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Anisotropic one-phase problem

We consider an exterior problem for the one-phase Bernoulli
problem 

∆u = 0 in {u > 0} \ K ,

|∇u| = Q(nx) on ∂{u > 0},
u = 1 on K .

(Ext)

Here K is a compact, convex region, nx is the inner unit normal to
∂{u > 0} at x , and Q : Sd−1 → (0,∞) is bounded above and
below and upper semi-continuous

Q(n) ≥ lim sup
n′→n

Q(n′).



An example

Caffarelli and Lee observed that discontinuities of Q can cause
facets in the free boundary.
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Figure: Plot of Q(n) over n ∈ S1

Caffarelli and Lee, CPDE 2007



Where does this PDE come from?



Homogenization in a laminar medium

Let 1-periodic q : R → [12 , 2],
with ⟨q2⟩ = 1, max q = 2. Con-
sider the minimal supersolutions
uε of the PDE
∆uε = 0 in {u > 0} \ K ,

|∇uε| = q( x1ε ) on ∂{u > 0},
uε = 1 on K .

(1)
Note: There are more than one
solution of this PDE, the energy
minimizing solution converges to
a ball instead.
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Caffarelli and Lee (CPDE, 2007), Kim (CPDE, 2008)
Feldman (ARMA, 2021)



A discrete free boundary problem

Consider the minimal supersolution uN : Zd → [0,N] of the
discrete one-phase Bernoulli problem{

∆ZduN = 0 in {uN > 0} \ NK ,

∆ZduN ≤ 1 on ∂out{uN > 0} \ NK ,
with uN = N on NK .

Rescalings
ūN(x) = N−1uN(Nx)

converge to the minimal supersolution of{
∆ū = 0 in {ū > 0}
|∇ū| = Q̄(nx) on ∂{ū > 0}

with ūN = 1 on K .

F. and Smart (ARMA, ‘19)



Scaling limit: d = 2

Figure: Left: grayscale map of uN , Right: plot of Q̄ over S1

F. and Smart (ARMA, ‘19)



Scaling limit: d = 3

Figure: Left: grayscale map of ∆ZduN on ∂out{u > 0}, Right: grayscale
plot of Q̄ over S2

F. and Smart (ARMA, ‘19)



Structure of the effective PDE

Theorem (F. and Smart, ARMA ‘19)

Define S : 2πTd → R by S(θ) = − log(1 + 1
d

∑d
j=1 cos θj), and let

Ŝ : Zd → C be the corresponding Fourier transform. Then Ŝ is
real and positive on Zd and for all e ∈ Sd−1,

Q̄(e) =
1√
2d

exp

(
1
2

∑
k∈Zd : k·e=0

Ŝ(k)

)
.



Proving these scaling limits

A very big picture sketch of the proof of the scaling limit:

▶ Use “correctors” and perturbed test function method to show
a viscosity solution property for all subsequential limits.
Discontinuities of the limit PDE limit the type of test
functions which can be “corrected”.

▶ Apply an appropriate comparison principle for the limit
problem.

Note: There is no way to directly show that the subsequential
limits are minimal. Instead we show a “local” viscosity property
and then prove a comparison uniqueness result to identify the
minimal supersolution.



A convex comparison principle



Viscosity solutions: supersolution

Definition
A supersolution of (Ext) is a nonnegative function u ∈ C (Rd) that
is compactly supported, u ≥ 1 on K , is harmonic in {u > 0} \ K ,
and whenever φ ∈ C∞(U), U open, ∆φ > 0 and ∇φ ̸= 0 in U,
touches u from below at x ∈ ∂{u > 0} ∩ U then

|∇φ(x)| ≤ Q

(
∇φ

|∇φ|
(x)

)
.



Viscosity solutions: weak subsolution

We say that φ ∈ C∞(U) is one-dimensional in U if it is of the form
φ(x) = f (x · p) in U for some f ∈ C∞(R) and p ∈ Rd , |p| = 1.

Definition
A weak subsolution of (Ext) is a nonnegative function u ∈ C (Rd)
that is compactly supported, satisfies u ≤ 1 on K , is harmonic in
{u > 0} \ K , and such that, whenever U is an open neighborhood
and one-dimensional φ with ∆φ < 0 touches u from above in
{u > 0} at x ∈ ∂{u > 0} ∩ U with strict ordering u < φ on
{u > 0} ∩ ∂U, then

|∇φ(x)| ≥ Q(p).



