Convexity and comparison principle for a singular Bernoulli one-phase problem

Will Feldman

The University of Utah

Anisotropic one-phase problem

We consider an exterior problem for the one-phase Bernoulli problem

$$\begin{cases} \Delta u = 0 & \text{in } \{u > 0\} \setminus K, \\ |\nabla u| = Q(n_x) & \text{on } \partial\{u > 0\}, \\ u = 1 & \text{on } K. \end{cases}$$
 (Ext)

Here K is a compact, convex region, n_X is the inner unit normal to $\partial\{u>0\}$ at X, and $Q:S^{d-1}\to(0,\infty)$ is bounded above and below and upper semi-continuous

$$Q(n) \ge \limsup_{n' \to n} Q(n').$$

An example

Caffarelli and Lee observed that discontinuities of Q can cause facets in the free boundary.

Figure: Plot of Q(n) over $n \in S^1$

Where does this PDE come from?

Homogenization in a laminar medium

Let 1-periodic $q:\mathbb{R}\to [\frac{1}{2},2]$, with $\langle q^2\rangle=1$, max q=2. Consider the minimal supersolutions u_ε of the PDE

$$\begin{cases} \Delta u_{\varepsilon} = 0 & \text{in } \{u > 0\} \setminus K, \\ |\nabla u_{\varepsilon}| = q(\frac{x_1}{\varepsilon}) & \text{on } \partial\{u > 0\}, \\ u_{\varepsilon} = 1 & \text{on } K. \end{cases}$$
(1)

Note: There are more than one solution of this PDE, the energy minimizing solution converges to a ball instead.

Caffarelli and Lee (CPDE, 2007), Kim (CPDE, 2008) Feldman (ARMA, 2021)

A discrete free boundary problem

Consider the minimal supersolution $u_N : \mathbb{Z}^d \to [0, N]$ of the discrete one-phase Bernoulli problem

$$\begin{cases} \Delta_{\mathbb{Z}^d} \, u_N = 0 & \text{in } \{u_N > 0\} \setminus NK, \\ \Delta_{\mathbb{Z}^d} \, u_N \leq 1 & \text{on } \partial_{out} \{u_N > 0\} \setminus NK, \end{cases} \quad \text{with } \ u_N = N \quad \text{on } NK.$$

Rescalings

$$\bar{u}_N(x) = N^{-1}u_N(Nx)$$

converge to the minimal supersolution of

$$egin{cases} \Delta ar{u} = 0 & ext{in } \{ar{u} > 0\} \ |
abla ar{u}| = ar{Q}(n_{\!\scriptscriptstyle X}) & ext{on } \partial \{ar{u} > 0\} \end{cases}$$
 with $ar{u}_N = 1$ on K .

Scaling limit: d = 2

Figure: Left: grayscale map of u_N , Right: plot of \bar{Q} over S^1

Scaling limit: d = 3

Figure: Left: grayscale map of $\Delta_{\mathbb{Z}^d}u_N$ on $\partial_{\mathrm{out}}\{u>0\}$, Right: grayscale plot of \bar{Q} over S^2

Structure of the effective PDE

Theorem (F. and Smart, ARMA '19)

Define $S: 2\pi \mathbb{T}^d \to \mathbb{R}$ by $S(\theta) = -\log(1 + \frac{1}{d} \sum_{j=1}^d \cos \theta_j)$, and let $\hat{S}: \mathbb{Z}^d \to \mathbb{C}$ be the corresponding Fourier transform. Then \hat{S} is real and positive on \mathbb{Z}^d and for all $e \in S^{d-1}$,

$$\bar{Q}(e) = \frac{1}{\sqrt{2d}} \exp\left(\frac{1}{2} \sum_{k \in \mathbb{Z}^{d}: k, e=0} \hat{S}(k)\right).$$

Proving these scaling limits

A very big picture sketch of the proof of the scaling limit:

- Use "correctors" and perturbed test function method to show a viscosity solution property for all subsequential limits. Discontinuities of the limit PDE limit the type of test functions which can be "corrected".
- Apply an appropriate comparison principle for the limit problem.

