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One- and two-phase problems

Alt-Caffarelli energy functional

J0(u;U) =

ˆ
U
|∇u|2 + q2+1{u>0} + q2−1{u≤0} dx .

Assume q2+ − q2− = 1 > 0, the case q− = 0 is the one-phase
functional.

Local minimizers solve the Bernoulli free boundary problem{
−∆u = 0 in {|u| > 0} ∩ U

|∇u+|2 − |∇u−|2 = q2+ − q2− on ∂{u > 0} ∩ U.

Regularity theory of the free boundary has been a popular topic
since foundational works of Alt, Caffarelli and Friedman.



Periodic medium

Alt-Caffarelli energy functional in heterogeneous medium

Jε(u;U) =

ˆ
U
a( xε )∇u · ∇u + Q+(

x
ε )

21{u>0} + Q−(
x
ε )

21{u≤0} dx .

Media a(y) symmetric and Q(y) are elliptic and Zd -periodic. It
will be convenient to normalize and assume that the homogenized
matrix satisfies ā = id.

Local minimizers solve a Bernoulli free boundary problem{
−∇ · (a( xε )∇u) = 0 in {|u| > 0} ∩ U

|∇au+|2 − |∇au−|2 = Q2
+(

x
ε )− Q2

−(
x
ε ) on ∂{u > 0} ∩ U.

Here |∇au| = (∇u · a( xε )∇u)1/2.



Some visual stimulation

Figure: A particularly nice one-phase minimizer in periodic media might
look like this.



Free boundary regularity

Much is known on the regularity theory for minimizers of the
homogeneous one-phase functional

J0(u;U) =

ˆ
U
|∇u|2 + q2+1{u>0} + q2−1{u≤0} dx .

Like for minimal surfaces, regularity in low dimensions or flat
solutions, singularities occur in higher dimensions for the one-phase
problem.



Almost minimality

Definition
Say that u is an (R0, β)-almost minimizer of J0 in a domain U if,
for any Br ⊂ U, and any v ∈ u + H1

0 (Br )

J0(u;Br ) ≤ J0(v ;Br ) + (r/R0)
β|Br |.

Almost minimizers don’t directly solve a PDE, but they generally
turn out to have similar regularity theory to minimizers (better
than just general PDE solutions). This generality is useful in
constrained optimization and shape optimization problems.



Almost minimality

Definition
Say that u is an (R0, β)-almost minimizer of J0 in a domain U if,
for any Br ⊂ U, and any v ∈ u + H1

0 (Br )

J0(u;Br ) ≤ J0(v ;Br ) + (r/R0)
β|Br |.

Homogenization gives a kind of reversed almost minimality
property: if u minimizes Jε over u + H1

0 (Br )

J0(ūε;Br ) ≤ J0(v ;Br ) + C (ε/r)γ |Br | for all v ∈ u + H1
0 (Br )

where J0 is the homogenized functional associated with Jε.



Free boundary regularity: heterogeneous medium –
one-phase case

We will exploit ideas from the almost minimizer theory and from
quantitative homogenization theory. For the periodic medium
functional

Jε(u;U) =

ˆ
U
a( xε )∇u · ∇u + Q( xε )

21{u>0} dx .

we show a flat implies regular result:

·mi



Free boundary regularity: heterogeneous medium –
one-phase case

·mi
Theorem (F., Ars Inveniendi Analytica ‘23)

There is δ0 > 0 sufficiently small so that if uε minimizes Jε in B1

and is δ0-flat in B1, i.e. if

(xd − δ0)+ ≤ uε(x) ≤ (xd + δ0)+ in B1

then {uε > 0} is distance Cε from a 1-Lipschitz subgraph in B1/2.



Free boundary regularity: heterogeneous medium –
one-phase case

·mi
Theorem (F., Ars Inveniendi Analytica ‘23)

There is δ0 > 0 sufficiently small so that if uε minimizes Jε in B1

and is δ0-flat in B1, i.e. if

(xd − δ0)+ ≤ uε(x) ≤ (xd + δ0)+ in B1

then {uε > 0} is distance Cηε from a η-Lipschitz subgraph in B1/2.



