Convexity and comparison principle for a singular
Bernoulli one-phase problem

Will Feldman

The University of Utah



Anisotropic one-phase problem

We consider an exterior problem for the one-phase Bernoulli

problem
Au=0 in {u>0}\K,
|[Vu| = Q(ny) on 9{u> 0}, (Ext)
u=1 on K.

Here K is a compact, convex region, ny is the inner unit normal to
O0{u >0} at x, and Q : S9~! — (0, ¢) is bounded above and
below and upper semi-continuous

Q(n) > limsup Q(n').

n’—n



An example

Caffarelli and Lee observed that discontinuities of @ can cause
facets in the free boundary.

u>0

Figure: Plot of Q(n) over n € S?

Caffarelli and Lee, CPDE 2007



Where does this PDE come from?



Homogenization in a laminar medium

Let 1-periodic g : R — [%,2],
with (g?) = 1, maxq = 2. Con-
sider the minimal supersolutions
u. of the PDE

Au. =0 in {u>0}\K,
Vul = q(2) on {u >0},
u =1 on K.

(1)

Note: There are more than one
solution of this PDE, the energy
minimizing solution converges to
a ball instead.

u. >0

Au. =0

N

uu=0 ¢

Caffarelli and Lee (CPDE, 2007), Kim (CPDE, 2008)

Feldman (ARMA, 2021)



A discrete free boundary problem

Consider the minimal supersolution uy : Z9 — [0, N] of the
discrete one-phase Bernoulli problem

Asun =0 01\ NK
{ ZdUN n {UN > }\ ? Wlth uy = N on NK

Ajauy <1 on Ooue{uny > 0} \ NK,

Rescalings
in(x) = N~ upn(Nx)

converge to the minimal supersolution of

{AU:O in {7 > 0}

_ with oy =1 on K.
|Via| = Q(nyx) on 9{ud > 0}

F. and Smart (ARMA, ‘19)



Scaling limit: d = 2

Figure: Left: grayscale map of uy, Right: plot of Q over S!

F. and Smart (ARMA, ‘19)



Scaling limit: d =3
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Figure: Left: grayscale map of Azsuy on Jou{u > 0}, Right: grayscale
plot of Q over S?

F. and Smart (ARMA, ‘19)



Structure of the effective PDE

Theorem (F. and Smart, ARMA '19)
Define S : 2nT¢ — R by S(#) = — log(1 + % 27:1 cos®;), and let

§:79 — C be the corresponding Fourier transform. Then Sis
real and positive on Z9 and for all e € S971,

@(e):\/;dexp(; 3 §(k)>.

kezZ9: k-e=0



Proving these scaling limits

A very big picture sketch of the proof of the scaling limit:

» Use “correctors’ and perturbed test function method to show
a viscosity solution property for all subsequential limits.
Discontinuities of the limit PDE limit the type of test
functions which can be “corrected”.

» Apply an appropriate comparison principle for the limit
problem.

Note: There is no way to directly show that the subsequential
limits are minimal. Instead we show a “local” viscosity property
and then prove a comparison uniqueness result to identify the
minimal supersolution.



A convex comparison principle



Viscosity solutions: supersolution

Definition

A supersolution of (Ext) is a nonnegative function u € C(RY) that
is compactly supported, v > 1 on K, is harmonic in {u > 0} \ K,
and whenever ¢ € C*°(U), U open, Ay >0 and Vi # 0 in U,
touches u from below at x € 9{u > 0} N U then

wetl <@ (5 00)-



Viscosity solutions: weak subsolution

We say that ¢ € C*°(U) is one-dimensional in U if it is of the form
@(x) = f(x-p) in U for some f € C*(R) and p € RY, |p| = 1.
Definition

A weak subsolution of (Ext) is a nonnegative function u € C(R9)
that is compactly supported, satisfies < 1 on K, is harmonic in
{u> 0} \ K, and such that, whenever U is an open neighborhood
and one-dimensional ¢ with Ay < 0 touches u from above in

{u> 0} at x € 9{u > 0} N U with strict ordering u < ¢ on
{u>0}NaoU, then

[Vo(x)| = Q(p).



