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Capillary energy

Configuration of solid liquid and vapor (air), subsets of Rd+1 = R3:
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Given distinct phases A,B ∈ {S , L,V } define the two-phase
interface

ΣAB = ∂A ∩ ∂B with associated energy density γAB

Total interfacial energy – ignoring volume forces e.g. gravity –

E = γSL|ΣSL|+ γSV |ΣSV |+ γLV |ΣLV |.
Disclaimer: energy computed inside of some bounded container



Capillary energy: PDE conditions
Total interfacial energy

E = γSL|ΣSL|+ γSV |ΣSV |+ γLV |ΣLV |.
First variation (with volume constraint) gives PDE conditions2γLVκLV = p on ΣLV ∩ S∁

cos θC =
γSV − γSL

γLV
on Γ := ∂S ∩ ∂L ∩ ∂V

contact angle θC along contact line Γ equals the Young angle
defined by cos θY := γSV−γSL

γLV
. Pressure p is Lagrange multiplier for

volume constraint, κLV is mean curvature.
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Re-normalization

Since ΣSL ∪ ΣSV = ∂S we can, up to changing energy by an
additive constant, consider instead

E1 = γLV |ΣLV |+ (γSL − γSV )|ΣSL|.

By dividing through by γLV we can reduce to

E2 = |ΣLV | − cos θY |ΣSL|

where, again, cos θY := γSV−γSL
γLV

is the Young contact angle.



A (partially) linearized model

In the regime of small contact angle and subgraphical liquid region
the capillary energy (partially) linearizes to another classic free
boundary model. The main results of the talk discussed later will
be for this (partially) linearized model.

Specifically, in this scenario, L = {0 ≤ z ≤ v(x)} for some
v : R2 → [0,∞). Note wetted set ΣSL = {v > 0}.

x ∈ R2
L

Vz graph(v)

S
ΣSL

E =

ˆ
ΣSL

√
1 + |∇v |2 − cos θY dH2(x)



A partially linearized model

In the regime of small contact angle and subgraphical liquid region
the capillary energy linearizes to another classic free boundary
model. Rescaling v(x) = (tan θY )u(x)

E =

ˆ
ΣSL

√
1 + tan2 θY |∇u|2 − cos θY dx

≈
ˆ
ΣSL

1 +
1

2
tan2 θY |∇u|2 − cos θY dx

=
1

2
tan2 θY

[ˆ
{u>0}

|∇u|2 + 2
(1− cos θY )

tan2 θY
dx

]

Energy in brackets is known as Alt-Caffarelli one-phase functional.



A partially linearized model

Alt-Caffarelli one-phase energy functional

J (u) =

ˆ
|∇u|2 + Q21{u>0} dx .

First variation gives a free boundary problem analogous to the
capillary problem, called the Bernoulli one-phase problem,{

−∆u = p in {u > 0}
|∇u| = Q on ∂{u > 0}.

Pressure p > 0 is Lagrange multiplier for volume constraint or 0 if
we solve a Dirichlet problem instead.

Disclaimer: usually we are in a bounded container.



Classical capillary model: drops sitting on a flat surface

Only constant mean curvature surfaces with constant contact
angle to a planar surface are spherical caps. Even adding gravity
the shape is guaranteed to be axisymmetric.
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Drops even on quite smooth surfaces often don’t look like this.

[Wente ‘80]



Liquid drops on rough surfaces
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Fig. 1 Fig. 2

Fig. 1 – Rough surface in contact with a reservoir. A small displacement dz of the imbibition front
of height z is considered.

Fig. 2 – Microstructured surface with regular micronic spikes used for the experiment. Surface
parameters can accurately be estimated from the picture. We get r = 1.3 and φS = 5%.

where γSL, γSV and γ are, respectively, the solid/liquid, solid/vapor and liquid/vapor inter-
facial tensions. The first term in eq. (1) is related to the replacement of a dry solid by a wet
one. It is proportional to the wetted area, i.e. to the factor (r − φS). The second term is
less usual in impregnation processes: it is related to the creation of a liquid/vapor interface
associated with the film propagation. Note that gravity was ignored in (1), which corresponds
to textures of small size (much smaller than the capillary length) and small heights. The
gravity-limited case is treated in the appendix.

The liquid should rise if dE is negative. Introducing Young’s law (γ cos θ = γSV − γSL)
gives, as a condition for imbibition,

θ < θc with cos θc =
1 − φS

r − φS
, (2)

where θ is the equilibrium contact angle of the liquid on an ideal flat surface of the same
chemical composition.

