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Capillary energy

Configuration of solid liquid and vapor (air), subsets of R¥*! = R3:

%4

Given distinct phases A, B € {S, L, V'} define the two-phase
interface

> s = OAN OB with associated energy density vap
Total interfacial energy — ignoring volume forces e.g. gravity —

E =vst|Xst| +vsv|Zsv] + v |Ziv]-

Disclaimer: energy computed inside of some bounded container



Capillary energy: PDE conditions
Total interfacial energy
E =st|Zst| +vsvIZsv] + v Zovl-
First variation (with volume constraint) gives PDE conditions
2yvELy = p on £y NSt
coslc = Jsv — st onlN:=905NnoLNoVv

YLv

contact angle f¢ along contact line I' equals the Young angle
defined by cosfy = % Pressure p is Lagrange multiplier for
volume constraint, k;y Is mean curvature.

Oc




Re-normalization

Since gy UX sy = 0S we can, up to changing energy by an
additive constant, consider instead

Er = ywvlZwvl + (vse = vsv) I Zsil-
By dividing through by ~;y, we can reduce to
E2 = |ZL\/| — C059y|ZSL|

where, again, cosfly := % is the Young contact angle.



A (partially) linearized model

In the regime of small contact angle and subgraphical liquid region
the capillary energy (partially) linearizes to another classic free
boundary model. The main results of the talk discussed later will
be for this (partially) linearized model.

Specifically, in this scenario, L = {0 < z < v(x)} for some
v:R? — [0,00). Note wetted set Y5, = {v > 0}.
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A partially linearized model

In the regime of small contact angle and subgraphical liquid region
the capillary energy linearizes to another classic free boundary
model. Rescaling v(x) = (tanfy)u(x)

E :/ \/1 +tan20y|Vu|2 — cosfy dx
Yo

1
m/ 14 ~tan?0y|Vu|> — cosfy dx
st 2

1 1-—
— ~tan?0y / |V“|2+2w
2 {u>0} tan? 6y

Energy in brackets is known as Alt-Caffarelli one-phase functional.



A partially linearized model

Alt-Caffarelli one-phase energy functional
T () :/|Vu|2 + Q%1 pysgy .

First variation gives a free boundary problem analogous to the
capillary problem, called the Bernoulli one-phase problem,

—Au=p in{u>0}
|Vul|=Q on d{u > 0}.

Pressure p > 0 is Lagrange multiplier for volume constraint or 0 if
we solve a Dirichlet problem instead.

Disclaimer: usually we are in a bounded container.



Classical capillary model: drops sitting on a flat surface

Only constant mean curvature surfaces with constant contact
angle to a planar surface are spherical caps. Even adding gravity
the shape is guaranteed to be axisymmetric.

Drops even on quite smooth surfaces often don't look like this.

[Wente '80]



Liquid drops on rough surfaces

I mm

Marzolin, Smith, Prentiss and Whitesides Adv. Mater. (1998)
Bico, Tordeaux and Quéré Euro. Phys. Lett. (2001)



Liquid drops on rough surface

Wikimedia Commons



Empirical discussion of pinning

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle 0 e,
only moves outward above the advancing angle 0,4,. There are
known as the dynamic contact angles. Here consider 0,ec = 5 in
an evaporating drop:



Empirical discussion of pinning

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle 0 e,
only moves outward above the advancing angle 0,4,. There are
known as the dynamic contact angles. Here consider 0,ec = 5 in
an evaporating drop:



Empirical discussion of pinning

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle 0 e,
only moves outward above the advancing angle 0,4,. There are
known as the dynamic contact angles. Here consider 0,ec = 5 in
an evaporating drop:



Empirical discussion of pinning

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle 0 e,
only moves outward above the advancing angle 0,4,. There are
known as the dynamic contact angles. Here consider 0,ec = 5 in
an evaporating drop:



Energy and dissipation

Alt-Caffarelli energy functional

T(u) = / Vul? + 1m0y d, (1)
U

augmented with a dissipation distance which (in concept)
measures the energy dissipated due to static friction as the wetted
region moves from Qg to Q;

Diss(Q0, 1) = 121 \ Q| + 12\ 4,

or write Diss(u, v) = Diss({uv > 0}, {v > 0}).