Viscosity solutions: weak subsolution intuition

Figure: Plot of Q(n) over n € S!




Viscosity solutions: weak subsolution intuition

The moral of the story is: if u is a weak subsolution with {u > 0}
convex, n € S971, and

Fo=0{u>0}N{x-n= min (x-n)}
{u>0}

is a facet of O{u > 0} then

mFanx|Vu(x)\ > Q(n).



Convex comparison

Theorem

A supersolution of (Ext) is minimal if and only if it satisfies the
weak subsolution property. In other words, a supersolution that is
also a weak subsolution is the unique minimal supersolution.
Furthermore the minimal supersolution has convex superlevel sets.
Analogous previous results for classical Bernoulli problem:

» Beurling ('57), Schaeffer ('75), Acker ('78), 2-d conformal
mapping techniques.

» Hamilton ('82), Nash-Moser implicit function theorem idea,
also 2-d.

» Henrot and Shahgholian ('97,'02), and Bianchini ('12,'22).
Maximum principle techniques in all dimensions.

F. and Smart (ARMA, 2019)
new proof in F. and PoZar (preprint, 2024)



Quasiconcavity of the capacity gradient on a facet

Let K CC V both convex and compact, and V inner regular. Let
v be the capacity potential
Av=0 inV\K,
v=1 onK, (2)
v=0 onRI\ V.
The super-level sets {v > t} are convex for all t € (0,1) and let A

be a tangent hyperplane to OV. Set F =0V NA. Then 1/|Vv]|is
convex on F.

Caffarelli & Spruck



Outline of comparison principle proofs

Background of the comparison proof:

» (Framework) We will aim to prove comparison between a
convex (sub / supersolution) and a general (super /
subsolution).

» (Regularization) We can always assume that the supersolution
has outer regular positivity set, and the subsolution has inner
regular positivity set by using inf / sup convolutions.

» (Dilations) We can create a touching point by dilation of the
supersolution v — v(Ax) for A < 1. This also, conveniently,
makes the supersolution strict. Uses K star-shaped.



Convex supersolution touches weak subsolution from above

Lemma
Assume @ is upper semicontinuous. Suppose that v is

supersolution of (Ext) with {v > 0} convex, and u is a weak
subsolution of (Ext). Then v > u.

This direction is easy: build a one-dimensional test function
touching u from above at x, with a too small slope.

X

{u>0} {v>0}



Supersolution touches convex weak subsolution from above

As discussed before the weak subsolution condition implies that

mFen)x|Vu(x)\ > Q(n).

But it is not immediate to get a contradiction from this:

Figure: View of a 2-d boundary facet F,. Subsolution definition is
saturated at x, which is not on the contact set Y with the supersolution.



Using convexity of 1/|Vu|

Lemma
Suppose that u is a weak subsolution with convex and inner
regular positive set {u > 0} and n € S9! then

min |Vu| > liminf Q(n').
Fn n’—n

Recall that an exposed point of a convex set X is a point xg in 9X
so that {xo} = {x € X : x-n=minycxy - n}.
Use that the weak subsolution condition at an exposed point

xo € 0{u > 0} gives

[Vu(xo)| = max|[Vu(x)| = Q(ny)

nxg

plus Straszewicz's Theorem —every extreme point is a limit of
exposed points — and convexity of 1/|Vu| to conclude.



Naive continuous approximation works!

Lemma
Suppose that u is a weak subsolution with convex and inner regular
positive set {u >0} and n € S9! and Q is continuous then

r‘r;in |Vu| > Q(n).

Now for upper semicontinuous @ can just naively approximate
from above by Q/ N @ with @’ continuous. Corresponding
minimal supersolutions t/ ~ 1™ < u, since t/ are supersolutions
of @ equation. But u® is a convex supersolution and so easy
direction of comparison (convex supersolution and general weak
subsolution) implies u®> > u.