Criterion (2) (logically) appears as intermediate between wetting and wicking criteria. For
a flat surface (r → 1), the surface is wetted if the contact angle reaches 0 (θc = 0), while
a porous medium (r → ∞) is invaded for liquids having a contact angle smaller than π/2
(θc = π/2). More generally, since we have r > 1 and φS < 1, eq. (2) always defines a critical
contact angle intermediate between 0 and π/2. Thus, the ability of a textured surface to drive
a liquid can be tuned by its surface design. For a given surface composition and liquid (i.e.,
fixing θ), the nature of the texture (which determines r and φS) decides if condition (2) is
satisfied, or not. In a general case (disordered surfaces), the parameters r and φS are deeply
intricate (and φS may depend on θ). However, the use of micropatterned surfaces allows to
decouple these two parameters, and even to treat them as independent, which is now discussed
using such a model surface.
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Fig. 3 Fig. 4

Fig. 3 – Pinning of the contact lines on the corners of the crenellations which ensures a constant value
for the surface fraction φS.

Fig. 4 – Metastable square drop of ethyl malonate (θ = 32◦) on the structured surface. The contact
line follows the directions of the rows.

Surfaces with a controlled design. – Figure 2 shows a surface achieved by Marzolin by
casting a sol-gel silicate on a silicon wafer [8]. It consists in spikes (typical size one micron)
which are regularly spaced. We used this model surface to test a possible invasion of the
texture by various liquids.

For having a partial wetting with oils, octadecyl trichlorosilanes were grafted on the sample.
A planar silicon wafer where the same molecules were grafted was used as a reference surface,
allowing us to measure the advancing contact angle θ. The measurements were done optically
with an accuracy of 5◦ and the contact angle hysteresis on these surfaces was found to be
small (< 10◦).

Then, experiments similar to the one sketched in fig. 1 were realized with different liquids
(i.e. various contact angles). The sample was partially immersed in a reservoir of liquid, and
the existence of an invasion (or not) was monitored, together with the dynamics of the rise.
The film was easily detected thanks to the darkening it induced on the sample. Our major
result is the observation of an invading film climbing up to the top of the sample (typically
one centimeter) for liquids having a small contact angle. A threshold in contact angle was
indeed observed, above which the invasion was not observed. The value of this threshold was
found to be between 30◦ and 35◦.

The surface roughness r is easy to estimate from SEM (scanning electronic microscopy)
images and is r = 1.30 (±0.05). The solid fraction φS on such a surface should be independent
of the contact angle θ, because of the possibility for the contact lines to pin on the corners of
the crenellations (fig. 3) [9]. If the angle is larger than 0, the top of the spikes remains dry;
in the same time, an angle smaller than π/2 makes favorable the filling of the texture by the
liquid. In such conditions, the parameter φS is just the ratio of the area of the top of the
spikes over the total area of the sample, which is 5% here [10]. Then, relation (2) predicts a
value of θc equal to 40◦.

This value is close to the observed one—but we consider as significant the small difference
between both. Criterion (2) is thermodynamic, and metastable states can also be achieved
because there are activation barriers to jump for the contact line. This is related to the
disconnected nature of the texture: if we easily understand how a wetting liquid can invade
a continuous groove in a solid [11], it is less obvious to figure out how the contact line pinned
on a row of spikes can “know” that there is another row ahead. (Thus, hysteresis can occur:

Marzolin, Smith, Prentiss and Whitesides Adv. Mater. (1998)
Bico, Tordeaux and Quéré Euro. Phys. Lett. (2001)



Liquid drops on rough surface
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Empirical discussion of pinning

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle θrec ,
only moves outward above the advancing angle θadv . There are
known as the dynamic contact angles. Here consider θrec = π

2 in
an evaporating drop:
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Energy and dissipation

Alt-Caffarelli energy functional

J (u) =

ˆ
U
|∇u|2 + 1{u>0} dx , (1)

augmented with a dissipation distance which (in concept)
measures the energy dissipated due to static friction as the wetted
region moves from Ω0 to Ω1

Diss(Ω0,Ω1) = µ+|Ω1 \ Ω0|+ µ−|Ω0 \ Ω1|,

or write Diss(u, v) = Diss({u > 0}, {v > 0}).
The coefficients µ+ > 0 and µ− ∈ (0, 1) can be viewed as the
friction forces per unit length of the contact line, respectively for
advancing and receding regimes.