The coefficients py > 0 and p— € (0,1) can be viewed as the
friction forces per unit length of the contact line, respectively for
advancing and receding regimes.



Dirichlet driven quasi-static evolution
The evolution of the state u(t) € H(U) we consider is built on
the following hypotheses (first stated vaguely)

1. (Forcing) External forcing drives the system to evolve: e.g.
Dirichlet forcing on QU (our case) or varying volume
constraint.

2. (Local equilibrium) The time-scale of the variations in the
forcing is sufficiently slow that we can assume the system is
always in local equilibrium (balance of surface tensions and
frictional forces).

3. (Frictional dissipation) The energy dissipated due to friction
on an infinitesimal variation is determined by the dissipation
rate functional

R((0). V) = [ o Ve (V)05

p” Diss(2(0), Q(t))

t=0




Energy solutions

Definition
A measurable v : [0, T] — H(U) is a energy solution (E) if:
1. (Forcing) For all t € [0, T]: u(t) = F(t) on OU.
2. (Global stability) The solution u(t) € H(U) and satisfies for
all t € [0, T

J(u(t)) < J(J)+Diss(u(t), ) for all v € u(t)+HE(U).

3. (Energy dissipation inequality) For every 0 <ty <t; < T it
holds

J(u(to)) j(u(tl))Jr/t1 2F (t)P(t) dt > Diss(u(tg), u(ty)).

to

Here P(t) = P(u(t)) = [,y ag&t) dS is an associated pressure.
[DeSimone-Grunewald-Otto] and [Alberti-DeSimone]



Time incremental / minimizing movements scheme

A very natural way to generate energy solutions is by a time
incremental / minimizing movements evolution

uf € argmin {j(w) + Diss(u(’;*l, w):w e F(kd)+ H&(U)} .

Or, in more detail,
1. Given current state u(’;_l
2. Update F((k —1)0) — F(kd)

3. Re-minimize, i.e. is it now energetically favorable to move to a
new state paying the frictional cost of moving the contact line,

minimize J(w) + Diss(uf ™', w) over w € F(kd) + Hg(U).

4. repeat.



Minimizing movements limit

Using piecewise constant interpolation define, for all ¢t € [0, T],
us(t) ;== uf and Fs(t) = F(kd) if t e [kd,(k+ 1)0).

The time incremental scheme converges pointwise in time in the
limit § — 0 via a compactness idea introduced by Mainik and
Mielke (‘05) (Helly's selection theorem).

We will call such pointwise limits minimizing movements solutions.
Minimizing movements solutions are examples of energy solutions.



Energy solutions: PDE conditions

1.

2. (Global stability) The solution u(t) € H(U) and satisfies for
all t € [0, TJ:

J(u(t)) < J(u')+Diss(u(t), ) for all u’ € u(t)+Hg (V).



PDE conditions: stability

Global minimization of
J(u(t)) < J(d") + Diss(u(t), u) for all u’ € u(t) + Hg (V).
implies that u(t) solves the local stability conditions

Au=0 in {u>0}nU,
1—pu_ <|VuP<1+py ondf{u>0}nuU.

This is a typical first variation computation. So we are
strengthening local stability to global stability.



Energy solutions: PDE conditions

3. (Energy dissipation inequality) For every 0 <ty <t; < T it
holds

J(U(to))—J(U(tl))+/12F(t)P( ) dt > Diss(u(to), u(t1))-

to

Here P(t) = fau



PDE conditions: dynamic slope

Computing the time derivative directly and integrating by parts
d .
9 7(u(t)) :/ (1— [Vu?)V, dS +2F(t)P(1).
dt o9(t)

Differentiating energy dissipation balance

d .
ST =2FOPE = [ i (m)(Va)s + (Vo) dS.
o0(t)
Combining the above two identities we find

[ @ = [Va(Va)i + (V6 = L4 ) (Vi) dS =0,
a9(t)

Both terms in the above integral are non-negative by stability, and
so they must actually be zero pointwise.