Two-phase problem

The two-phase problem{
−∆u = 0 in {|u| > 0} ∩ U

|∇u+|2 − |∇u−|2 = q2+ − q2− on ∂{u > 0} ∩ U

two-plane solutions denoted using

Φα(t) =
√

q2+ − q2− + α2max{t, 0}+ αmin{t, 0}

leading to solutions

Φα(x · e) for all α ≥ 0, e ∈ Sd−1.



Two-phase problem

Two-plane solution

Φα(xd) =
√

1 + α2max{xd , 0}+ αmin{xd , 0}

▶ Unlike in the one-phase case (where α = 0) the slope at the
free boundary may be arbitrarily large. This makes the
Lipschitz estimate a significant challenge. Most approaches in
the literature go via the Alt-Caffarelli-Friedman (ACF)
monotonicity formula.

▶ On the other hand, again by the ACF formula, there are no
singular two-phase free boundary points. And the only global
homogeneous minimizers with a nontrivial negative phase are
two-plane solutions.

Alt-Caffarelli-Friedman ‘84



Results on the two-phase problem

We have not been able to adapt monotonicity formula techniques
to the homogenization problem. Instead we follow an idea of De
Silva and Savin (‘19) proving flat-implies-smooth first, and then
inheriting regularity from the a-harmonic replacement in the large
slope case to prove a Lipschitz estimate.

Theorem (Abedin and F., preprint on arXiv May 2025)

Suppose that u minimizes Jε over u + H1
0 (B1) then

∥∇u∥L2(Br )
≤ C (1 + ∥∇u∥L2(B1)

) for all ε ≤ r ≤ 1.

Here ∥f ∥L2(Br )
:= ( 1

|Br |
´
Br

|f |2 dx)1/2 is the averaged L2 norm.



Homogenization and large scale regularity:
background



Periodic homogenization

Divergence form elliptic equations with periodic coefficients behave
well at large scales, this is a central idea of homogenization. For
example the solution of a Dirichlet problem in a large domain{

−∇ · (a( xε )∇uε) = 0 in U

uε = g(x) on ∂U

is well approximated by a certain constant coefficient homogenized
equation {

−∇ · (ā∇ū) = 0 in U

ū = g(x) on ∂U

when ε ≪ 1, U is a fixed regular domain, and g is a fixed regular
boundary condition.



Corrector problem
The effective matrix ā is determined by a corrector problem, for
each p ∈ Rd there is a corrector χp(x) which is a mean zero
periodic function solving

−∇ · (a(x)(p +∇χp(x))) = 0 in Rd .

Essentially the corrector “corrects” the linear function so that
p · x + χp(x) is a-harmonic. Note that χp is actually linear in p.

Figure: Left: linear function p · x , right: corrected linear function
p · x + εχp(x/ε)



Effective matrix

The effective or homogenized coefficient matrix ā is determined by
the relation

āp = ⟨a(p +∇χp)⟩

for a vector p ∈ Rd . Assume that ā = id for the rest of the talk for
convenience.



Asymptotic expansion and large scale regularity

Formally speaking if uε is aε-harmonic in a ball B1(0) (for
example) it has an asymptotic expansion

uε(x) = ū(x) + εχ∇ū(x)(
x
ε ) + O(ε2)

where ū is the ā-harmonic replacement in B1(0).



Asymptotic expansion and large scale regularity

uε(x) = ū(x) + εχ∇ū(x)(
x
ε ) + O(ε2)

and so also expect

∇uε(x) = ∇ū(x) +∇χ∇ū(x)(
x
ε ) + O(ε).

So for aε-harmonic functions the best estimate allowed by the
formal expansion is Lipschitz

∥∇uε∥L∞(B1/2) ≤ C∥∇uε∥L2(B1)

and this does hold in periodic media by work of Avellaneda and Lin
(‘87-‘91).