Note: There is no way to directly show that the subsequential limits are *minimal*. Instead we show a "local" viscosity property and then prove a comparison uniqueness result to identify the minimal supersolution.

A convex comparison principle

Viscosity solutions: supersolution

Definition

A supersolution of (Ext) is a nonnegative function $u \in C(\mathbb{R}^d)$ that is compactly supported, $u \geq 1$ on K, is harmonic in $\{u > 0\} \setminus K$, and whenever $\varphi \in C^\infty(U)$, U open, $\Delta \varphi > 0$ and $\nabla \varphi \neq 0$ in U, touches u from below at $x \in \partial \{u > 0\} \cap U$ then

$$|\nabla \varphi(x)| \leq Q\left(\frac{\nabla \varphi}{|\nabla \varphi|}(x)\right).$$

Viscosity solutions: weak subsolution

We say that $\varphi \in C^{\infty}(U)$ is one-dimensional in U if it is of the form $\varphi(x) = f(x \cdot p)$ in U for some $f \in C^{\infty}(\mathbb{R})$ and $p \in \mathbb{R}^d$, |p| = 1.

Definition

A weak subsolution of (Ext) is a nonnegative function $u \in C(\mathbb{R}^d)$ that is compactly supported, satisfies $u \leq 1$ on K, is harmonic in $\{u>0\} \setminus K$, and such that, whenever U is an open neighborhood and one-dimensional φ with $\Delta \varphi < 0$ touches u from above in $\overline{\{u>0\}}$ at $x \in \partial \{u>0\} \cap U$ with strict ordering $u < \varphi$ on $\overline{\{u>0\}} \cap \partial U$, then

$$|\nabla \varphi(x)| \geq Q(p).$$

Viscosity solutions: weak subsolution intuition

Viscosity solutions: weak subsolution intuition

The moral of the story is: if u is a weak subsolution with $\{u > 0\}$ convex, $n \in S^{d-1}$, and

$$F_n = \partial \{u > 0\} \cap \{x \cdot n = \min_{\{u > 0\}} (x \cdot n)\}$$

is a facet of $\partial \{u > 0\}$ then

$$\max_{F_n} |\nabla u(x)| \ge Q(n).$$

Convex comparison

Theorem

A supersolution of (Ext) is minimal if and only if it satisfies the weak subsolution property. In other words, a supersolution that is also a weak subsolution is the unique minimal supersolution. Furthermore the minimal supersolution has convex superlevel sets.

Analogous previous results for classical Bernoulli problem:

- ▶ Beurling ('57), Schaeffer ('75), Acker ('78), 2-*d* conformal mapping techniques.
- ► Hamilton ('82), Nash-Moser implicit function theorem idea, also 2-d.
- ► Henrot and Shahgholian ('97,'02), and Bianchini ('12,'22). Maximum principle techniques in all dimensions.

F. and Smart (ARMA, 2019) new proof in F. and Požár (preprint, 2024)

Quasiconcavity of the capacity gradient on a facet

Let $K \subset\subset V$ both convex and compact, and V inner regular. Let v be the capacity potential

$$\begin{cases} \Delta v = 0 & \text{in } V \setminus K, \\ v = 1 & \text{on } K, \\ v = 0 & \text{on } \mathbb{R}^d \setminus V. \end{cases}$$
 (2)

The super-level sets $\{v > t\}$ are convex for all $t \in (0,1)$ and let Λ be a tangent hyperplane to ∂V . Set $F = \partial V \cap \Lambda$. Then $1/|\nabla v|$ is convex on F.