Dynamic slope condition

Combining the above two identities we find
| = [Va(Vali + (V6 = 14 o) (V) dS =0,
oQ(t)

implying that u solves, almost everywhere on 0Q(t),
if V, >0 then |[Vul? =1+ puy

and
if V,, <0 then [Vul?=1—p_.

Here V/,, is the outward normal velocity of Q(t).



Local solution property

(Smooth) energy solutions u(t) on [0, T] satisfy the following local
laws:

1. (Local stability condition) For all t € [0, T] the function

u(t) € C(U) solves
Au(t) =0 in Q(t) and 1—p_ < |[Vu(t)]? < 14+pq on 9Q(t).
2. (Dynamic slope condition) u solves
VuP=14+ps if +V,>0 on 9Q(t)N U.

Here V), is the outward normal velocity of Q(t).



Jumps occur “as early as possible”




Properties of general energy solutions

Theorem (F., Kim, PoZar, preprint on arXiv)
Suppose u is an energy solution on [0, T]. Then

1. (Basic regularity properties) The states u(t) are uniformly
Lipschitz and non-degenerate and H9~1(0(t)) is uniformly
bounded in time. Also t — Q(t) is in BV([0, T]; L*) and u(t)
has left and right limits in uniform metric at every time,
denoted uy(t) and u,(t).

2. (Envelopes) The USC/LSC envelopes of u, called u* and u,
themselves solve (E).

3. (Dynamic slope condition a.e.) For all t € [0, T] the function
u(t) satisfies the stability condition (2) and satisfies (in terms
of u* and u,) the dynamic slope condition (2) at H9~*
almost every point of its free boundary 9Q(t) N U.



Obstacle solutions
Local stability conditions

{Au:O in {u>0}nU, 2

1—p_ <|VuP<1l+ps ond{u>0}nU.

Assume F changes monotonicity at most on a finite set Z C [0, T].

Definition B

We say that v : [0, T] x U — [0,00) is an obstacle solution (O) if
1. (Dirichlet forcing) For all t € [0, T]

u(t) = F(t) on AU. (3)

2. (Initial data) u(0) is a solution of (2).

3. (Obstacle condition) For every (s, t) N Z =), so that F is
monotone on [s, t], u(t) is the minimal supersolution of (2)
and (3) above u(s) when F is increasing on [s, t] (resp.
maximal subsolution below u(s) when F is decreasing).



Local solution property

Obstacle solutions u(t) on [0, T] satisfy the same local laws as
energy solutions:

1. (Local stability condition) For all t € [0, T] the function

u(t) € C(U) is a continuous viscosity solution of
Au(t)=0 in Q(t) and 1—p_ < |Vu(t)|?> < 14+p4 on 9Q(t).

2. (Dynamic slope condition) u is a (semicontinuous envelope)
viscosity solution on [0, T] x U of

VuP=1+ps if +£V,>0 on 9Q(t)N U.

Here V), is the outward normal velocity of Q(t).



Simulation: two annuli scenario

Scheme based on [Gibou et al ‘02], simulations by N. Pozar



Simulation: two annuli reversed




Simulation: de-pinning geometry




Simulation: two different annuli




Star-shaped geometry

Theorem (F., Kim, PoZar, preprint on arXiv)

Suppose that R\ U and Qg are strongly star-shaped and
bounded, Qg is C2, and F : [0, T] — (0, 00) is Lipschitz and only
changes monotonicity finitely many times. Let u be the unique
obstacle solution on [0, T]. Then

1. The profile u(t) is strongly star-shaped for each time. The
positivity set Q(t) and the profile u(t)|q(:) have the regularity

1
LG
2. If v(t) is another profile with the same forcing F(t) and also

satisfies the local stability and dynamic slope condition in the
weak (comparison) sense then v = u.