Dirichlet driven quasi-static evolution
The evolution of the state u(t) ∈ H1(U) we consider is built on
the following hypotheses (first stated vaguely)

1. (Forcing) External forcing drives the system to evolve: e.g.
Dirichlet forcing on ∂U (our case) or varying volume
constraint.

2. (Local equilibrium) The time-scale of the variations in the
forcing is sufficiently slow that we can assume the system is
always in local equilibrium (balance of surface tensions and
frictional forces).

3. (Frictional dissipation) The energy dissipated due to friction
on an infinitesimal variation is determined by the dissipation
rate functional

R(Ω(0),V ) :=

ˆ
∂Ω(0)

µ+(Vn)+ + µ−(Vn)− dS

=
d

dt

∣∣∣∣
t=0

Diss(Ω(0),Ω(t))



Energy solutions

Definition
A measurable u : [0,T ] → H1(U) is a energy solution (E) if:

1. (Forcing) For all t ∈ [0,T ]: u(t) = F (t) on ∂U.

2. (Global stability) The solution u(t) ∈ H1(U) and satisfies for
all t ∈ [0,T ]:

J (u(t)) ≤ J (u′)+Diss(u(t), u′) for all u′ ∈ u(t)+H1
0 (U).

3. (Energy dissipation inequality) For every 0 ≤ t0 ≤ t1 ≤ T it
holds

J (u(t0))−J (u(t1)) +

ˆ t1

t0

2Ḟ (t)P(t) dt ≥ Diss(u(t0), u(t1)).

Here P(t) = P(u(t)) =
´
∂U

∂u(t)
∂n dS is an associated pressure.

[DeSimone-Grunewald-Otto] and [Alberti-DeSimone]



Time incremental / minimizing movements scheme

A very natural way to generate energy solutions is by a time
incremental / minimizing movements evolution

ukδ ∈ argmin
{
J (w) + Diss(uk−1

δ ,w) : w ∈ F (kδ) + H1
0 (U)

}
.

Or, in more detail,

1. Given current state uk−1
δ

2. Update F ((k − 1)δ) 7→ F (kδ)

3. Re-minimize, i.e. is it now energetically favorable to move to a
new state paying the frictional cost of moving the contact line,

minimize J (w) + Diss(uk−1
δ ,w) over w ∈ F (kδ) + H1

0 (U).

4. repeat.



Minimizing movements limit

Using piecewise constant interpolation define, for all t ∈ [0,T ],

uδ(t) := ukδ and Fδ(t) = F (kδ) if t ∈ [kδ, (k + 1)δ).

The time incremental scheme converges pointwise in time in the
limit δ → 0 via a compactness idea introduced by Mainik and
Mielke (‘05) (Helly’s selection theorem).

We will call such pointwise limits minimizing movements solutions.
Minimizing movements solutions are examples of energy solutions.



Energy solutions: PDE conditions

A measurable u : [0,T ] → H1(U) is a energy solution (E) if:

1. (Forcing) For all t ∈ [0,T ]: u(t) = F (t) on ∂U.

2. (Global stability) The solution u(t) ∈ H1(U) and satisfies for
all t ∈ [0,T ]:

J (u(t)) ≤ J (u′)+Diss(u(t), u′) for all u′ ∈ u(t)+H1
0 (U).

3. (Energy dissipation inequality) For every 0 ≤ t0 ≤ t1 ≤ T it
holds

J (u(t0))−J (u(t1)) +

ˆ t1

t0

2Ḟ (t)P(t) dt ≥ Diss(u(t0), u(t1)).

Here P(t) = P(u(t)) =
´
∂U

∂u(t)
∂n dS is an associated pressure.



PDE conditions: stability

Global minimization of

J (u(t)) ≤ J (u′) + Diss(u(t), u′) for all u′ ∈ u(t) + H1
0 (U).

implies that u(t) solves the local stability conditions{
∆u = 0 in {u > 0} ∩ U,

1− µ− ≤ |∇u|2 ≤ 1 + µ+ on ∂{u > 0} ∩ U.

This is a typical first variation computation. So we are
strengthening local stability to global stability.
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PDE conditions: dynamic slope

Computing the time derivative directly and integrating by parts

d

dt
J (u(t)) =

ˆ
∂Ω(t)

(1− |∇u|2)Vn dS + 2Ḟ (t)P(t).

