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Forced mean curvature flow

Region St evolving by normal velocity with planar initial data
S0 = {e · x ≤ 0}

Vn = −κ+ c(x) + F .

Here κ is mean curvature, c(x) is inhomogeneous environment,
constant F is large scale external driving force (e.g. pressure,
contact angle, or magnetic field).

Level set form

ut = tr((I − ∇u⊗∇u|∇u|2 )D2u) + (c(x) + F )|∇u| with u(x , 0) = e · x .

Model for

I Domain boundaries in magnetic materials

I Flow in porous media

I Contact line motion



Pinning interval

Expectation: there is a pinning interval [F∗(e),F ∗(e)]

F ∗(e) = inf{F : lim
t→∞

inf
x∈∂St

x · e
t

> 0}.

Front has positive speed outside of the pinning interval.

Question (Homogenization)

Does the propagating interface stay flat for F > F ∗(e) and
propagate with some asymptotic speed c̄(e)?

In general answer is no in all d ≥ 2, so we need to refine the
question.



Propagation as a flat front

Periodic media:

I (Lions and Souganidis, 2005) Lipschitz estimates and
existence of correctors under the coercivity condition

inf
Rd

[(c(x) + F )2 − (d − 1)|Dc |] > 0.

Lipschitz estimates can fail without this condition.

I (Dirr, Karali and Yip, 2008) If c smooth and small C 2-norm
then initially flat fronts stay flat and propagate with an
asymptotic speed. Note no coercivity condition.

I (Caffarelli and Monneau, 2014) Counter-example in d ≥ 3,
homogenization in d = 2 without a Lipschitz estimate with
weak coercivity

inf
Rd

(c + F ) > 0.



Propagation as a flat front

Random media:

I (Armstrong and Cardaliaguet, 2015) Homogenization in d ≥ 2
with the Lions-Souganidis coercivity condition, finite range
dependence random field.

Main Result (F., preprint 2019)

Homogenization in d = 2 with Caffarelli-Monneau coercivity (i.e.
inf(c + F ) > 0), finite range dependence random field.



Examples

Fingering phenomenon, c + F signed in 2-d:
 

Ct
i fi i i

i
i i

i i

p
b

i i 1 i
i i

i i

il

Ctf o Ctfso j
C

(Cardaliaguet, Lions and Souganidis, 2007)
(Dirr, Karali and Yip, 2008)



Examples

Fingering phenomenon, c + F signed in 2-d:
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In this example F > F ∗(e2) (implied by Cardaliaguet, Lions and
Souganidis, 2007) but homogenization fails.



Examples

Fingering phenomenon, c + F positive in 3-d
(Caffarelli and Monneau, 2014) 
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Some open questions

Question
In d = 2, random or periodic media, does homogenization hold
when

F > sup
e

F ∗(e)?

(Still wouldn’t be a sharp condition, e.g. see laminar case)

Question
Does failure of homogenization imply the existence of unbounded
stationary solutions? A decomposition into travelling waves of
various speeds connecting stationary solutions?

I Laminar media (Cesaroni and Novaga, 2013), head and tail
speeds (Gao and Kim, 2018).



Arrival time function

Normalize F = 0 now.

It is useful to formulate the problem in terms of the arrival time
m(x ,S), the first time the front started from the set S (often a
half-space S = {e · x ≤ 0}) arrives at the point x .

Since c > 0 can show that St = {m(x) ≤ t} with m solving

tr((I − ∇u⊗∇u|∇u|2 )D2m) + c(x)|∇m| = 1 in Rd \ S

with boundary data m(x) = 0 in S .



Positive random forcing in d = 2

In the case inf c > 0 and finite range of dependence, propagating
fronts stay “flat”

Theorem (F., preprint)

For every direction e there is a deterministic asymptotic speed c(e)
so that the arrival time m of the front started from {x · e ≤ 0}
satisfies,

P(|m(re)− E[m(re)]| > λr1/2) ≤ Ce−cλ
2

and

|E[m(re)]− 1

c(e)
r | ≤ Cr2/3.

The effective velocity c : S1 → (0,∞) is continuous with
logarithmic modulus of continuity.



