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Contact angle hysteresis
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Fig. 1 – Rough surface in contact with a reservoir. A small displacement dz of the imbibition front
of height z is considered.

Fig. 2 – Microstructured surface with regular micronic spikes used for the experiment. Surface
parameters can accurately be estimated from the picture. We get r = 1.3 and φS = 5%.

where γSL, γSV and γ are, respectively, the solid/liquid, solid/vapor and liquid/vapor inter-
facial tensions. The first term in eq. (1) is related to the replacement of a dry solid by a wet
one. It is proportional to the wetted area, i.e. to the factor (r − φS). The second term is
less usual in impregnation processes: it is related to the creation of a liquid/vapor interface
associated with the film propagation. Note that gravity was ignored in (1), which corresponds
to textures of small size (much smaller than the capillary length) and small heights. The
gravity-limited case is treated in the appendix.

The liquid should rise if dE is negative. Introducing Young’s law (γ cos θ = γSV − γSL)
gives, as a condition for imbibition,

θ < θc with cos θc =
1 − φS

r − φS
, (2)

where θ is the equilibrium contact angle of the liquid on an ideal flat surface of the same
chemical composition.

Criterion (2) (logically) appears as intermediate between wetting and wicking criteria. For
a flat surface (r → 1), the surface is wetted if the contact angle reaches 0 (θc = 0), while
a porous medium (r → ∞) is invaded for liquids having a contact angle smaller than π/2
(θc = π/2). More generally, since we have r > 1 and φS < 1, eq. (2) always defines a critical
contact angle intermediate between 0 and π/2. Thus, the ability of a textured surface to drive
a liquid can be tuned by its surface design. For a given surface composition and liquid (i.e.,
fixing θ), the nature of the texture (which determines r and φS) decides if condition (2) is
satisfied, or not. In a general case (disordered surfaces), the parameters r and φS are deeply
intricate (and φS may depend on θ). However, the use of micropatterned surfaces allows to
decouple these two parameters, and even to treat them as independent, which is now discussed
using such a model surface.
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Fig. 3 – Pinning of the contact lines on the corners of the crenellations which ensures a constant value
for the surface fraction φS.

Fig. 4 – Metastable square drop of ethyl malonate (θ = 32◦) on the structured surface. The contact
line follows the directions of the rows.

Surfaces with a controlled design. – Figure 2 shows a surface achieved by Marzolin by
casting a sol-gel silicate on a silicon wafer [8]. It consists in spikes (typical size one micron)
which are regularly spaced. We used this model surface to test a possible invasion of the
texture by various liquids.

For having a partial wetting with oils, octadecyl trichlorosilanes were grafted on the sample.
A planar silicon wafer where the same molecules were grafted was used as a reference surface,
allowing us to measure the advancing contact angle θ. The measurements were done optically
with an accuracy of 5◦ and the contact angle hysteresis on these surfaces was found to be
small (< 10◦).

Then, experiments similar to the one sketched in fig. 1 were realized with different liquids
(i.e. various contact angles). The sample was partially immersed in a reservoir of liquid, and
the existence of an invasion (or not) was monitored, together with the dynamics of the rise.
The film was easily detected thanks to the darkening it induced on the sample. Our major
result is the observation of an invading film climbing up to the top of the sample (typically
one centimeter) for liquids having a small contact angle. A threshold in contact angle was
indeed observed, above which the invasion was not observed. The value of this threshold was
found to be between 30◦ and 35◦.

The surface roughness r is easy to estimate from SEM (scanning electronic microscopy)
images and is r = 1.30 (±0.05). The solid fraction φS on such a surface should be independent
of the contact angle θ, because of the possibility for the contact lines to pin on the corners of
the crenellations (fig. 3) [9]. If the angle is larger than 0, the top of the spikes remains dry;
in the same time, an angle smaller than π/2 makes favorable the filling of the texture by the
liquid. In such conditions, the parameter φS is just the ratio of the area of the top of the
spikes over the total area of the sample, which is 5% here [10]. Then, relation (2) predicts a
value of θc equal to 40◦.

This value is close to the observed one—but we consider as significant the small difference
between both. Criterion (2) is thermodynamic, and metastable states can also be achieved
because there are activation barriers to jump for the contact line. This is related to the
disconnected nature of the texture: if we easily understand how a wetting liquid can invade
a continuous groove in a solid [11], it is less obvious to figure out how the contact line pinned
on a row of spikes can “know” that there is another row ahead. (Thus, hysteresis can occur:
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Model free boundary problem

Here I will study these issues in the context of the Bernoulli free
boundary problem, in a domain U{

∆u = 0 in {u > 0} ∩ U

|∇u| = Q(x) on ∂{u > 0} ∩ U.