Differentiating energy dissipation balance

d

dt
J (u(t)) = 2Ḟ (t)P(t)−

ˆ
∂Ω(t)

µ+(n)(Vn)+ + µ−(n)(Vn)− dS .

Combining the above two identities we find

ˆ
∂Ω(t)

(1 + µ+ − |∇u|2)(Vn)+ + (|∇u|2 − 1 + µ−)(Vn)− dS = 0.

Both terms in the above integral are non-negative by stability, and
so they must actually be zero pointwise.



Dynamic slope condition

Combining the above two identities we find

ˆ
∂Ω(t)

(1 + µ+ − |∇u|2)(Vn)+ + (|∇u|2 − 1 + µ−)(Vn)− dS = 0.

implying that u solves, almost everywhere on ∂Ω(t),

if Vn > 0 then |∇u|2 = 1 + µ+

and
if Vn < 0 then |∇u|2 = 1− µ−.

Here Vn is the outward normal velocity of Ω(t).



Local solution property

(Smooth) energy solutions u(t) on [0,T ] satisfy the following local
laws:

1. (Local stability condition) For all t ∈ [0,T ] the function
u(t) ∈ C (U) solves

∆u(t) = 0 in Ω(t) and 1−µ− ≤ |∇u(t)|2 ≤ 1+µ+ on ∂Ω(t).

2. (Dynamic slope condition) u solves

|∇u|2 = 1± µ± if ± Vn > 0 on ∂Ω(t) ∩ U.

Here Vn is the outward normal velocity of Ω(t).



Jumps occur “as early as possible”



Properties of general energy solutions

Theorem (F., Kim, Požár, preprint on arXiv)

Suppose u is an energy solution on [0,T ]. Then

1. (Basic regularity properties) The states u(t) are uniformly
Lipschitz and non-degenerate and Hd−1(∂Ω(t)) is uniformly
bounded in time. Also t 7→ Ω(t) is in BV ([0,T ]; L1) and u(t)
has left and right limits in uniform metric at every time,
denoted uℓ(t) and ur (t).

2. (Envelopes) The USC/LSC envelopes of u, called u∗ and u∗,
themselves solve (E).

3. (Dynamic slope condition a.e.) For all t ∈ [0,T ] the function
u(t) satisfies the stability condition (2) and satisfies (in terms
of u∗ and u∗) the dynamic slope condition (2) at Hd−1

almost every point of its free boundary ∂Ω(t) ∩ U.



Obstacle solutions
Local stability conditions{

∆u = 0 in {u > 0} ∩ U,

1− µ− ≤ |∇u|2 ≤ 1 + µ+ on ∂{u > 0} ∩ U.
(2)

Assume F changes monotonicity at most on a finite set Z ⊂ [0,T ].

Definition
We say that u : [0,T ]× U → [0,∞) is an obstacle solution (O) if

1. (Dirichlet forcing) For all t ∈ [0,T ]

u(t) = F (t) on ∂U. (3)

2. (Initial data) u(0) is a solution of (2).

3. (Obstacle condition) For every (s, t) ∩ Z = ∅, so that F is
monotone on [s, t], u(t) is the minimal supersolution of (2)
and (3) above u(s) when F is increasing on [s, t] (resp.
maximal subsolution below u(s) when F is decreasing).



Local solution property

Obstacle solutions u(t) on [0,T ] satisfy the same local laws as
energy solutions:

1. (Local stability condition) For all t ∈ [0,T ] the function
u(t) ∈ C (U) is a continuous viscosity solution of

∆u(t) = 0 in Ω(t) and 1−µ− ≤ |∇u(t)|2 ≤ 1+µ+ on ∂Ω(t).

2. (Dynamic slope condition) u is a (semicontinuous envelope)
viscosity solution on [0,T ]× U of

|∇u|2 = 1± µ± if ± Vn > 0 on ∂Ω(t) ∩ U.

Here Vn is the outward normal velocity of Ω(t).



Simulation: two annuli scenario

Scheme based on [Gibou et al ‘02], simulations by N. Požár



Simulation: two annuli reversed



Simulation: de-pinning geometry



Simulation: two different annuli



Star-shaped geometry

Theorem (F., Kim, Požár, preprint on arXiv)

Suppose that Rd \ U and Ω0 are strongly star-shaped and
bounded, Ω0 is C 2, and F : [0,T ] → (0,∞) is Lipschitz and only
changes monotonicity finitely many times. Let u be the unique
obstacle solution on [0,T ]. Then

1. The profile u(t) is strongly star-shaped for each time. The
positivity set Ω(t) and the profile u(t)|Ω(t) have the regularity

L∞t C
1, 1

2
−

x .

