Mean curvature flow with positive random forcing in 2-d

William M Feldman

IAS / University of Utah

Thanks to the Friends of the IAS for their support.

Forced mean curvature flow

Region S_t evolving by normal velocity with planar initial data $S_0 = \{e \cdot x \leq 0\}$

$$V_n = -\kappa + c(x) + F.$$

Here κ is mean curvature, c(x) is inhomogeneous environment, constant F is large scale external driving force (e.g. pressure, contact angle, or magnetic field).

Level set form

$$u_t = \operatorname{tr}((I - \frac{\nabla u \otimes \nabla u}{|\nabla u|^2})D^2u) + (c(x) + F)|\nabla u| \text{ with } u(x,0) = e \cdot x.$$

Model for

- Domain boundaries in magnetic materials
- Flow in porous media
- Contact line motion

Pinning interval

Expectation: there is a pinning interval $[F_*(e), F^*(e)]$

$$F^*(e) = \inf\{F : \lim_{t \to \infty} \inf_{x \in \partial S_t} \frac{x \cdot e}{t} > 0\}.$$

Front has positive speed outside of the pinning interval.

Question (Homogenization)

Does the propagating interface stay flat for $F > F^*(e)$ and propagate with some asymptotic speed $\bar{c}(e)$?

In general answer is no in all $d \ge 2$, so we need to refine the question.

Propagation as a flat front

Periodic media:

 (Lions and Souganidis, 2005) Lipschitz estimates and existence of correctors under the coercivity condition

$$\inf_{\mathbb{R}^d}[(c(x)+F)^2-(d-1)|Dc|]>0.$$

Lipschitz estimates can fail without this condition.

- ▶ (Dirr, Karali and Yip, 2008) If c smooth and small C^2 -norm then initially flat fronts stay flat and propagate with an asymptotic speed. Note no coercivity condition.
- (Caffarelli and Monneau, 2014) Counter-example in $d \ge 3$, homogenization in d=2 without a Lipschitz estimate with weak coercivity

$$\inf_{\mathbb{R}^d}(c+F)>0.$$

Propagation as a flat front

Random media:

• (Armstrong and Cardaliaguet, 2015) Homogenization in $d \ge 2$ with the Lions-Souganidis coercivity condition, finite range dependence random field.

Main Result (F., preprint 2019)

Homogenization in d=2 with Caffarelli-Monneau coercivity (i.e. $\inf(c+F)>0$), finite range dependence random field.

Examples

Fingering phenomenon, c + F signed in 2-d:

(Cardaliaguet, Lions and Souganidis, 2007) (Dirr, Karali and Yip, 2008)

Examples

Fingering phenomenon, c + F signed in 2-d:

In this example $F > F^*(e_2)$ (implied by Cardaliaguet, Lions and Souganidis, 2007) but homogenization fails.

Examples

Fingering phenomenon, c+F positive in 3-d (Caffarelli and Monneau, 2014)

Some open questions

Question

In d = 2, random or periodic media, does homogenization hold when

$$F>\sup_e F^*(e)$$
?

(Still wouldn't be a sharp condition, e.g. see laminar case)

Question

Does failure of homogenization imply the existence of unbounded stationary solutions? A decomposition into travelling waves of various speeds connecting stationary solutions?

Laminar media (Cesaroni and Novaga, 2013), head and tail speeds (Gao and Kim, 2018).

Arrival time function

Normalize F = 0 now.

It is useful to formulate the problem in terms of the arrival time m(x, S), the first time the front started from the set S (often a half-space $S = \{e \cdot x \le 0\}$) arrives at the point x.

Since c>0 can show that $S_t=\{m(x)\leq t\}$ with m solving

$$\operatorname{tr}((I - \frac{\nabla u \otimes \nabla u}{|\nabla u|^2})D^2m) + c(x)|\nabla m| = 1 \text{ in } \mathbb{R}^d \setminus S$$

with boundary data m(x) = 0 in S.

Positive random forcing in d = 2

In the case inf c>0 and finite range of dependence, propagating fronts stay "flat"

Theorem (F., preprint)

For every direction e there is a deterministic asymptotic speed $\overline{c}(e)$ so that the arrival time m of the front started from $\{x \cdot e \leq 0\}$ satisfies,

$$\mathbb{P}(|m(re) - \mathbb{E}[m(re)]| > \lambda r^{1/2}) \le Ce^{-c\lambda^2}$$

and

$$|\mathbb{E}[m(re)] - \frac{1}{\overline{c}(e)}r| \le Cr^{2/3}.$$

The effective velocity $\overline{c}:S^1\to (0,\infty)$ is continuous with logarithmic modulus of continuity.