We assume Q : Rd → (0,∞) is continuous and Zd periodic.
Associated energy

J(u;U) =

ˆ
U
|∇u|2 + Q(x)21{u>0} dx .

This arises in a certain linearization of capillary energy near
contact angle 0 or π, but mainly I am viewing it as a slightly
simplified model still with many of the “nonlinear” issues of the
capillary free boundary problem.



Pinning interval

For p ∈ Rd \ {0} and look for solution u : Rd → [0,∞) to
∆u(x) = 0 in {u > 0}
|∇u(x)| = Q(x) on ∂{u > 0}
sup{u>0} |u(x)− p · x | < ∞.

(1)

These are called plane-like solutions. Call a slope pinned if there
exists a plane-like solution with slope p. Define for e ∈ Sd−1

Qrec(e) = inf{α : αe is pinned} and Qadv(e) = sup{α : αe is pinned}.



Example: laminar media and discrete model

minQ1 maxQ1

⟨Q2⟩1/2

1

Figure: Pinning interval plotted as a graph e 7→ [Qrec(e),Qadv(e)] over
e ∈ S1. Left: Pinning interval for laminar medium Q(x1, x2) = Q1(x1).
Right: pinning interval from a related discrete Bernoulli free boundary
problem.

[F. and Smart, ARMA ‘19]



Known results and open issues

Theorem (Caffarelli and Lee ‘08, Kim ‘08, F. ‘21)

▶ For all α ∈ [Qrec(e),Qadv(e)] there exists a strong Birkhoff
plane-like solution of (1) with slope α. The energy minimizing
slope ⟨Q2⟩1/2 is pinned.

▶ (d = 2) e 7→ [Qrec(e),Qadv(e)] is upper semicontinuous,
continuous at irrational directions, left and right limits at
rational directions.

▶ Homogenization of minimal supersolutions for convex data.

Some challenging open issues, tough to address at this level of
generality:

▶ Computing the pinning interval analytically

▶ Are jumps at rational directions generic?

▶ Does [Qrec(e),Qadv(e)] have nonempty interior generically?

▶ Pinning interval in random media?



Dilute defect problem

Let q ∈ Cc(B1), the single defect profile, let δ > 0 be the defect
size to defect spacing ratio:{

∆u = 0 in {u > 0}
|∇u| = Qδ(x) := 1 +

∑
z∈Zd q( x−z

δ ) on ∂{u > 0}.
(2)

This is similar to the setting of Joanny and de Gennes’ (‘84)
influential approach to modelling contact angle hysteresis.



Asymptotic expansion

Theorem (F. and Kim, preprint)

Let ξ ∈ Zd irreducible and e := ξ
|ξ| . Then as δ → 0

Qδ
adv(e) = 1 + γdδ

d−1|ξ|−1kadv(e) + o(δd−1), and

Qδ
rec(e) = 1 + γdδ

d−1|ξ|−1krec(e) + o(δd−1).
(3)

▶ Constant γ2 = π and γd = 1
2d(d − 2)|B1| in d ≥ 3.

▶ |ξ|−1 is the density of Zd lattice sites on the hyperplane
{x · e = 0}.

▶ kadv and krec measure the pinning effect of a single defect.



The single site problem



Single site problem

Consider viscosity solutions u of{
∆u = 0 in {u > 0}
|∇u| = 1 + q(x) on ∂{u > 0}.

(4)

Say that u is proper if it blows down to (xd)+

lim
r→0

u(rx)

r
= (xd)+ locally uniformly.



Far field asymptotics

Theorem
Let u be a proper solution of the single site problem (4). Then:

▶ (d = 2) There is k ∈ R so that

u(x) = xd + k log |x |+ O(1) for x ∈ {u > 0} \ B1.

▶ (d ≥ 3) There are s ∈ R and k ∈ R so that

u(x) = xd + s − k
1

|x |d−2
+O(

1

|x |d−1
) as {u > 0} ∋ x → ∞.



Pinning on a single site in d = 2



Pinning on a single site in d = 2

Pulling a free boundary past a defect
∆u = 0 in {u > 0} ∩ BR(0)

|∇u| = 1 + q(x) on ∂{u > 0} ∩ BR(0)

u(x) = (xd + k logR)+ on ∂BR(0).



Pinning thresholds at scale R


∆u = 0 in {u > 0} ∩ BR(0)

|∇u| = 1 + q(x) on ∂{u > 0} ∩ BR(0)

u(x) = (xd + k logR)+ on ∂BR(0).

(5)

Definition
Define uk,Radv to be the minimal supersolution of (5) above
(xd − 1)+. Define

κRadv := sup{k : {uk,Radv = 0} ∩ B1(0) ̸= ∅} ≥ 0. (6)

This is the largest value of k such that some solution of (5) is
pinned on the defect.