Outline of comparison principle proofs

Background of the comparison proof:

- (Framework) We will aim to prove comparison between a convex (sub / supersolution) and a general (super / subsolution).
- (Regularization) We can always assume that the supersolution has outer regular positivity set, and the subsolution has inner regular positivity set by using inf / sup convolutions.
- ▶ (Dilations) We can create a touching point by dilation of the supersolution $v \mapsto v(\lambda x)$ for $\lambda < 1$. This also, conveniently, makes the supersolution strict. Uses K star-shaped.

Convex supersolution touches weak subsolution from above

Lemma

Assume Q is upper semicontinuous. Suppose that v is supersolution of (Ext) with $\{v > 0\}$ convex, and u is a weak subsolution of (Ext). Then $v \ge u$.

This direction is easy: build a one-dimensional test function touching u from above at x_* with a too small slope.

Supersolution touches convex weak subsolution from above

As discussed before the weak subsolution condition implies that

$$\max_{F_n} |\nabla u(x)| \ge Q(n).$$

But it is not immediate to get a contradiction from this:

Figure: View of a 2-d boundary facet F_n . Subsolution definition is saturated at x_* which is not on the contact set Y with the supersolution.

Using convexity of $1/|\nabla u|$

Lemma

Suppose that u is a weak subsolution with convex and inner regular positive set $\{u>0\}$ and $n\in S^{d-1}$ then

$$\min_{F_n} |\nabla u| \geq \liminf_{n'\to n} Q(n').$$

Recall that an *exposed point* of a convex set X is a point x_0 in ∂X so that $\{x_0\} = \{x \in X : x \cdot n = \min_{y \in X} y \cdot n\}$.

Use that the weak subsolution condition at an exposed point $x_0 \in \partial \{u > 0\}$ gives

$$|\nabla u(x_0)| = \max_{F_{n_{x_0}}} |\nabla u(x)| \ge Q(n_{x_0})$$

plus Straszewicz's Theorem –every extreme point is a limit of exposed points – and convexity of $1/|\nabla u|$ to conclude.

Naive continuous approximation works!

Lemma

Suppose that u is a weak subsolution with convex and inner regular positive set $\{u>0\}$ and $n\in S^{d-1}$ and Q is continuous then

$$\min_{F_n} |\nabla u| \geq Q(n).$$

Now for upper semicontinuous Q can just naively approximate from above by $Q^j \searrow Q$ with Q^j continuous. Corresponding minimal supersolutions $u^j \nearrow u^\infty \leq u$, since u^j are supersolutions of Q equation. But u^∞ is a convex supersolution and so easy direction of comparison (convex supersolution and general weak subsolution) implies $u^\infty \geq u$.

Regularity

Convexity implies free boundary C^1 regularity

Solution u of exterior problem

$$\begin{cases} \Delta u = 0 & \text{in } \{u > 0\} \setminus K, \\ |\nabla u| = Q(n_x) & \text{on } \partial\{u > 0\}, \\ u = 1 & \text{on } K. \end{cases}$$
 (Ext)

is quasiconvex. Can also show that $\{u>0\}$ is a C^1 domain. If $x_0\in\partial\{u>0\}$ had a nontrivial supporting cone, blowing-up contradicts Lipschitz regularity and non-degeneracy of u, since positive harmonic functions in a (non-half-space) convex cone with zero Dirichlet data are homogeneous of degree $\alpha>1$.

One-phase problem with an obstacle

A function $u \in C(\overline{U})$ is a solution of the Bernoulli problem in U with obstacle O from above if

Theorem (Chang-Lara and Savin, Contemp. Math. '19)

Let u solves the Bernoulli obstacle problem in B_1 and $0 \in \partial' \Lambda$, O a C^2 obstacle. Suppose $0 \in \partial' \Lambda$ and u is ε_0 -flat in B_1 then $u \in C^{1,1/2}(B_{1/2} \cap \overline{\{u>0\}})$.

