenization follows a well-known paradigm in
nonlinear PDE theory using perturbed test functions (Evans, ‘92)
and the method of half-relaxed limits (Barles and Perthame, ‘87).

▶ Construction of plane-like solutions and pinning interval
(works for general f (x , u) periodic on Rd+1)

▶ Show that lim sup∗ uε and lim inf∗ u
ε are respectively USC

subsolution and LSC supersolution of limit problem

▶ Apply comparison principle for limit problem conclude local
uniform convergence of uε



Definition of viscosity solutions

An USC u(x , t) is a subsolution of (Phom) if:

▶ (local stability) In the viscosity sense

∂u

∂x1
(x0, t0) ≥

{
min f ∇′u(x0, t0) = 0

⟨f ⟩ else.

▶ (transversal advancing condition) In the viscosity sense

if
∂u

∂t
(x0, t0) > 0 then

∂u

∂x1
(x0, t0) ≥ ⟨f ⟩.

▶ (laminar advancing condition) If ϕ(x , t) crosses u from above
in some region U with strict ordering on the parabolic
boundary and if ∇′ϕ ≡ 0 in U, then

∂ϕ

∂x1
(x0, t0) ≥ max f .



Contact sets

Define the contact sets

C±(u) := {(x , t) ∈ B ′
1 × (0,∞) : ± ∂u

∂x1
> ⟨f ⟩}

these are open sets where u has zero tangential gradient.
Connected to thin obstacle problem.

C+(u)

C−(u)

x ′ ∈ B ′
1



Open questions

Probably do-able

▶ Similar comparison principle for heat propagation free
boundary problems.

The following are quite difficult, but interesting, open issues in my
opinion.

▶ Formal but no rigorous energetic interpretation of the limit
evolution, i.e. limit of minimizing movements scheme.

▶ General f (x , u) periodic on Rd+1. Issues both in the
construction of enough correctors, and in comparison for the
limit PDE.

▶ Random media.



Thanks for your attention!



Sketch of proof of comparison



Crossing location

Subsolution u crosses supersolution v from below for first time at
(x0, t0) on the Neumann boundary B ′

1. First derivative test plus a
perturbation argument to arrive at

∂u

∂x1
(x0, t0) <

∂v

∂x1
(x0, t0) and

∂u

∂t
(x0, t0) >

∂v

∂t
(x0, t0)

▶ (Case 1) (x0, t0) ̸∈ C−(u) ∪ C+(v)
▶ (Case 2) (x0, t0) ∈ C−(u) ∩ C+(v)
▶ (Case 3) (x0, t0) ∈ C−(u)∆C+(v)



Crossing location

Subsolution u crosses supersolution v from below for first time at
(x0, t0) on the Neumann boundary B ′

1. First derivative test plus a
perturbation argument to arrive at

∂u

∂x1
(x0, t0) <

∂v

∂x1
(x0, t0) and

∂u

∂t
(x0, t0) >

∂v

∂t
(x0, t0)

▶ (Case 1) (x0, t0) ̸∈ C−(u) ∪ C+(v)
▶ Then, by definition of contact sets,

∂u

∂x1
(x0, t0) ≥ ⟨f ⟩ ≥ ∂v

∂x1
(x0, t0),

contradicting first derivative test.

▶ (Case 2) (x0, t0) ∈ C−(u) ∩ C+(v)
▶ (Case 3) (x0, t0) ∈ C−(u)∆C+(v)



(Case 2) (x0, t0) ∈ C−(u) ∩ C+(v)

From perturbation argument and derivative tests either
∂u
∂t (x0, t0) > 0 or ∂v

∂t (x0, t0) < 0. Say ∂u
∂t (x0, t0) > 0, then apply:

▶ (transversal advancing condition) In the viscosity sense

if
∂u

∂t
(x0, t0) > 0 then

∂u

∂x1
(x0, t0) ≥ ⟨f ⟩.

But this contradicts (x0, t0) ∈ C−(x0, t0). Similarly if
∂v
∂t (x0, t0) < 0 apply the transversal receding condition of v .



(Case 3) (x0, t0) ∈ C−(u)∆C+(v)

Let’s say that (x0, t0) ∈ C+(v) \ C−(u). We can rule out or reduce
to a previous case. We will use

▶ (laminar advancing condition) If ϕ(x , t) crosses u from above
in some parabolic cylinder U × (s, t0] with U ⊂⊂ B1 and
strict ordering on the parabolic boundary and if ∇′ϕ ≡ 0, then

∂ϕ

∂x1
(x0, t0) ≥ max f .



(Case 3) (x0, t0) ∈ C−(u)∆C+(v)

Let’s say that (x0, t0) ∈ C+(v) \ C−(u). We can rule out or reduce
to a previous case. Proof by picture:

u

v

C+(v)

x ′ ∈ B ′
1

If ∂tv > 0 then can apply the laminar advancing condition, using v
as a “one-dimensional” test function. If ∂tv < 0 contradiction
similar to case 2.



(Case 3) (x0, t0) ∈ C−(u)∆C+(v)

Let’s say that (x0, t0) ∈ C+(v) \ C−(u). We can rule out or reduce
to a previous case. Proof by picture:

u

v

C+(v)

x ′ ∈ B ′
1

If there is no strict ordering on the edge of the facet can reduce to
either Case 1 or Case 2.