Ideas in the proof

1. Large scale Lipschitz estimate of the arrival time (using weak
coercivity / controllability given by the condition inf c > 0)

|m(x)−m(y)| ≤ C + C |x − y |.

2. Martingale decomposition and Azuma’s inequality give bound
on the variance (Armstrong-Cardaliaguet-Souganidis,
Armstrong-Cardaliaguet).

3. Localized uniqueness result without local regularity.



Waiting time / large scale Lipschitz estimate



Caffarelli and Monneau’s moving ball barrier
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Caffarelli and Monneau’s moving ball barrier 
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Caffarelli and Monneau’s moving ball barrier



Lipschitz estimate

Above argument shows that, with R = R(d , inf c),

max
y∈BR(x)

m(y) ≤ m(x) + C (d , inf c).

Iterate to get large scale Lipschitz.



Localized uniqueness



A little local regularity

Lemma
Let S ⊂ Rd regular (radius R(inf c) interior ball condition).

|m(x , S)−m(y ,S)| ≤ 2
cmin

e‖∇c‖∞m(x)∧m(y)|x − y |.

(Souganidis, 1985)(Crandall and Lions, 1986)



Localized uniqueness
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Previous localized uniqueness results:
(Armstrong and Cardaliaguet, 2015)(Gao and Kim, 2018)

Lemma
Let m1 and m2 be solutions of the arrival time problem,

−tr
[
(I − Dm⊗Dm

|Dm|2 )D2m
]

+ c(x)|Dm| = 1 in R2 \ S i

with mi = 0 in S i . Suppose that both S i are regular, there is
R ≥ 1 such that the ordering holds

S2 ⊂ S1 on BR(0).

Then there exists C ≥ 1 such that, if s ≥ 1 and R ≥ R̄(s) = eCs ,

{m(x ,S2) ≤ s − 1} ⊂ {m(x ,S1) ≤ s} on BR−R̄(s)(0).



Now iterate, using waiting time / large scale Lipschitz to regularize
at each iteration.

Lemma
Let m1 and m2 be solutions of the arrival time problem,

−tr
[
(I − Dm⊗Dm

|Dm|2 )D2m
]

+ c(x)|Dm| = 1 in R2 \ S i

with mi = 0 in S i . Suppose that: mi both satisfy the large scale
Lipschitz estimate, and there is R ≥ 1 such that the ordering holds

S2 ⊂ S1 on BR(0).

Then, if s ≥ 1, n ≤ s, and R ≥ R̄n(s) = neC
s
n ,

{m2(x) ≤ s − Cn} ⊂ {m1(x) ≤ s} on BR−R̄n(s)(0).



Future directions

I Flat fronts down to the pinning interval endpoint?

I Other models e.g. contact angle dynamics . . .

I Is the depinning transition sharp? (could depend on the
model)



Other interesting issues



Recall

Expectation: there is a pinning interval [F∗(e),F ∗(e)]

F ∗(e) = inf{F : lim inf
t→∞

u(0,t)
t > 0}.

Front has positive speed outside of the pinning interval. Can also
define the depinning transition value

F d(e) = inf{F : lim
t→∞

u(0, t) = +∞ a.s}

Open questions:

1. Are the depinning and positive speed transitions the same?

2. What is the behavior of c̄(F ) near the depinning threshold?
Conjectured universality c̄(F ) ∼ (F − F ∗)θ.



Critical transitions

I Single critical transition in special i.i.d. fully discrete model
(Bodineau and Teixeira, 2015)

I Sub-ballistic propagation at the pinning interval endpoint in
partially discrete model with long range correlations (Dondl
and Scheutzow, 2017)



Depinning exponent

I Periodic media (related models) c̄(F ) ∼ (F − F ∗)1/2 (Dirr
and Yip, 2006)

I Abstract setting c̄(F ) ∼ (F − F ∗)1−κ/2 where κ effective
dimension of medium (Scheel and Tikhomirov, 2017)

Model problem to think of in 1-d: suppose c : R→ R has
minimum 0 at 0 and

ẋ = c(x) + F ≈ αx2 + F .

Pinning for F ≤ 0, depinned for F > 0 takes time ∼ F 1/2 to pass
through neighborhood of 0.


