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Liquid drops on rough surfaces
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Liquid drops on rough surfaces
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Capillarity model
Energy of liquid (L), vapor (V) and solid (S) configuration

E=ow|0LNOV|+ o5 |0SNIL| + osy|0SNIV|
Energy minimizers satisfy contact angle condition,

Cos 9y = (Usv — USL)/ULV-

Rough surface has contact angle hysteresis, range of stable
effective contact angles (pinning interval):
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A simpler model

Alt-Caffarelli energy functional of a height profile u: RY — [0, c0):
T = [ QU L)) + V)

Q is Z9-periodic and positive.
Associated Euler-Lagrange equation:

Auc =0 in {u* >0} and
Vuf| = Q(%) on o{v® > 0}.



Interval of pinned slopes

For p € R?\ {0} and look for solution v : RY — [0, 00) to

Av(x)=0 in{v >0}
IVv(x)] = Q(x) on d{v >0}

supge [v(x) = (p - x)+| < .

These are called plane-like solutions. Call a slope pinned if there
exists a plane-like solution with slope p. Define for e € S9-1

Q.(e) = inf{a: aeis pinned} and Q*(e) =sup{a : aeis pinned}.

(Caffarelli and de la Llave, Caffarelli and Lee)



Pinned slope visualization
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Limit shapes

Complicated multiscale problem

Auf =0in {v° >0} and |Vu°

= Q(%) on 0{v* > 0}.
Effective problem describes large scale shapes as ¢ — 0
Ad=0in{d>0} and |Via| € [Q.(nx), Q" (ny)] on O{d > 0}.

Recovery sequence: given a solution u to the effective problem is
there a sequence u® solving the e-problem and v — wu.

Theorem (F., ARMA '21)

Results in d = 2:
» Existence of recovery sequences (convex data).
» Effective problem solutions correspond to large scale shapes of
rough surface solutions.
» Continuity/discontinuity of pinning interval + examples.
» Formation of facets at the limit problem.



An “even simpler’ model

Discrete Alt-Caffarelli functional, for u: Z¢ — [0,00) and A C Z9
define:

Ju] = Lusoy(x) +d > (u(y) — u(x)*.
A

[x=y|=1, {x,y}NA#D

Euler-Lagrange equation with respect to single site variations:

Aygu=0 in{u>0}
Azdu < 1 on aout{u > 0},
u> on dip{u > 0}.

Effective problem describes large scale shapes

{AE:O in {7 >0}
|Vi| € [Hi(nx), H*(nx)] on 0{a > 0}



Discrete model: minimal supersolutions



An associated evolution

Let N € N large and u(x,0) = N1, 0)(x).
Define an evolution, for t € N and x € Z9 \ By,
u(x, t +1) = u(x, t) 4+ (2d) " max{0, Agau(x, t) — Ly—03 (%)}

It is not hard to check that this stabilizes in the limit t — oo to
the minimal supersolution of

Agauy =0 i B
{ zauy =0 in {uy >0} \ By, with uy = N on By.

AZdUN <1 on 5‘0ut{uN > 0} \ By,

This is basically the boundary sandpile model introduced by
Aleksanyan and Shahgholian.



Scaling limit?




Scaling limit?

Consider the minimal solutions of

{Azdu,\, =0 in{uy>0}\ By,

with uy = N on By.
Ajauy <1 on Ooue{uy > 0} \ By,

Lipschitz estimate, standard in free boundary regularity theory, tells
us that the rescalings
dn(x) = N~ tupy(Nx)
are uniformly bounded and equicontinuous.
We need to show that the limit
o= o

solves a PDE.



Effective free boundary condition

For e € S971 define H*(e) to be the largest a such that there
exists a global supersolution

Ayav <0 in {v>0}, Agav <1 on Oou{v >0}

and
v(0) =0 with v(x) > a(e- x)4.

Theorem (Smart and F., ARMA '18)

The @iy converge uniformly on RY to & which is the unique
viscosity solution (and minimal supersolution) of

{AU:O in {i>0}\ By,

_ . _ with i =1 on By.
|Va| = H*(ny) on d{d > 0} \ By,

Furthermore {& > 0} is convex and has a nontrivial facet at every
rational direction.



Structure of the effective PDE
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Structure of the effective PDE

Theorem (Smart and F., ARMA '18)
Define S : 2nT¢ — R by S(#) = — log(1 + % 27:1 cos®;), and let

§:79 — C be the corresponding Fourier transform. Then Sis
real and positive on Z9 and for all e € S971,

H*(e):\/;dexp@ > §(k)>.



Minimal supersolution

Need to show existence of a sequence of (rescaled) discrete
supersolutions iy converging to . Theory of viscosity solutions
allows us to localize and only argue for smooth test functions.

New theory needs to be developed due to the discontinuous free
boundary condition.

Theorem (Smart and F., ARMA '18)

Strict comparison principle holds for
Au=0 in {u>0} with H*(Vu)=1 on 0{u> 0}

when d = 2 or in arbitrary dimension and convex setting.



Continuous model



Outline

Recall the continuous model

AuF =0 in {u® > 0}
Vel = Q(%) on 0{v® > 0}.

» Step 1: Identify the minimal and maximal effective slopes

> Plane-like solutions (Caffarelli-de la Llave, Caffarelli-Lee, Kim)
» Step 2: Convergence of minimal and maximal solutions

» Comparison principle for limit problem (Smart and F.)

» Foliations/laminations by plane-like solutions (F.)

> Step 3: Recovery sequences for general solutions (F.)



Effective slopes

For p € RY\ {0} and look for solution v : R — [0, 00) to

Av(x)=0 in{v >0}
IVv(x)] = Q(x) on d{v >0}

supge [v(x) = (P x)+| < 0.

These are called plane-like solutions. Call a slope pinned if there
exists a plane-like solution with slope p. Define for e € S9-1

Q.(e) = inf{a: aeis pinned} and Q*(e) =sup{«a: aeis pinned}.



Recovery sequence: geometric viewpoint

A
N

N
u\h\\\‘

N
N
0

N
\

\
N
N

X

A




Recovery sequence: geometric viewpoint
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Recovery sequence: geometric viewpoint



Recovery sequence: geometric viewpoint
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Recovery sequence: geometric viewpoint

s O



Recovery sequence: geometric viewpoint

o{a > 0}



Recovery sequence: geometric viewpoint




Recovery sequence: geometric viewpoint



The takeaway

Free boundary problem with rough surface

Av® =0in {u° >0} and |[Vu'| = Q(%) on 0{u" > 0}.

Effective pinning problem

Ad=0in{d>0} and |Vi| € [Q«(nx), Q" (nx)] on O{d > 0}.

>

| 2

The pinning problem describes large scale shapes of rough
surface solutions as ¢ — 0.

Qualitative properties (e.g. facets) of effective free boundary
depends on continuity properties of the pinning interval.

Pinning interval properties can be studied via the plane-like
solutions.

Minimal and maximal solutions play a very important role.



Future Directions / Open Questions

» Optimal regularity of the free boundary for the discontinuous
free boundary condition. We know at least C! from convexity
+ blow up argument.

» Presence of facets with co-dimension > 2.

» General comparison principle and explaining facet shapes in
d>3.

» Shapes of local minimizers for the discrete model.

» Energy based approach, perhaps via dissipative evolutions,
volume constrained solutions.

» Random media.

» What phenomena need to be explained with rough surface (as
opposed to chemically patterned)?



Thank you for your attention!



Discontinuities in H* cause facets
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