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Contact angle hysteresis
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Model free boundary problem

Here | will study these issues in the context of the Bernoulli free
boundary problem, in a domain U

Au=0 in{u>0}NU
[Vu|=Q(x) on d{u>0}nU.

We assume @ : R? — (0, 00) is continuous and Z? periodic.
Associated energy

J(u; U) :/ [Vul? + Q(x)* 1,50y dx.
U

This arises in a certain linearization of capillary energy near
contact angle 0 or 7, but mainly | am viewing it as a slightly
simplified model still with many of the “nonlinear” issues of the
capillary free boundary problem.



Pinning interval

For p € RY\ {0} and look for solution u: RY — [0, 0) to

Au(x)=0 in{u>0}
|IVu(x)| = Q(x) on d{u> 0} (1)

sup(,soy |u(x) — p - x| < oo.

These are called plane-like solutions. Call a slope pinned if there
exists a plane-like solution with slope p. Define for e € S9~1

Qrec(€) = inf{a: aeis pinned} and Q.qv(e) = sup{a : aeis pinned}.



Example: laminar media and discrete model

@)

max Ql

Figure: Pinning interval plotted as a graph e — [Qrec(€), Qadv(€)] over
e € S'. Left: Pinning interval for laminar medium Q(x1,x) = Q1(x1).
Right: pinning interval from a related discrete Bernoulli free boundary

problem.
[F. and Smart, ARMA ‘19]



Known results and open issues

Theorem (Caffarelli and Lee ‘08, Kim ‘08, F. ‘21)

» For all a € [Qrec(€), Qaav(€)] there exists a strong Birkhoff
plane-like solution of (1) with slope .. The energy minimizing
slope (Q%)Y/2 is pinned.

> (d=2) e [Qecle), Qaav(€)] is upper semicontinuous,
continuous at irrational directions, left and right limits at
rational directions.

» Homogenization of minimal supersolutions for convex data.

Some challenging open issues, tough to address at this level of
generality:

» Computing the pinning interval analytically
> Are jumps at rational directions generic?
» Does [Qrec(€), Qadv(€)] have nonempty interior generically?

» Pinning interval in random media?



Dilute defect problem

Let g € Cc(By), the single defect profile, let § > 0 be the defect
size to defect spacing ratio:

{Au—O in {u>0}

_ _ x—z (2)
|Vu| = Qs(x) =1+ ,c70 q(*5%) on 9{u > 0}.

This is similar to the setting of Joanny and de Gennes’ ('84)
influential approach to modelling contact angle hysteresis.



Asymptotic expansion

Theorem (F. and Kim, preprint)

Let & € Z9 irreducible and e := é Then as 6 — 0

Q:fdv(e) =1+ 7d6d_1’5‘_1kadv(e) + O((Sd_l), and
Qhele) = 1+ 790 Hle| hiec(e) + o(3%7L).

> Constant v = 7 and g = 3d(d — 2)|By| in d > 3.

> |¢|71 is the density of Z9 lattice sites on the hyperplane
{x-e=0}.

» kiqv and k. measure the pinning effect of a single defect.



The single site problem



Single site problem

Consider viscosity solutions u of
Au=0 in {u> 0}
|[Vu| =1+ q(x) on d{u>0}.
Say that u is proper if it blows down to (xg)+

im u(rx)

r—0 r

= (xq)+ locally uniformly.



Far field asymptotics

Theorem
Let u be a proper solution of the single site problem (4). Then:

» (d =2) There is k € R so that
u(x) = xq + klog|x| + O(1) for x € {u>0}\ Bi.
» (d > 3) There are s € R and k € R so that

1 1 -
PERS + O(Md,l) as {u>0} 3 x— oo.

u(x) =xq+s—k



Pinning on a single site in d = 2




Pinning on a single site in d = 2

Pulling a free boundary past a defect

(Bu=0in {u> 0} Bg(0)
[Vu| =1+ q(x) on 0{u > 0} N Bg(0)
u(x) = (x4 + klog R)+ on 9Bg(0).




Pinning thresholds at scale R

Au=0 in {u>0}nBgr(0)
|[Vul =1+ q(x) on d{u > 0} N Bg(0) (5)
u(x) = (x4 + klog R)+ on 0Bg(0).