Viscosity solutions: weak subsolution intuition
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Figure: Plot of Q(n) over n ∈ S1



Viscosity solutions: weak subsolution intuition

The moral of the story is: if u is a weak subsolution with {u > 0}
convex, n ∈ Sd−1, and

Fn = ∂{u > 0} ∩ {x · n = min
{u>0}

(x · n)}

is a facet of ∂{u > 0} then

max
Fn

|∇u(x)| ≥ Q(n).



Convex comparison

Theorem
A supersolution of (Ext) is minimal if and only if it satisfies the
weak subsolution property. In other words, a supersolution that is
also a weak subsolution is the unique minimal supersolution.
Furthermore the minimal supersolution has convex superlevel sets.

Analogous previous results for classical Bernoulli problem:

▶ Beurling (‘57), Schaeffer (‘75), Acker (‘78), 2-d conformal
mapping techniques.

▶ Hamilton (‘82), Nash-Moser implicit function theorem idea,
also 2-d .

▶ Henrot and Shahgholian (‘97,‘02), and Bianchini (‘12,‘22).
Maximum principle techniques in all dimensions.

. .
F. and Smart (ARMA, 2019)

new proof in F. and Požár (preprint, 2024)



Quasiconcavity of the capacity gradient on a facet

Let K ⊂⊂ V both convex and compact, and V inner regular. Let
v be the capacity potential

∆v = 0 in V \ K ,

v = 1 on K ,

v = 0 on Rd \ V .

(2)

The super-level sets {v > t} are convex for all t ∈ (0, 1) and let Λ
be a tangent hyperplane to ∂V . Set F = ∂V ∩ Λ. Then 1/|∇v | is
convex on F .

Caffarelli & Spruck



Outline of comparison principle proofs

Background of the comparison proof:

▶ (Framework) We will aim to prove comparison between a
convex (sub / supersolution) and a general (super /
subsolution).

▶ (Regularization) We can always assume that the supersolution
has outer regular positivity set, and the subsolution has inner
regular positivity set by using inf / sup convolutions.

▶ (Dilations) We can create a touching point by dilation of the
supersolution v 7→ v(λx) for λ < 1. This also, conveniently,
makes the supersolution strict. Uses K star-shaped.



Convex supersolution touches weak subsolution from above

Lemma
Assume Q is upper semicontinuous. Suppose that v is
supersolution of (Ext) with {v > 0} convex, and u is a weak
subsolution of (Ext). Then v ≥ u.

This direction is easy: build a one-dimensional test function
touching u from above at x∗ with a too small slope.

x∗

{u > 0} {v > 0}



Supersolution touches convex weak subsolution from above
As discussed before the weak subsolution condition implies that

max
Fn

|∇u(x)| ≥ Q(n).

But it is not immediate to get a contradiction from this:

x∗
Y Fn

Figure: View of a 2-d boundary facet Fn. Subsolution definition is
saturated at x∗ which is not on the contact set Y with the supersolution.



Using convexity of 1/|∇u|

Lemma
Suppose that u is a weak subsolution with convex and inner
regular positive set {u > 0} and n ∈ Sd−1 then

min
Fn

|∇u| ≥ lim inf
n′→n

Q(n′).

Recall that an exposed point of a convex set X is a point x0 in ∂X
so that {x0} = {x ∈ X : x · n = miny∈X y · n}.

Use that the weak subsolution condition at an exposed point
x0 ∈ ∂{u > 0} gives

|∇u(x0)| = max
Fnx0

|∇u(x)| ≥ Q(nx0)

plus Straszewicz’s Theorem –every extreme point is a limit of
exposed points – and convexity of 1/|∇u| to conclude.



Naive continuous approximation works!

Lemma
Suppose that u is a weak subsolution with convex and inner regular
positive set {u > 0} and n ∈ Sd−1 and Q is continuous then

min
Fn

|∇u| ≥ Q(n).

Now for upper semicontinuous Q can just naively approximate
from above by Q j ↘ Q with Q j continuous. Corresponding
minimal supersolutions uj ↗ u∞ ≤ u, since uj are supersolutions
of Q equation. But u∞ is a convex supersolution and so easy
direction of comparison (convex supersolution and general weak
subsolution) implies u∞ ≥ u.



Regularity



Convexity implies free boundary C 1 regularity

Solution u of exterior problem
∆u = 0 in {u > 0} \ K ,

|∇u| = Q(nx) on ∂{u > 0},
u = 1 on K .