Regularity



Convexity implies free boundary C! regularity

Solution u of exterior problem

Au=0 in {u>0}\K,
|IVu| = Q(ny) on 0{u> 0}, (Ext)
u=1 on K.

is quasiconvex. Can also show that {u > 0} is a C! domain. If

xo € 0{u > 0} had a nontrivial supporting cone, blowing-up
contradicts Lipschitz regularity and non-degeneracy of u, since
positive harmonic functions in a (non-half-space) convex cone with
zero Dirichlet data are homogeneous of degree o > 1.



One-phase problem with an obstacle

A function u € C(U) is a solution of the Bernoulli problem in U
with obstacle O from above if

|Vul =1

Au=0 in{u>0}

u=20 in O

[Vul=1 onod{u>0}n0O
[Vu|>1 onA:=0{u>0}nao0.

[Vu| >1

Theorem (Chang-Lara and Savin, Contemp. Math. ‘19)

Let u solves the Bernoulli obstacle problem in By and 0 € O'A, O a
C? obstacle. Suppose 0 € &'\ and u is eg-flat in By then
ue C1’1/2(81/2 N{u>0}).




One-phase problem with an obstacle

The regularity is proved by a (rigorous) asymptotic expansion
involving the thin obstacle problem. If u solves in By the flattened
obstacle problem

Au=0 in{u>0} o [Vu|=1 on d{u>0}nN{xy >0}
u=0 in{xqy >0} [Vu| >1 on d{u>0}nN{xy =0}.

and is e-flat (sufficiently small universal)
(xa =€)+ S u(x) < (xg + )+

then there is w solving the thin obstacle or Signorini problem in B;
with oscg, w < 1 such that

u(x) = (xg —ew(x) + o(e))+.

approach to free boundary regularity by De Silva ‘11



Simple anisotropy

Let's return to the anistropic Bernoulli problem and consider now a
simple type of discontinuity

Qn) = {2 ne€ {+e}

1 else

Solution u of the exterior problem is convex and therefore it solves
the Bernoulli obstacle problem with obstacle

0 = < .
(bal < _max el



Simple anisotropy

Solution u of the exterior problem is convex and therefore it solves
the Bernoulli obstacle problem with obstacle

0 = < .
(bal < _max P}

Figure: O is region between dashed lines. Drawn rotated by 7/2.

Unfortunately this idea is limited to the case of convex data, and
to simple discontinuities where lim,_,, Q(n’) exists but is not
equal to Q(n).



Regularity: non-convex case

Without convexity regularity problem seems a lot harder. Consider
the simple discontinuity at n = ey, as earlier. Can show a flat
asymptotic expansion: if 4 monotone in the ey direction and flat

(xd =€)+ <u(x) <(xqg+¢e)+ in By

then
u(x) = (xqg +ew(x)+o(e))+ in By

where w solves the gradient degenerate Neumann problem

Aw =0 in Bf, and min{04w,|V'w|} =0 on Bj.

forthcoming work with PhD student Zhonggan Huang



Regularity: non-convex case

The gradient degenerate Neumann problem
Aw =0 in Bf, and min{0gw,|V'w|} =0 on B;. (3)

The contact setis A := {x € B] : 04w > 0}.

Theorem (F. and Huang, forthcoming)
Ind =2, ifw solves (3) then w € Co/*(Bf). Ind >3 if

#w(AN By) < +oo then w € CoY2(B}).

loc

forthcoming work with PhD student Zhonggan Huang



Questions

» Regularity theory beyond point discontinuities. For example in
d=3: Q(n) =1+ 1,.=0 "Saturn with its rings” type Q.

» Comparison principle without convexity beyond simple
discontinuities (limits exist at every n but may not agree with
the value).

» Volume constrained problem: does there exist a (unique
modulo translation?) quasiconvex solution (supersolution and
weak subsolution) of

—Au =\ in {u> 0},
|Vu| = Q(nk) on o{u> 0}, (Vol)
Jpau=1.

No apparent variational structure to help.



Thank you for your attention!