Large scale regularity

More recently Armstrong and Smart (‘16) gave a more quantitative
proof, similar to the Campanato iteration approach to Schauder
theory, which has had wide application in random homogenization.

▶ Prove a (sub-optimal) quantitative homogenization
homogenization result with algebraic rate.

▶ Establish a C 1,β-type improvement of flatness by inheriting
the regularity of the homogenized problem similar to

1

µr
inf

p∈Rd
osc

Bµr (0)
(uε−p ·x) ≤ µβ 1

r
inf

p∈Rd
osc
Br (0)

(uε−p ·x)+C
(ε
r

)α
.

The estimate gives C 1,γ regularity at intermediate scales and
Lipschitz regularity all the way down to scale ε.



Homogenization and large scale regularity:
minimizers of the one-phase energy



Γ-limit

Returning to the one-phase problem we might expect a
Γ-convergence result for the functionals

Jε(u;U) =

ˆ
U
a( xε )∇u · ∇u + Q( xε )

21{u>0} dx

to a homogenized / effective functional

J0(u;U) =

ˆ
U
|∇u|2 + ⟨Q2⟩1{u>0} dx .

Note that Γ convergence gives information about minimizers in a
“big enough” energy well, but not about all local minimizers.

Recall we assume ā = id for convenience.



Quantitative Γ limit

Jε(u;U) =

ˆ
U
a( xε )∇u · ∇u + Q( xε )

21{u>0} dx

III
Figure: Need to show that there is not too much energy / period squares
crossing the free boundary or the fixed boundary.



Quantitative Γ limit

Ingredients to prove the quantitative homogenization, both are
“rough” regularity estimates that only need uniform ellipticity of
the coefficients no averaging.

▶ Energy bound in a strip near the free boundary / perimeter
bound

▶ Up to the (fixed) boundary W 1,p regularity for some p > 2
(Caffarelli-Peral-type approach to Meyers’ estimate)

Then we get a quantitative Γ-convergence estimate similar to

J0(ūε;Br ) ≤ J0(v ;Br ) + C (ε/r)γ |Br | for all v ∈ u + H1
0 (Br ).

Here ūε is an explicit regularization of uε (mollification with a
cutoff near the free boundary). Note the similar form to almost
minimality.



Quantitative homogenization and almost minimality

If uε is an (R0, β)-almost minimizer for Jε in U then we can show
something similar: for all Br ⊂ U and ε ≤ r ≤ R0,
v ∈ uε + H1

0 (Br ), and

J0(ūε;Br ) ≤ J0(v ;Br ) + C [(r/R0)
β + (ε/r)γ ]|Br |.

Since the error is algebraic it is summable over geometric
sequences of scales between ε and R0.



Improvement of flatness for almost minimizers

Lemma (De Silva and Savin (‘20))

Let u satisfy

∥∇u∥L∞(B1) ≤ L and J0(u;B1) ≤ J0(v ;B1)+σ for all v ∈ u+H1
0 (B1).

For any 0 < α < 1 there exist constants δ̄, η > 0 and C ≥ 1
depending on L and α so that if 0 ∈ ∂{u > 0} and

|u(x)− (xd)+| ≤ δ in B1

with 0 < δ + σ
1

d+4 ≤ δ̄, then there is ν ∈ Sd−1 with

|ν − ed | ≤ C (δ + σ
1

d+4 )

|u(x)− (x · ν)+| ≤ η1+α(δ + σ
1

d+4 ) in Bη(0).



Improvement of flatness for almost minimizers

Proof is based on De Silva’s (’11) partial Harnack compactness
argument for flat implies C 1,α interior estimates. Key step: show
that approximate minimizers satisfy an approximate viscosity
solution property. We generalized this to the two-phase case
(Abedin and F., preprint, ’25).