(Ext)

is quasiconvex. Can also show that {u > 0} is a C 1 domain. If
x0 ∈ ∂{u > 0} had a nontrivial supporting cone, blowing-up
contradicts Lipschitz regularity and non-degeneracy of u, since
positive harmonic functions in a (non-half-space) convex cone with
zero Dirichlet data are homogeneous of degree α > 1.



One-phase problem with an obstacle

A function u ∈ C (U) is a solution of the Bernoulli problem in U
with obstacle O from above if

{u = 0}

|∇u| = 1

|∇u| ≥ 1

O


∆u = 0 in {u > 0}
u = 0 in O∁

|∇u| = 1 on ∂{u > 0} ∩ O

|∇u| ≥ 1 on Λ := ∂{u > 0} ∩ ∂O.

Theorem (Chang-Lara and Savin, Contemp. Math. ‘19)

Let u solves the Bernoulli obstacle problem in B1 and 0 ∈ ∂′Λ, O a
C 2 obstacle. Suppose 0 ∈ ∂′Λ and u is ε0-flat in B1 then
u ∈ C 1,1/2(B1/2 ∩ {u > 0}).



One-phase problem with an obstacle

The regularity is proved by a (rigorous) asymptotic expansion
involving the thin obstacle problem. If u solves in B1 the flattened
obstacle problem{
∆u = 0 in {u > 0}
u = 0 in {xd ≥ 0}

and

{
|∇u| = 1 on ∂{u > 0} ∩ {xd > 0}
|∇u| ≥ 1 on ∂{u > 0} ∩ {xd = 0}.

and is ε-flat (sufficiently small universal)

(xd − ε)+ ≤ u(x) ≤ (xd + ε)+

then there is w solving the thin obstacle or Signorini problem in B1

with oscB1w ≤ 1 such that

u(x) = (xd − εw(x) + o(ε))+.

approach to free boundary regularity by De Silva ‘11



Simple anisotropy

Let’s return to the anistropic Bernoulli problem and consider now a
simple type of discontinuity

Q(n) =

{
2 n ∈ {±e2}
1 else

Solution u of the exterior problem is convex and therefore it solves
the Bernoulli obstacle problem with obstacle

O := {|x2| < max
x∈{u>0}

|x2|}.



Simple anisotropy
Solution u of the exterior problem is convex and therefore it solves
the Bernoulli obstacle problem with obstacle

O := {|x2| < max
x∈{u>0}

|x2|}.

u = 1∆u = 0u = 0

Figure: O is region between dashed lines. Drawn rotated by π/2.

Unfortunately this idea is limited to the case of convex data, and
to simple discontinuities where limn′→n Q(n′) exists but is not
equal to Q(n).



Regularity: non-convex case

Without convexity regularity problem seems a lot harder. Consider
the simple discontinuity at n = ed , as earlier. Can show a flat
asymptotic expansion: if u monotone in the ed direction and flat

(xd − ε)+ ≤ u(x) ≤ (xd + ε)+ in B1

then
u(x) = (xd + εw(x) + o(ε))+ in B1/2

where w solves the gradient degenerate Neumann problem

∆w = 0 in B+
1 , and min{∂dw , |∇′w |} = 0 on B ′

1.

forthcoming work with PhD student Zhonggan Huang



Regularity: non-convex case

The gradient degenerate Neumann problem

∆w = 0 in B+
1 , and min{∂dw , |∇′w |} = 0 on B ′

1. (3)

The contact set is Λ := {x ∈ B ′
1 : ∂dw > 0}.

Theorem (F. and Huang, forthcoming)

In d = 2, if w solves (3) then w ∈ C
1,1/2
loc (B+

1 ). In d ≥ 3 if

#w(Λ ∩ B1) < +∞ then w ∈ C
1,1/2
loc (B+

1 ).

forthcoming work with PhD student Zhonggan Huang



Questions

▶ Regularity theory beyond point discontinuities. For example in
d = 3: Q(n) = 1 + 1n·e3=0 “Saturn with its rings” type Q.

▶ Comparison principle without convexity beyond simple
discontinuities (limits exist at every n but may not agree with
the value).

▶ Volume constrained problem: does there exist a (unique
modulo translation?) quasiconvex solution (supersolution and
weak subsolution) of

−∆u = λ in {u > 0},
|∇u| = Q(nx) on ∂{u > 0},´
Rd u = 1.

(Vol)

No apparent variational structure to help.



Thank you for your attention!


