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Forced mean curvature flow

Region S; evolving by normal velocity with planar initial data
So={e-x <0}
Vp=—k+c(x)+F.

Here & is mean curvature, c(x) is inhomogeneous environment,
constant F is large scale external driving force (e.g. pressure,
contact angle, or magnetic field).

Level set form

ur = tr((/ — V‘”v(%lvz”)Dzu) + (c(x) + F)|Vu| with u(x,0)=e-x.

Model for
» Domain boundaries in magnetic materials
» Flow in porous media

» Contact line motion



Pinning interval

Expectation: there is a pinning interval [F.(e), F*(e)]

F*(e) = inf{F : lim inf X—f>0}.
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Front has positive speed outside of the pinning interval.

Question (Homogenization)
Does the propagating interface stay flat for F > F*(e) and
propagate with some asymptotic speed ¢(e)?

In general answer is no in all d > 2, so we need to refine the
question.



Propagation as a flat front

Periodic media:

» (Lions and Souganidis, 2005) Lipschitz estimates and
existence of correctors under the coercivity condition

iIQJ‘[(c(X) + F)? —(d — 1)|Dc|] > 0.

Lipschitz estimates can fail without this condition.

» (Dirr, Karali and Yip, 2008) If ¢ smooth and small C?-norm
then initially flat fronts stay flat and propagate with an
asymptotic speed. Note no coercivity condition.

» (Caffarelli and Monneau, 2014) Counter-example in d > 3,
homogenization in d = 2 without a Lipschitz estimate with

weak coercivity
inf(c + F) > 0.
Rd



Propagation as a flat front

Random media:

» (Armstrong and Cardaliaguet, 2015) Homogenization in d > 2
with the Lions-Souganidis coercivity condition, finite range
dependence random field.

Main Result (F., preprint 2019)

Homogenization in d = 2 with Caffarelli-Monneau coercivity (i.e.
inf(c + F) > 0), finite range dependence random field.



Examples

Fingering phenomenon, ¢ + F signed in 2-d:
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(Cardaliaguet, Lions and Souganidis, 2007)
(Dirr, Karali and Yip, 2008)



Examples

Fingering phenomenon, ¢ + F signed in 2-d:
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In this example F > F*(ey) (implied by Cardaliaguet, Lions and
Souganidis, 2007) but homogenization fails.



Examples

Fingering phenomenon, ¢ + F positive in 3-d
(Caffarelli and Monneau, 2014)
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Some open questions

Question
In d = 2, random or periodic media, does homogenization hold
when

F > sup F*(e)?
e
(Still wouldn't be a sharp condition, e.g. see laminar case)

Question

Does failure of homogenization imply the existence of unbounded
stationary solutions? A decomposition into travelling waves of
various speeds connecting stationary solutions?

» Laminar media (Cesaroni and Novaga, 2013), head and tail
speeds (Gao and Kim, 2018).



Arrival time function

Normalize F = 0 now.

It is useful to formulate the problem in terms of the arrival time
m(x, S), the first time the front started from the set S (often a
half-space S = {e - x < 0}) arrives at the point x.

Since ¢ > 0 can show that S5; = {m(x) < t} with m solving

tr((/ — %)DZm) +c(x)|[Vm =1 inR¥\ S

with boundary data m(x) =0 in S.



Positive random forcing in d = 2

In the case inf ¢ > 0 and finite range of dependence, propagating
fronts stay “flat”

Theorem (F., preprint)

For every direction e there is a deterministic asymptotic speed ¢(e)
so that the arrival time m of the front started from {x - e < 0}
satisfies,

P(|m(re) — E[m(re)]| > Ar'/?) < Ce

and )
E — | < B
Elm(re)] - g7l < Cr
The effective velocity € : S — (0, 00) is continuous with
logarithmic modulus of continuity.



Ideas in the proof

1. Large scale Lipschitz estimate of the arrival time (using weak
coercivity / controllability given by the condition inf ¢ > 0)

Im(x) = m(y)] < C+ Clx —yl.

2. Martingale decomposition and Azuma's inequality give bound
on the variance (Armstrong-Cardaliaguet-Souganidis,
Armstrong-Cardaliaguet).

3. Localized uniqueness result without local regularity.



Waiting time / large scale Lipschitz estimate



Caffarelli and Monneau’s moving ball barrier
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Caffarelli and Monneau’s moving ball barrier




Caffarelli and Monneau’s moving ball barrier




Lipschitz estimate

Above argument shows that, with R = R(d, inf ¢),

max m(y) < m(x) + C(d,inf c).
yGBR(x)

Iterate to get large scale Lipschitz.



Localized uniqueness



A little local regularity

Lemma
Let S C RY regular (radius R(inf ¢) interior ball condition).

m(x, S) — m(y, S)| < -2 el Velem(nmy) | _ |

— Cmin

(Souganidis, 1985)(Crandall and Lions, 1986)



Localized uniqueness




Previous localized uniqueness results:
(Armstrong and Cardaliaguet, 2015)(Gao and Kim, 2018)

Lemma
Let m* and m? be solutions of the arrival time problem,

—tr [(/ - Dgggm)pzm] +c(x)|Dm|=1 in R2\ S

with m' =0 in S'. Suppose that both S’ are regular, there is
R > 1 such that the ordering holds

5?2 c S* on Bg(0).
Then there exists C > 1 such that, ifs > 1 and R > f?(s) = s,

{m(x,5%) <s—1} c {m(x,S') < s} on Br_#(s)(0)-



Now iterate, using waiting time / large scale Lipschitz to regularize
at each iteration.

Lemma
Let m* and m? be solutions of the arrival time problem,

—tr [(/ - Dgggm)pzm] +c(x)|Dm|=1 in R2\ S

with m' = 0 in S'. Suppose that: m' both satisfy the large scale
Lipschitz estimate, and there is R > 1 such that the ordering holds

5?2 c S* on Bg(0).
Then, ifs>1,n<s, and R > R,(s) = ne®s,

{m?(x) <s— Cn} C {m*(x) < s} on Br_&,(5)(0)-



Future directions

» Flat fronts down to the pinning interval endpoint?
» Other models e.g. contact angle dynamics ...

» Is the depinning transition sharp? (could depend on the
model)



Other interesting issues



Recall

Expectation: there is a pinning interval [F.(e), F*(e)]
* . s g u(0,1)
F*(e) = inf{F : I|tr1!>réf === > 0}.

Front has positive speed outside of the pinning interval. Can also
define the depinning transition value

Fd(e) = inf{F : lim u(0,t) = +oo a.s}

Open questions:
1. Are the depinning and positive speed transitions the same?

2. What is the behavior of ¢(F) near the depinning threshold?
Conjectured universality &(F) ~ (F — F*)?.



Critical transitions

» Single critical transition in special i.i.d. fully discrete model
(Bodineau and Teixeira, 2015)

» Sub-ballistic propagation at the pinning interval endpoint in

partially discrete model with long range correlations (Dondl
and Scheutzow, 2017)



Depinning exponent

» Periodic media (related models) &(F) ~ (F — F*)Y/2 (Dirr
and Yip, 2006)

» Abstract setting &(F) ~ (F — F*)1=%/2 where & effective
dimension of medium (Scheel and Tikhomirov, 2017)

Model problem to think of in 1-d: suppose ¢ : R — R has
minimum 0 at 0 and

x=c(x)+ F ~ax?+F.

Pinning for F < 0, depinned for F > 0 takes time ~ F/2 to pass
through neighborhood of 0.



