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Liquid drops on rough surfaces
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Fig. 1 – Rough surface in contact with a reservoir. A small displacement dz of the imbibition front
of height z is considered.

Fig. 2 – Microstructured surface with regular micronic spikes used for the experiment. Surface
parameters can accurately be estimated from the picture. We get r = 1.3 and φS = 5%.

where γSL, γSV and γ are, respectively, the solid/liquid, solid/vapor and liquid/vapor inter-
facial tensions. The first term in eq. (1) is related to the replacement of a dry solid by a wet
one. It is proportional to the wetted area, i.e. to the factor (r − φS). The second term is
less usual in impregnation processes: it is related to the creation of a liquid/vapor interface
associated with the film propagation. Note that gravity was ignored in (1), which corresponds
to textures of small size (much smaller than the capillary length) and small heights. The
gravity-limited case is treated in the appendix.

The liquid should rise if dE is negative. Introducing Young’s law (γ cos θ = γSV − γSL)
gives, as a condition for imbibition,

θ < θc with cos θc =
1 − φS

r − φS
, (2)

where θ is the equilibrium contact angle of the liquid on an ideal flat surface of the same
chemical composition.

Criterion (2) (logically) appears as intermediate between wetting and wicking criteria. For
a flat surface (r → 1), the surface is wetted if the contact angle reaches 0 (θc = 0), while
a porous medium (r → ∞) is invaded for liquids having a contact angle smaller than π/2
(θc = π/2). More generally, since we have r > 1 and φS < 1, eq. (2) always defines a critical
contact angle intermediate between 0 and π/2. Thus, the ability of a textured surface to drive
a liquid can be tuned by its surface design. For a given surface composition and liquid (i.e.,
fixing θ), the nature of the texture (which determines r and φS) decides if condition (2) is
satisfied, or not. In a general case (disordered surfaces), the parameters r and φS are deeply
intricate (and φS may depend on θ). However, the use of micropatterned surfaces allows to
decouple these two parameters, and even to treat them as independent, which is now discussed
using such a model surface.
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Fig. 3 Fig. 4

Fig. 3 – Pinning of the contact lines on the corners of the crenellations which ensures a constant value
for the surface fraction φS.

Fig. 4 – Metastable square drop of ethyl malonate (θ = 32◦) on the structured surface. The contact
line follows the directions of the rows.

Surfaces with a controlled design. – Figure 2 shows a surface achieved by Marzolin by
casting a sol-gel silicate on a silicon wafer [8]. It consists in spikes (typical size one micron)
which are regularly spaced. We used this model surface to test a possible invasion of the
texture by various liquids.

For having a partial wetting with oils, octadecyl trichlorosilanes were grafted on the sample.
A planar silicon wafer where the same molecules were grafted was used as a reference surface,
allowing us to measure the advancing contact angle θ. The measurements were done optically
with an accuracy of 5◦ and the contact angle hysteresis on these surfaces was found to be
small (< 10◦).

Then, experiments similar to the one sketched in fig. 1 were realized with different liquids
(i.e. various contact angles). The sample was partially immersed in a reservoir of liquid, and
the existence of an invasion (or not) was monitored, together with the dynamics of the rise.
The film was easily detected thanks to the darkening it induced on the sample. Our major
result is the observation of an invading film climbing up to the top of the sample (typically
one centimeter) for liquids having a small contact angle. A threshold in contact angle was
indeed observed, above which the invasion was not observed. The value of this threshold was
found to be between 30◦ and 35◦.

The surface roughness r is easy to estimate from SEM (scanning electronic microscopy)
images and is r = 1.30 (±0.05). The solid fraction φS on such a surface should be independent
of the contact angle θ, because of the possibility for the contact lines to pin on the corners of
the crenellations (fig. 3) [9]. If the angle is larger than 0, the top of the spikes remains dry;
in the same time, an angle smaller than π/2 makes favorable the filling of the texture by the
liquid. In such conditions, the parameter φS is just the ratio of the area of the top of the
spikes over the total area of the sample, which is 5% here [10]. Then, relation (2) predicts a
value of θc equal to 40◦.