One-phase problem with an obstacle

The regularity is proved by a (rigorous) asymptotic expansion involving the thin obstacle problem. If u solves in B_1 the flattened obstacle problem

$$\begin{cases} \Delta u = 0 & \text{in } \{u > 0\} \\ u = 0 & \text{in } \{x_d \ge 0\} \end{cases} \quad \text{and} \quad \begin{cases} |\nabla u| = 1 & \text{on } \partial\{u > 0\} \cap \{x_d > 0\} \\ |\nabla u| \ge 1 & \text{on } \partial\{u > 0\} \cap \{x_d = 0\}. \end{cases}$$

and is ε -flat (sufficiently small universal)

$$(x_d - \varepsilon)_+ \le u(x) \le (x_d + \varepsilon)_+$$

then there is w solving the *thin obstacle* or *Signorini* problem in B_1 with $\operatorname{osc}_{B_1} w \leq 1$ such that

$$u(x) = (x_d - \varepsilon w(x) + o(\varepsilon))_+.$$

approach to free boundary regularity by De Silva '11

Simple anisotropy

Let's return to the anistropic Bernoulli problem and consider now a simple type of discontinuity

$$Q(n) = \begin{cases} 2 & n \in \{\pm e_2\} \\ 1 & \text{else} \end{cases}$$

Solution u of the exterior problem is convex and therefore it solves the Bernoulli obstacle problem with obstacle

$$O := \{|x_2| < \max_{x \in \{u > 0\}} |x_2|\}.$$

Simple anisotropy

Solution u of the exterior problem is convex and therefore it solves the Bernoulli obstacle problem with obstacle

$$O := \{|x_2| < \max_{x \in \{u > 0\}} |x_2|\}.$$

$$u = 0 \qquad \qquad u = 1$$

Figure: O is region between dashed lines. Drawn rotated by $\pi/2$.

Unfortunately this idea is limited to the case of convex data, and to *simple discontinuities* where $\lim_{n'\to n} Q(n')$ exists but is not equal to Q(n).

Regularity: non-convex case

Without convexity regularity problem seems a lot harder. Consider the simple discontinuity at $n=e_d$, as earlier. Can show a flat asymptotic expansion: if u monotone in the e_d direction and flat

$$(x_d - \varepsilon)_+ \le u(x) \le (x_d + \varepsilon)_+$$
 in B_1

then

$$u(x) = (x_d + \varepsilon w(x) + o(\varepsilon))_+$$
 in $B_{1/2}$

where w solves the gradient degenerate Neumann problem

$$\Delta w = 0$$
 in B_1^+ , and $\min\{\partial_d w, |\nabla' w|\} = 0$ on B_1' .

Regularity: non-convex case

The gradient degenerate Neumann problem

$$\Delta w = 0$$
 in B_1^+ , and $\min\{\partial_d w, |\nabla' w|\} = 0$ on B_1' . (3)

The contact set is $\Lambda := \{x \in B_1' : \partial_d w > 0\}.$

Theorem (F. and Huang, forthcoming)

In d=2, if w solves (3) then $w \in C^{1,1/2}_{loc}(B_1^+)$. In $d \ge 3$ if $\#w(\Lambda \cap B_1) < +\infty$ then $w \in C^{1,1/2}_{loc}(B_1^+)$.

Questions

- Regularity theory beyond point discontinuities. For example in d=3: $Q(n)=1+\mathbf{1}_{n\cdot e_3=0}$ "Saturn with its rings" type Q.
- Comparison principle without convexity beyond simple discontinuities (limits exist at every n but may not agree with the value).
- Volume constrained problem: does there exist a (unique modulo translation?) quasiconvex solution (supersolution and weak subsolution) of

$$\begin{cases} -\Delta u = \lambda & \text{in } \{u > 0\}, \\ |\nabla u| = Q(n_x) & \text{on } \partial\{u > 0\}, \\ \int_{\mathbb{R}^d} u = 1. \end{cases}$$
 (Vol)

No apparent variational structure to help.