Free boundary regularity: heterogeneous medium

·mi & lathess

Go+
-

a I gr

Theorem (F., Ars Inveniendi Analytica ‘23)

There is δ0 > 0 sufficiently small so that if uε minimizes Jε in B1

and is δ-flat in B1, i.e. if

(xd − δ0)+ ≤ uε(x) ≤ (xd + δ0)+ in B1

then {uε > 0} is distance Cε from a 1-Lipschitz subgraph in B1/2.



A Liouville property

Corollary (F., Ars Inveniendi Analytica ‘23)

If the only minimals of J0 on all of Rd are half-plane solutions (i.e.
as is known in d ≤ 4) and u minimizes J1 on Rd with respect to
compact perturbations, 0 ∈ ∂{u > 0}, then there is ν∗ ∈ Sd−1 so
that

1

r
sup
Br

|u(x)− (ν∗ · x)+| ≤ C
1

r
1

d+4

for all r ≥ 1.



A Liouville property (two-phase)

Corollary (Abedin and F., preprint)

If u minimizes J1 on Rd with respect to compact perturbations,
0 ∈ ∂{u > 0}, and

lim inf
r→∞

∥∇u∥L2(Br )
< +∞, and inf

x∈Rd
lim inf
r→∞

u(rx)

r
< 0.

Then there is ν∗ ∈ Sd−1 and α∗ > 0 so that

1

r
sup
Br

|u(x)− Φα(ν∗ · x)| ≤ C
1

rω
for all r ≥ 1.



Minimizers in the whole space

Figure: Conjecture from Moser and Struwe (‘92) on minimals of
variational problems on the torus



One phase vs two phase

Two phase

1. Hölder estimate

2. Approximate viscosity
solution property when
α > 0

3. Improvement of flatness in
when α > 0

4. Lipschitz estimate

One phase

1. Lipschitz estimate

2. Non-degeneracy of positive
phase

3. Approximate viscosity
solution property

4. Improvement of flatness



Sketch of the two-phase Lipschitz estimate I

Follows an idea from a paper of De Silva and Savin (IMRN, 2019).
Let u be a J -minimizer.

▶ Let v be the a-harmonic replacement of u in BR

∥∇u −∇v∥L2(BR)
≤ C .

▶ Dichotomy based on relative size of ξ“ := ”∇v(0) and
∥∇u∥L2(BR)

:

▶ Case (i): If |ξ| ≤ c∥∇u∥L2(BR ) then

∥∇u∥L2(BηR ) ≤
1

2
∥∇u∥L2(BR ).

▶ Case (ii): If c∥∇u∥L2(BR ) ≤ |ξ|, then the Avellaneda-Lin C 1,β

estimate implies v and hence u are flat with respect to a
(corrected) plane. Then C 1,α improvement of flatness gives

∥∇u∥L2(Br ) ≤ C0(1 + ∥∇u∥L2(BR )) for all ε ≤ r ≤ R.



Application

A Shape Optimization Problem



Principal Dirichlet eigenvalue shape optimization

Principal Dirichlet eigenvalue for a domain Ω ⊂ Rn

λ1(Ω, aε) = inf{
ˆ
Ω
a( xε )∇v · ∇v dx : v ∈ H1

0 (Ω), ∥v∥L2(Ω) = 1}.

Classical Faber-Krahn inequality says

λ1(Ω, id) ≥ λ1(B, id) for any ball with |B| = |Ω|.

Can we say something about volume constrained minimizers of
λ1(Ω, aε) when ε > 0 is small?



Asymptotic expansion

One might conjecture an asymptotic expansion in ε

inf
|V |=1

λ1(V , aε) = λ1(B, id) + L1ε+ L2ε
2 + · · · where |B| = 1.

Recall we assume that ā = id for simplicity. (Note: I do not have
any prediction for what L1 might be, or even if it should be
nonzero)



The obvious thing to try

Say that Ωε is a domain optimizer

λ1(Ωε, aε) = inf
|V |=1

λ1(V , aε).