This value is close to the observed one—but we consider as significant the small difference
between both. Criterion (2) is thermodynamic, and metastable states can also be achieved
because there are activation barriers to jump for the contact line. This is related to the
disconnected nature of the texture: if we easily understand how a wetting liquid can invade
a continuous groove in a solid [11], it is less obvious to figure out how the contact line pinned
on a row of spikes can “know” that there is another row ahead. (Thus, hysteresis can occur:
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Liquid drops on rough surfaces

(yt¼ 1s4yt¼ 2s). The advancing contact line subsequently
becomes pinned at the next row of pillars (t¼ 3 s) and the
apparent contact angle continues to increase (t¼ 4 s) until it
satisfies the local depinning criteria similar to that at t¼ 1 s. As a
result, despite the intrinsic hydrophilic (o90!) behaviour of the
flat surface, the corresponding rough surface demonstrated an
apparent hydrophobic behaviour where the advancing contact
angles exceeded 90!. This observation contradicts the classical
Wenzel equation, which predicts that the degree of hydrophilicity
(hydrophobicity) of a surface increases upon increasing the
roughness19. However, the Wenzel equation does not capture the
advancing behaviour of these droplets since it does not account
for the role of the local contact line pinning in the advancing
stage (Fig. 2c). During a typical advancing stage, the portion of
the contact line on the top surface of a micropillar ‘1’ advances
with the local contact angle equal to the intrinsic contact angle on
an equivalent flat surface (yF,A). Once the advancing front
approaches the pillar edge, the contact line becomes pinned ‘2’
and the local contact angle is required to exceed yF,Aþ 90!, ‘3’ for
the front to advance further along the pillar sidewalls ‘4’. The high
energy barrier associated with the local depinning contact angles
of yF,Aþ 90! results in an apparent global pinning (everywhere
along the contact line) and the unusually high advancing contact
angle values on these otherwise hydrophilic (yF,Ao90!) surfaces.

Estimation of advancing contact angle. The contact angle
of a growing Cassie–Baxter droplet yCB,A on a chemically pat-
terned surface with circular hydrophobic defects or on a super-
hydrophobic surface (Fig. 3a) was previously32 shown to be
influenced by local contact line distortion and modelled as
follows:

cosyCB;A ¼
D
L

cosy1;Aþ 1# D
L

! "
cosy2;A ð1Þ

where y1,A and cosy2,A are the corresponding intrinsic advancing
contact angles of the two background surfaces comprising the

heterogeneous surface. Now, accounting for the contact line
pinning at the pillar edges (Fig. 2c) on the surfaces investigated in
this study where the local contact angle is required to exceed
yF,Aþ 90! for the front to advance further along the pillar
sidewalls (Fig. 3b), the apparent advancing contact angle of the
Wenzel-type droplets in our study can be computed by replacing
y1,A by yF,Aþ 90! and y2,A by yF,A

cosyA;0! ¼
D
L

cosðyF;Aþ 90!Þþ 1# D
L

! "
cosyF;A ð2Þ

The subscript 0! indicates the direction of the line-of-sight for the
side-view camera that, in this case, was parallel to the pillar rows
(Fig. 2a). The experiment detailing the advancing, contact line
pinning and receding modes of the droplet shown in Fig. 2 is also
shown in Supplementary Movie 1.

The top- and side-profile visualization of the entire micro-
scopic (diameterE200 mm) droplet during the contact line
pinning stage highlights an interesting asymmetry in the contact
angles along the two principle axes of symmetry on the surface.
The droplets in Fig. 4 were formed on a surface comprised of a
square array of cylindrical micropillars with diameter D¼ 7 mm,
pitch L¼ 20mm and height H¼ 13 mm. The images in Fig. 4a,b
were acquired during two different but highly repeatable
experiments, where the only difference was the line-of-sight for
the side-profile visualization of the droplet. The side-profile
images in Fig. 4a were captured such that the line-of-sight was
parallel to the pillar rows (0! line-of-sight, first axes of symmetry)
while the side-profile images in Fig. 4b were captured
corresponding to a line-of-sight of 45! (second axes of symmetry)
with respect to the pillar rows. Top-view images at t1 right after
the end of the advancing stage are shown on the top in Fig. 4a,b,
as they could not be obtained during the advancing stage due to
the obstruction from the piezo inkjet head used for liquid
addition (see Supplementary Movie 2). Comparison of the
corresponding side-profile images show an interesting anisotropy
in the contact angle, where the apparent contact angle along the
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Figure 1 | False-colour images of various droplet shapes and patterns on micropillar surfaces. (a) Side- and top-view images of the droplet. The images
on the left correspond to an advancing stage where the apparent contact angle is 490! and the actual contact line is not visible. The actual octagonal
contact line is visible in the image on the right once the droplet evaporates in a global pinning mode and the apparent contact angle is o90!. The two
side-view images acquired along the line-of-sight of 45! (second axes of symmetry, green dotted line) with respect to the pillar rows have been
artificially rotated by 45!. The side-view images along with contact angles. (b) Different droplet shapes obtained by varying cylindrical micropillar array
geometry. (c) The ability to pattern an array of microscopic droplets with excellent spatial control. Scale bar, 100mm and the geometry is defined in
Supplementary Table 1.
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Capillarity model