Definition
Define u:&'\f to be the minimal supersolution of (5) above
(x4 — 1)4. Define

, =sup{k: {uadv =0} N B (0) # B} > 0. (6)

This is the largest value of k such that some solution of (5) is
pinned on the defect.



Pinning thresholds at scale R

Au=0 in {u>0}nBgr(0)
|[Vul =1+ q(x) on 0{u > 0} N Br(0) (5)
u(x) = (xqg + klog R)+ on 9Bg(0).

Definition
Define uist to be the maximal subsolution of (5) below (xg + 1)4.
Define
R - KR T
= inf{k: {wec >0} N BL(0)#0} <O0. (6)

’{rec

This is the most negative value of k such that some solution of (5)
is pinned on the defect.



Limit as R — oo
Definition

Kady := sup {k : 3 a proper solution u of (4) with capacity k}
krec := inf {k : 3 a proper solution u of (4) with capacity k}.

Theorem
» The limits hold

lim kR, = kagy and lim &R = kec.
R—o0 R—o0
» For every k € [keec, kadv) there exists a proper solution of (4)
with capacity k.

Description of proper single single site solutions is a bit different in
d > 3, | will skip that here.



The periodic array of defects



Asymptotic expansion: first thoughts

We want to establish the expansion
Q€)= 1+ 73071 E haan(€) + 0(89 7).

We do it by proving asymptotic upper and lower bounds.
» To prove the lower bound
Q;de(e)

. -1
||gn_>|ng > Ydkadv(€)

it suffices to construct supersolution barriers almost achieving
this slope.



Asymptotic expansion: first thoughts

We want to establish the expansion
Qauv(€) = 1+ 789 €] kaav(€) + o(39 7).

We do it by proving asymptotic upper and lower bounds.
» To prove the upper bound
Qaédv(e)

-1
limsup —292 "2~ < 4 kagu(e
imsup =55qT— = adv(e€)

is trickier, we need to analyze a sequence of plane-like
solutions achieving the maximal slope.



Intuition



Cell problem of semipermeable membranes

The following auxiliary problem describes the profile of u® away
from the defects, here Z = Z9 N {x - e = 0} rotated to be on ORY,

Aw =0 in RY,
Ow=1 on 8Ri\Z 7
limysz @(x — 2)lw(x) = -c forz e Z, (7)

<8de(-,xd))’ =0 for x4 > 0.




Cell problem of semipermeable membranes

The following auxiliary problem describes the profile of u® away
from the defects, here Z = Z9 N {x - e = 0} rotated to be on IRY,

Aw =0 in RY,

Dy =1 on 9R? \ Z

limy_y, ®(x — 2)Lw(x) = %c* forze Z, (7)
(O w(-,x4)) =0 for x4 > 0.

Lemma
There exists a solution of (7) bounded in {xq > 1} if and only if
c. = |0z| = |€|. This solution is unique modulo adding a constant.



Cell problem of semipermeable membranes

The following auxiliary problem describes the profile of u® away

from the defects, here Z = Z9 N {x - e = 0} rotated to be on JRY,

Aw=0 in R,
Og,w=1 on 9RY \ Z
limy_s, ®(x — 2)"tw(x) = %dc* forz e Z,
(O w(-,x4)) =0 for x4 > 0.

Here it is just a modified Green's function for a periodic
Neumann problem:

Aw = 0 in Ri,
Oqw=1-3,.-¢6, ondRY
(O w(+,xq4)) =0 for x4 > 0.

(7)



Expansion of the plane-like solution

Theorem (F. and Kim, preprint)

Let e € 8971 rational. If u® are strong Birkhoff plane-like solutions
with the maximal slope div(e), then, modulo a period translation,
there are s; — 0 so that

lim 2 [Q () x - &+ 55— ()] = Kaau(e)eox)

locally uniformly in {x-e > 0}.

A parallel result holds for strong Birkhoff plane-like solutions with
the minimal slope with Q% and kaqy replaced by Q°.. and kiec.

adv rec



Future directions



Future directions

» |rrational directions

» [s the pinning interval discontinuous in the normal direction e
for finite §7

» Random point process of defects

» Capillary free boundary problem for minimal surfaces



Thank you for your attention!



Contact angle hysteresis: phenomenological discussion

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle 0 e,
only moves outward above the advancing angle 6,4,. Here consider
Orec = 5 in an evaporating drop:

Air
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