2. If v(t) is another profile with the same forcing F (t) and also
satisfies the local stability and dynamic slope condition in the
weak (comparison) sense then v ≡ u.

3. The solutions of the discrete-time minimizing scheme
converge uniformly to u(t) with a uniform rate that only
depends on F , µ± and d.



Origin of the regularity: one-phase obstacle problems

{u = 0}

|∇u|2 = 1− µ−

|∇u|2 ≥ 1− µ−

O
{u = 0}

|∇u|2 ≤ 1 + µ+

|∇u|2 = 1 + µ+

O

Expansion of ε-flat solutions near the de-pinning boundary

u(x) = (1± µ±)
1/2(xn ± εw(x) + o(ε))+ in B1

where w solves the Signorini / thin obstacle problem:

∆w = 0 in B+
1 , min{−∂xnw ,w} = 0 on B ′

1.

[Chang-Lara and Savin] and [Ferreri and Velichkov]



Signorini optimal regularity
Signorini problem optimal regularity is C 1, 1

2 due to the special
solution

w(x1, x2) = Re((x1 + ix2)
3/2)

which corresponds to an approximate solution of the Bernoulli
obstacle problem u(x) = (1± µ±)

1/2(x2 + εw)+.



Minimizing movements solutions in general geometry

In general geometry jumps occur and are a serious challenge.
Recall that minimizing movements solutions are pointwise in time
limits of the scheme

uδ(tk) ∈ M[uδ(tk−1),F (tk)],

where

M[u,F ] := argmin{J (w) + Diss(u,w) : w ∈ H1
0 (U) + F} (4)

and tk ∈ Pδ are in some sequence of δ-width partitions Pδ.



Jumps at a monotonicity change cause branching
non-uniqueness



Description of minimizing movements solutions: monotone
case

Theorem (Collins and F., forthcoming)

Suppose that F (t, x) is strictly monotone in t on [0,T ]. To avoid
initial data that jumps immediately, we assume stability:
u(0) ∈ M[u(0),F (0)]. Then M[u(0),F (t)] is a singleton except
for countably many times, and all minimizing movements solutions
u(t) satisfy

u(t) ∈ M[u(0),F (t)] for t ∈ [0,T ].

In other words, like in the case of obstacle solutions, the
minimizing movements scheme for monotone forcing is just an
(energetic analogue) of the Bernoulli obstacle problem with a
single obstacle and a continuous family of boundary data.



Description of minimizing movements solutions: piecewise
monotone case

Theorem (Collins and F., forthcoming)

Let 0 = t0 < · · · < tN = T and suppose that F (t, x) is strictly
monotone in t on each [tj , tj+1]. To avoid initial data that jumps
immediately, we assume stability: u(t0) ∈ M[u(t0),F (t0)].
Then any sequence u(ti ), chosen recursively by

u(ti ) ∈ M[u(ti−1),F (ti )],

defines a minimizing movements solution at the intervening times
via

u(t) ∈ M[u(ti ),F (t)] t ∈ (ti , ti−1)

This is a genuine definition of u, in the sense that all solutions
with the same u(ti ) jump at the same times and agree up to value
at jumps. Conversely, all minimizing movements solutions have the
form (6).



Regularity of minimizing movements solutions

This uniqueness property reduces the evolution to a finite family of
Bernoulli obstacle problems with recursively defined obstacles. We
can then apply the regularity theory of Bernoulli obstacle problems
from Chang-Lara and Savin, and Ferreri and Velichkov to derive.

Theorem (Collins and F., forthcoming)

Suppose that d = 2 and F : [0,T ] → C∞(∂U) is piecewise
monotone in t, and u is a minimizing movements solution on

[0,T ]. Then u ∈ L∞t C 1, 1
2
−.

In higher dimensions Bernoulli minimizers may have singularities so
the statement is more complicated.



Future directions

• Uniqueness of energy solutions in star-shaped case? Does the
dynamic slope condition hold everywhere instead of almost
everywhere?

• Connection between obstacle solutions and balanced viscosity
solutions.

• Volume constraint case.

• Derivation by stochastic homogenization.

• Is there an energetic formulation in the case of anisotropic
pinning interval? Such problems naturally arise from periodic
homogenization, but the induced dissipation rate functional
does not seem to be associated with any “good” global
dissipation distance.



Thanks for your attention!