Energy of liquid (L), vapor (V ) and solid (S) configuration

E = σLV|∂L ∩ ∂V |+ σSL|∂S ∩ ∂L|+ σSV|∂S ∩ ∂V |

Energy minimizers satisfy contact angle condition,

cos θY = (σSV − σSL)/σLV.

Rough surface has contact angle hysteresis, range of stable
effective contact angles (pinning interval):

L V L V

S S

θadv
θrec



Pinned angle visualization



A simpler model

Alt-Caffarelli energy functional of a height profile u : Rd → [0,∞):

J[u] =

ˆ
U
Q( xε )2 1{u>0}(x) + |∇u(x)|2 dx

Q is Zd -periodic and positive.

Associated Euler-Lagrange equation:{
∆uε = 0 in {uε > 0} and

|∇uε| = Q( xε ) on ∂{uε > 0}.



Interval of pinned slopes

For p ∈ Rd \ {0} and look for solution v : Rd → [0,∞) to
∆v(x) = 0 in {v > 0}
|∇v(x)| = Q(x) on ∂{v > 0}
supRd |v(x)− (p · x)+| <∞.

These are called plane-like solutions. Call a slope pinned if there
exists a plane-like solution with slope p. Define for e ∈ Sd−1

Q∗(e) = inf{α : αe is pinned} and Q∗(e) = sup{α : αe is pinned}.

(Caffarelli and de la Llave, Caffarelli and Lee)



Pinned slope visualization



Limit shapes
Complicated multiscale problem

∆uε = 0 in {uε > 0} and |∇uε| = Q( xε ) on ∂{uε > 0}.

Effective problem describes large scale shapes as ε→ 0

∆ū = 0 in {ū > 0} and |∇ū| ∈ [Q∗(nx),Q∗(nx)] on ∂{ū > 0}.

Recovery sequence: given a solution u to the effective problem is
there a sequence uε solving the ε-problem and uε → u.

Theorem (F., ARMA ’21)

Results in d = 2:
I Existence of recovery sequences (convex data).

I Effective problem solutions correspond to large scale shapes of
rough surface solutions.

I Continuity/discontinuity of pinning interval + examples.
I Formation of facets at the limit problem.



An “even simpler” model

Discrete Alt-Caffarelli functional, for u : Zd → [0,∞) and Λ ⊂ Zd

define:

J[u] =
∑

Λ

1{u>0}(x) + d
∑

|x−y |=1, {x ,y}∩Λ 6=∅

(u(y)− u(x))2.

Euler-Lagrange equation with respect to single site variations:
∆Zdu = 0 in {u > 0}
∆Zdu ≤ 1 on ∂out{u > 0},
u ≥ 1

2d on ∂in{u > 0}.

Effective problem describes large scale shapes{
∆ū = 0 in {ū > 0}
|∇ū| ∈ [H∗(nx),H∗(nx)] on ∂{ū > 0}



Discrete model: minimal supersolutions



An associated evolution

Let N ∈ N large and u(x , 0) = N 1BN(0)(x).

Define an evolution, for t ∈ N and x ∈ Zd \ BN ,

u(x , t + 1) = u(x , t) + (2d)−1 max{0,∆Zdu(x , t)− 1{ut=0}(x)}.

It is not hard to check that this stabilizes in the limit t →∞ to
the minimal supersolution of{

∆ZduN = 0 in {uN > 0} \ BN ,

∆ZduN ≤ 1 on ∂out{uN > 0} \ BN ,
with uN = N on BN .

This is basically the boundary sandpile model introduced by
Aleksanyan and Shahgholian.



Scaling limit?



Scaling limit?

Consider the minimal solutions of{
∆ZduN = 0 in {uN > 0} \ BN ,

∆ZduN ≤ 1 on ∂out{uN > 0} \ BN ,
with uN = N on BN .

Lipschitz estimate, standard in free boundary regularity theory, tells
us that the rescalings

ūN(x) = N−1uN(Nx)

are uniformly bounded and equicontinuous.

We need to show that the limit

ū = lim
N→∞

ūN

solves a PDE.