Ideas in the proof

1. Large scale Lipschitz estimate of the arrival time (using weak coercivity / controllability given by the condition inf c > 0)

$$|m(x) - m(y)| < C + C|x - y|.$$

- 2. Martingale decomposition and Azuma's inequality give bound on the variance (Armstrong-Cardaliaguet-Souganidis, Armstrong-Cardaliaguet).
- 3. Localized uniqueness result without local regularity.

Caffarelli and Monneau's moving ball barrier

Caffarelli and Monneau's moving ball barrier

Caffarelli and Monneau's moving ball barrier

Lipschitz estimate

Above argument shows that, with $R = R(d, \inf c)$,

$$\max_{y \in B_R(x)} m(y) \le m(x) + C(d, \inf c).$$

Iterate to get large scale Lipschitz.

A little local regularity

Lemma

Let $S \subset \mathbb{R}^d$ regular (radius R(inf c) interior ball condition).

$$|m(x,S)-m(y,S)| \leq \frac{2}{c_{\min}} e^{\|\nabla c\|_{\infty} m(x) \wedge m(y)} |x-y|.$$

(Souganidis, 1985)(Crandall and Lions, 1986)

Localized uniqueness

Previous localized uniqueness results:

(Armstrong and Cardaliaguet, 2015)(Gao and Kim, 2018)

Lemma

Let m^1 and m^2 be solutions of the arrival time problem,

$$-\operatorname{tr}\left[\left(I-\frac{Dm\otimes Dm}{|Dm|^2}\right)D^2m\right]+c(x)|Dm|=1 \text{ in } \mathbb{R}^2\setminus S^i$$

with $m^i = 0$ in S^i . Suppose that both S^i are regular, there is $R \ge 1$ such that the ordering holds

$$S^2 \subset S^1$$
 on $B_R(0)$.

Then there exists $C \ge 1$ such that, if $s \ge 1$ and $R \ge \bar{R}(s) = e^{Cs}$,

$$\{m(x, S^2) \le s - 1\} \subset \{m(x, S^1) \le s\}$$
 on $B_{R-\bar{R}(s)}(0)$.

Now iterate, using waiting time / large scale Lipschitz to regularize at each iteration.

Lemma

Let m^1 and m^2 be solutions of the arrival time problem,

$$-\mathrm{tr}\left[(I-rac{Dm\otimes Dm}{|Dm|^2})D^2m
ight]+c(x)|Dm|=1$$
 in $\mathbb{R}^2\setminus S^i$

with $m^i=0$ in S^i . Suppose that: m^i both satisfy the large scale Lipschitz estimate, and there is $R\geq 1$ such that the ordering holds

$$S^2 \subset S^1$$
 on $B_R(0)$.

Then, if
$$s \ge 1$$
, $n \le s$, and $R \ge \bar{R}_n(s) = ne^{C\frac{s}{n}}$,

$$\{m^2(x) \le s - Cn\} \subset \{m^1(x) \le s\}$$
 on $B_{R-\bar{R}_n(s)}(0)$.

Future directions

- Flat fronts down to the pinning interval endpoint?
- Other models e.g. contact angle dynamics . . .
- Is the depinning transition sharp? (could depend on the model)

Recall

Expectation: there is a pinning interval $[F_*(e), F^*(e)]$

$$F^*(e) = \inf\{F : \liminf_{t \to \infty} \frac{u(0,t)}{t} > 0\}.$$

Front has positive speed outside of the pinning interval. Can also define the depinning transition value

$$F^d(e) = \inf\{F : \lim_{t \to \infty} u(0, t) = +\infty \text{ a.s}\}$$

Open questions:

- 1. Are the depinning and positive speed transitions the same?
- 2. What is the behavior of $\bar{c}(F)$ near the depinning threshold? Conjectured universality $\bar{c}(F) \sim (F F^*)^{\theta}$.

Critical transitions

- Single critical transition in special i.i.d. fully discrete model (Bodineau and Teixeira, 2015)
- Sub-ballistic propagation at the pinning interval endpoint in partially discrete model with long range correlations (Dondl and Scheutzow, 2017)

Depinning exponent

- ▶ Periodic media (related models) $\bar{c}(F) \sim (F F^*)^{1/2}$ (Dirr and Yip, 2006)
- Abstract setting $\bar{c}(F) \sim (F F^*)^{1-\kappa/2}$ where κ effective dimension of medium (Scheel and Tikhomirov, 2017)

Model problem to think of in 1-d: suppose $c:\mathbb{R} \to \mathbb{R}$ has minimum 0 at 0 and

$$\dot{x} = c(x) + F \approx \alpha x^2 + F.$$

Pinning for $F \le 0$, depinned for F > 0 takes time $\sim F^{1/2}$ to pass through neighborhood of 0.