3. The solutions of the discrete-time minimizing scheme
converge uniformly to u(t) with a uniform rate that only
depends on F, py and d.



Origin of the regularity: one-phase obstacle problems

Vul? <14 pg
U

VuPP > 1—p- Vul =1+ py

Vul?=1—pu_

Expansion of e-flat solutions near the de-pinning boundary
u(x) = (1 %+ ps)Y?(x, £ ew(x) + o(e))y in By
where w solves the Signorini / thin obstacle problem:

Aw =0 in B, min{-0,w,w} =0 on Bj.
[Chang-Lara and Savin] and [Ferreri and Velichkov]



Signorini optimal regularity
Signorini problem optimal regularity is CL3 due to the special

solution
w(x1, x2) = Re((x1 + ix2)%/?)

which corresponds to an approximate solution of the Bernoulli
obstacle problem u(x) = (1 4 pu+)Y?(x2 + ew),.




Minimizing movements solutions in general geometry

In general geometry jumps occur and are a serious challenge.
Recall that minimizing movements solutions are pointwise in time
limits of the scheme

U5(tk) S M[U5(tk_1), F(tk)],
where
M|u, F] := argmin{J (w) + Diss(u, w) : w € H&(U) +F} (4

and t, € Py are in some sequence of §-width partitions Ps.



Jumps at a monotonicity change cause branching
non-uniqueness




Description of minimizing movements solutions: monotone
case

Theorem (Collins and F., forthcoming)

Suppose that F(t,x) is strictly monotone in t on [0, T]. To avoid
initial data that jumps immediately, we assume stability:

u(0) € M[u(0), F(0)]. Then M[u(0), F(t)] is a singleton except
for countably many times, and all minimizing movements solutions
u(t) satisfy

u(t) € M[u(0), F(t)] for t |0, T].

In other words, like in the case of obstacle solutions, the
minimizing movements scheme for monotone forcing is just an
(energetic analogue) of the Bernoulli obstacle problem with a
single obstacle and a continuous family of boundary data.



Description of minimizing movements solutions: piecewise
monotone case

Theorem (Collins and F., forthcoming)

Let 0 =1ty < --- <ty = T and suppose that F(t,x) is strictly
monotone in t on each [tj, tiy1]. To avoid initial data that jumps
immediately, we assume stability: u(ty) € M[u(ty), F(to)].

Then any sequence u(t;), chosen recursively by

u(t;) € Mlu(ti—1), F(t:)],

defines a minimizing movements solution at the intervening times
via

u(t) € Mlu(t;)), F(t)]  te (i, ti1)

This is a genuine definition of u, in the sense that all solutions
with the same u(t;) jump at the same times and agree up to value
at jumps. Conversely, all minimizing movements solutions have the
form (6).



Regularity of minimizing movements solutions

This uniqueness property reduces the evolution to a finite family of
Bernoulli obstacle problems with recursively defined obstacles. We
can then apply the regularity theory of Bernoulli obstacle problems
from Chang-Lara and Savin, and Ferreri and Velichkov to derive.

Theorem (Collins and F., forthcoming)

Suppose that d =2 and F : [0, T] — C*(0U) is piecewise

monotone in t, and u is a minimizing movements solution on
1

[0, T]. Then ue LCYha.

In higher dimensions Bernoulli minimizers may have singularities so
the statement is more complicated.



Future directions

e Uniqueness of energy solutions in star-shaped case? Does the
dynamic slope condition hold everywhere instead of almost
everywhere?

e Connection between obstacle solutions and balanced viscosity
solutions.

e Volume constraint case.

e Derivation by stochastic homogenization.

e Is there an energetic formulation in the case of anisotropic
pinning interval? Such problems naturally arise from periodic
homogenization, but the induced dissipation rate functional
does not seem to be associated with any “good” global
dissipation distance.



Thanks for your attention!