Effective free boundary condition

For e ∈ Sd−1 define H∗(e) to be the largest α such that there
exists a global supersolution

∆Zd v ≤ 0 in {v > 0}, ∆Zd v ≤ 1 on ∂out{v > 0}

and
v(0) = 0 with v(x) ≥ α(e · x)+.

Theorem (Smart and F., ARMA ’18)

The ūN converge uniformly on Rd to ū which is the unique
viscosity solution (and minimal supersolution) of{

∆ū = 0 in {ū > 0} \ B1,

|∇ū| = H∗(nx) on ∂{ū > 0} \ B1,
with ū = 1 on B1.

Furthermore {ū > 0} is convex and has a nontrivial facet at every
rational direction.



Structure of the effective PDE



Structure of the effective PDE

Theorem (Smart and F., ARMA ‘18)

Define S : 2πTd → R by S(θ) = − log(1 + 1
d

∑d
j=1 cos θj), and let

Ŝ : Zd → C be the corresponding Fourier transform. Then Ŝ is
real and positive on Zd and for all e ∈ Sd−1,

H∗(e) =
1√
2d

exp

(
1
2

∑
k∈Zd : k·e=0

Ŝ(k)

)
.



Minimal supersolution

Need to show existence of a sequence of (rescaled) discrete
supersolutions ũN converging to ū. Theory of viscosity solutions
allows us to localize and only argue for smooth test functions.

New theory needs to be developed due to the discontinuous free
boundary condition.

Theorem (Smart and F., ARMA ‘18)

Strict comparison principle holds for

∆u = 0 in {u > 0} with H∗(∇u) = 1 on ∂{u > 0}

when d = 2 or in arbitrary dimension and convex setting.



Continuous model



Outline

Recall the continuous model{
∆uε = 0 in {uε > 0}
|∇uε| = Q( xε ) on ∂{uε > 0}.

I Step 1: Identify the minimal and maximal effective slopes
I Plane-like solutions (Caffarelli-de la Llave, Caffarelli-Lee, Kim)

I Step 2: Convergence of minimal and maximal solutions
I Comparison principle for limit problem (Smart and F.)
I Foliations/laminations by plane-like solutions (F.)

I Step 3: Recovery sequences for general solutions (F.)



Effective slopes

For p ∈ Rd \ {0} and look for solution v : Rd → [0,∞) to
∆v(x) = 0 in {v > 0}
|∇v(x)| = Q(x) on ∂{v > 0}
supRd |v(x)− (p · x)+| <∞.

These are called plane-like solutions. Call a slope pinned if there
exists a plane-like solution with slope p. Define for e ∈ Sd−1

Q∗(e) = inf{α : αe is pinned} and Q∗(e) = sup{α : αe is pinned}.



Recovery sequence: geometric viewpoint



Recovery sequence: geometric viewpoint
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Recovery sequence: geometric viewpoint

∂{ū > 0}



Recovery sequence: geometric viewpoint
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Recovery sequence: geometric viewpoint

∂{ū > 0}



The takeaway

Free boundary problem with rough surface

∆uε = 0 in {uε > 0} and |∇uε| = Q( xε ) on ∂{uε > 0}.

Effective pinning problem

∆ū = 0 in {ū > 0} and |∇ū| ∈ [Q∗(nx),Q∗(nx)] on ∂{ū > 0}.

I The pinning problem describes large scale shapes of rough
surface solutions as ε→ 0.

I Qualitative properties (e.g. facets) of effective free boundary
depends on continuity properties of the pinning interval.

I Pinning interval properties can be studied via the plane-like
solutions.

I Minimal and maximal solutions play a very important role.



Future Directions / Open Questions

I Optimal regularity of the free boundary for the discontinuous
free boundary condition. We know at least C 1 from convexity
+ blow up argument.

I Presence of facets with co-dimension ≥ 2.

I General comparison principle and explaining facet shapes in
d ≥ 3.

I Shapes of local minimizers for the discrete model.

I Energy based approach, perhaps via dissipative evolutions,
volume constrained solutions.

I Random media.

I What phenomena need to be explained with rough surface (as
opposed to chemically patterned)?



Thank you for your attention!



Discontinuities in H∗ cause facets

Idea of Caffarelli and Lee:

−→
|∇u|



Discontinuities in H∗ cause facets

Idea of Caffarelli and Lee:

−→
|∇u|



Discontinuities in H∗ cause facets

Idea of Caffarelli and Lee:

−→
|∇u|