Pinning thresholds at scale R


∆u = 0 in {u > 0} ∩ BR(0)

|∇u| = 1 + q(x) on ∂{u > 0} ∩ BR(0)

u(x) = (xd + k logR)+ on ∂BR(0).

(5)

Definition
Define uk,Rrec to be the maximal subsolution of (5) below (xd + 1)+.
Define

κRrec := inf{k : {uk,Rrec > 0} ∩ B1(0) ̸= ∅} ≤ 0. (6)

This is the most negative value of k such that some solution of (5)
is pinned on the defect.



Limit as R → ∞
Definition

kadv := sup {k : ∃ a proper solution u of (4) with capacity k}
krec := inf {k : ∃ a proper solution u of (4) with capacity k} .

Theorem
▶ The limits hold

lim
R→∞

κRadv = kadv and lim
R→∞

κRrec = krec.

▶ For every k ∈ [krec, kadv) there exists a proper solution of (4)
with capacity k.

Description of proper single single site solutions is a bit different in
d ≥ 3, I will skip that here.



The periodic array of defects



Asymptotic expansion: first thoughts

We want to establish the expansion

Qδ
adv(e) = 1 + γdδ

d−1|ξ|−1kadv(e) + o(δd−1).

We do it by proving asymptotic upper and lower bounds.

▶ To prove the lower bound

lim inf
δ→0

Qδ
adv(e)− 1

δd−1
≥ γdkadv(e)

it suffices to construct supersolution barriers almost achieving
this slope.



Asymptotic expansion: first thoughts

We want to establish the expansion

Qδ
adv(e) = 1 + γdδ

d−1|ξ|−1kadv(e) + o(δd−1).

We do it by proving asymptotic upper and lower bounds.

▶ To prove the upper bound

lim sup
δ→0

Qδ
adv(e)− 1

δd−1
≤ γdkadv(e)

is trickier, we need to analyze a sequence of plane-like
solutions achieving the maximal slope.



Intuition



Cell problem of semipermeable membranes

The following auxiliary problem describes the profile of uδ away
from the defects, here Z = Zd ∩ {x · e = 0} rotated to be on ∂Rd

+,
∆ω = 0 in Rd

+,
∂xdω = 1 on ∂Rd

+ \ Z
limx→z Φ(x − z)−1ω(x) = 1

γd
c∗ for z ∈ Z,

⟨∂xdω(·, xd)⟩′ = 0 for xd > 0.

(7)
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The following auxiliary problem describes the profile of uδ away
from the defects, here Z = Zd ∩ {x · e = 0} rotated to be on ∂Rd

+,
∆ω = 0 in Rd

+,
∂xdω = 1 on ∂Rd

+ \ Z
limx→z Φ(x − z)−1ω(x) = 1

γd
c∗ for z ∈ Z,

⟨∂xdω(·, xd)⟩′ = 0 for xd > 0.

(7)

Lemma
There exists a solution of (7) bounded in {xd ≥ 1} if and only if
c∗ = |□Z | = |ξ|. This solution is unique modulo adding a constant.



Cell problem of semipermeable membranes

The following auxiliary problem describes the profile of uδ away
from the defects, here Z = Zd ∩ {x · e = 0} rotated to be on ∂Rd

+,
∆ω = 0 in Rd

+,
∂xdω = 1 on ∂Rd

+ \ Z
limx→z Φ(x − z)−1ω(x) = 1

γd
c∗ for z ∈ Z,

⟨∂xdω(·, xd)⟩′ = 0 for xd > 0.

(7)

Here it is just a modified Green’s function for a periodic
Neumann problem:

∆ω = 0 in Rd
+,

∂xdω = 1−∑
z∈Z c∗δz on ∂Rd

+

⟨∂xdω(·, xd)⟩′ = 0 for xd > 0.
(8)



Expansion of the plane-like solution

Theorem (F. and Kim, preprint)

Let e ∈ Sd−1 rational. If uδ are strong Birkhoff plane-like solutions
with the maximal slope Qδ

adv(e), then, modulo a period translation,
there are sδ → 0 so that

lim
δ→0

1

δd−1
[Qδ

adv(e) x · e + sδ − uδ(x)] = kadv(e)ω(x)

locally uniformly in {x · e > 0}.

A parallel result holds for strong Birkhoff plane-like solutions with
the minimal slope with Qδ

adv and kadv replaced by Qδ
rec and krec.



Future directions



Future directions

▶ Irrational directions

▶ Is the pinning interval discontinuous in the normal direction e
for finite δ?

▶ Random point process of defects

▶ Capillary free boundary problem for minimal surfaces



Thank you for your attention!



Contact angle hysteresis: phenomenological discussion

Slow condensation / evaporation or other slow volume forcing.
Contact line only moves inwards below the receding angle θrec ,
only moves outward above the advancing angle θadv . Here consider
θrec = π

2 in an evaporating drop:
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