Then from the Faber-Krahn inequality

λ1(B, id) ≤ λ1(Ωε, id).

and so

λ1(B, id)− λ1(Ωε, aε) ≤ λ1(Ωε, id)− λ1(Ωε, aε).

Rate of convergence of eigenvalues is well-studied topic in
homogenization, but it needs some domain regularity! Kenig, Lin
and Shen (‘12) show (almost) optimal convergence rate

O(ε| log ε|
1
2
+) in Lipschitz domains.



Relaxing the constraint

The hard constraint minimization problem

find Ωε satisfying λ1(Ωε, aε) = inf
|V |=1

λ1(V , aε)

may often be relaxed to a minimization problem for an augmented
functional (think of Lagrange multipliers)

Aµ(Ω, aε) = λ1(Ω, aε) + µ|Ω|

and for the connection with the Alt-Caffarelli energy finally note
that

Aµ(Ω, aε) = inf
v∈H1

0 (Ω),
∥v∥L2(Ω)=1

{
ˆ
Rd

a( xε )∇v · ∇v + µ1Ω dx}.



Quantitative homogenization for the optimal eigenvalue

What we can prove implementing the large scale regularity theory
described before:

Theorem (F., CPAM ‘23)

For p > d + 4 (not optimal)

| inf
|V |=1

λ1(V , aε)− λ1(B, id)| ≤ Cε| log(2 + ε−1)|p

where C ≥ 1 depends on d, the uniform ellipticity, and ∥∇a∥∞.

Can also derive O(ε1/2| log(2 + ε−1)|p/2) convergence of the
optimizing domains Ωε in L1.



Sorry for a change of convention

At this point I want to change scales and instead of fixing volume 1
and sending ε → 0, I want to fix the length scale of a to be 1 and
send the volume |Ω| = m to infinity. That is we will now consider

inf
|V |=m

λ1(V , a).

Note that then ε ∼ m− 1
d and the principal eigenvalue scales like

λ1 ∼ m− 2
d .



Outline of the proof: augmented functional

We will rely on a relationship with the augmented functional

Aµ(Ω, a) = λ1(Ω, a) + µ|Ω|.

This soft constraint problem is easier to deal with.

▶ Augmented minimizers are almost minimizers of an
Alt-Caffarelli-type functional =⇒ Lipschitz estimate,
non-degeneracy, boundary density estimates.

▶ This gives sufficient domain regularity for a sub-optimal
convergence estimate to a ball.

▶ Convergence to ball =⇒ large scale flatness.

▶ Large scale flat implies minimizing domain is Lipschitz (above
unit scale).

▶ For Lipschitz domain we get optimal convergence of
λ1(Ω, a)− λ1(Ω, id) (up to logarithms) by work of Kenig, Lin
and Shen.



Outline of the proof: hard constraint

Now we turn to hard constraint minimization

min{λ1(V , a) : |V | = m}.

This is a key issue encountered in the shape optimization literature

▶ Briançon and Lamboley (‘09) showed an almost minimality
property for shape optimizers of the first Dirichlet eigenvalue
with a domain constraint and then used the Alt and Caffarelli
regularity strategy to obtain domain regularity. Many other
results since.

The issue with previous results in the literature in our case is the
almost minimality is not quantitative.



Outline of the proof: hard constraint
Now we turn to hard constraint minimization

min{λ1(V , a) : |V | = m}.

We no longer can prove regularity directly.

▶ Aµ minimizers Ωµ create a monotone multi-valued map
Vol(µ) by µ 7→ |Ωµ|. The map can have jump discontinuities
where some volumes are missed.

▶ Dilation / convexity argument at the jump discontinuities of
Vol shows that for each Ω∗ volume constrained minimizer

m
2
d (Aµ∗(Ω∗, a)− inf Aµ∗(·, a)) ≤ Cm−1/d | log(2 +m)|1/2+.

It is key here that the top and bottom volumes at a jump
discontinuity are attained by regular Aµ minimizers.

▶ Selection principle to find a nearby Aµ∗ minimizer with nearby
principal eigenvalue. (Inspired by Brasco, De Philippis, and
Velichkov (‘15))



Missed volumes
▶ Dilation / convexity argument at the jump discontinuities of

Vol shows that for each Ω∗ volume constrained minimizer

m
2
d (Aµ∗(Ω∗, a)− inf Aµ∗(·, a)) ≤ Cm−1/d | log(2 +m)|1/2+.

It is key here that the top and bottom volumes at a jump
discontinuity are attained by regular Aµ minimizers.

µ

Vol

µ∗

m



Penalized functional

▶ Selection principle to find a nearby Aµ∗ minimizer with nearby
principal eigenvalue. (Inspired by Brasco, De Philippis, and
Velichkov (‘15))

Use a penalized functional

B(Ω,Ω∗, a) = λ1(Ω, a) +

ˆ
Ω∆Ω∗

ω

(
d(x , ∂Ω∗)

m
1
d

)
dx (1)

Ideally you would want the L1 difference |Ω∆Ω∗|, but need a little
continuity from the modulus ω to get the domain regularity theory
to work. Can lose as little as a poly-logarithmic factor by taking a
Dini modulus.



Open questions / future directions

▶ Stronger Liouville theorem, say in d = 2: are minimizers in
the whole space distance O(1) from a plane?

▶ Convergence rate of the domains in shape optimization
problem seems likely to be suboptimal at O(ε1/2).

▶ Can we develop a similar large scale regularity theory in any
other interface homogenization problems? Capillary problem
on heterogeneous surface looks most promising. Minimal
surfaces / paths in random environments are much more
challenging.



Thanks for your attention!



Dilation / convexity argument
Here consider just the (homogeneous) Laplacian case. For any
domain U and any t > 0

λ1(tU) = t−2λ1(U).

Suppose that U1 and U2 are Aµ minimizers with |U2| > |U1| and
U∗ is a volume constrained minimizer with |U1| < |U∗| < |U2|. Call
t∗ = (|U∗|/|U1|)1/d and T = (|U2|/|U1|)1/d so that t∗ ∈ (1,T ).
Now, since U is a volume constrained minimizer,

Aµ(U∗) = λ1(U∗) + µ|U∗|
≤ λ1(tU1) + µ|t∗U1|
= t−2

∗ λ1(U1) + µtd∗ |U1|

Now define the convex function on t ∈ R+

f (t) := t−2λ1(U1) + µtd |U1|



Dilation / convexity argument

f (t) := t−2λ1(U1) + µtd |U1|.

And we continue, using convexity of f ,

Aµ(U∗) ≤ f (t∗)

< max{f (1), f (T )}
= max{Aµ(U1),T

−2λ1(U1) + µ|U2|}
≤ max{Aµ(U1),T

−2λ1(T
−1U2) + µ|U2|}

= max{Aµ(U1),Aµ(U2)}
= inf Aµ(V ).



Improvement of flatness: two-phase case key lemma I
Suppose that v0, v1 ∈ H1(U)∩C (U) with v0 ≤ v1 and v0 = v1 ≥ 0
on ∂U. Call Ωj = {vj > 0} ∩ U.

(i) If v1 satisfies ∆v1 ≥ µ > 0 in the H1 weak sense in
{v1 > (v0)+} then

ˆ
Ω0

|∇v0|2 dx −
ˆ
Ω1

|∇v1|2 dx

≥
ˆ
Ω1\Ω0

|∇v1|2 dx + 2µ

ˆ
Ω1

(v1 − (v0)+) dx .

(ii) If v0 satisfies ∆v0 ≤ −µ < 0 in the H1 weak sense in
{v1 > (v0)+} then

ˆ
Ω0

|∇v0|2 dx −
ˆ
Ω1

|∇v1|2 dx

≤
ˆ
Ω1\Ω0

|∇v0|2 dx − 2µ

ˆ
Ω1

(v1 − (v0)+) dx


