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original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin
formulation by carefully selecting the polynomial chaos approximations to the nonlinear
terms in the shallow water equations. We derive a sufficient condition to preserve the
hyperbolicity of the stochastic Galerkin system which requires only a finite collection

::(ienyi\;zoczisl.ume method of positivity conditions on the stochastic water height at selected quadrature points in
Stochastic Galerkin method parameter space. Based on our theoretical results for the stochastic Galerkin formulation,
Shallow water equations we develop a corresponding well-balanced hyperbolicity-preserving central-upwind
Hyperbolic systems of conservation and scheme. We demonstrate the accuracy and the robustness of the new scheme on several
balance laws challenging numerical tests.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The system of shallow water equations and closely related models have found tremendous success in modeling flows
whose vertical scales are significantly smaller than their horizontal scales. Such flows include, but are not limited to, the
water flows in rivers, lakes, and coastal areas. In addition, uncertainties can enter models, for instance, through measuring
or empirically approximating the bottom topography or initial conditions. This makes deterministic-model-based predictions
less reliable and therefore it is also important to model this uncertainty in the governing shallow water systems. In this
work, we will consider the parameterized stochastic shallow water equations (SWE), where the parameter is a random
variable that models the uncertainty.

For discretizing parameterized partial differential equations, the polynomial chaos expansion (PCE) technique is a
commonly-used approach. It seeks to represent a second-order random field using an expansion in an orthogonal poly-
nomial basis. It was first introduced by Wiener [47] to represent the Gaussian processes using Hermite polynomials. The
idea has been later extended to the representations of random outputs and fields with more general distributions using
more general families of orthogonal polynomials [15,52,29,46]. With PCE being the strategy for encoding uncertainty, this
gives rise to parameterized partial differential equations. Two major classes of methods are used to solve the resulting sys-
tem and compute the statistics of the outputs. One class of non-intrusive methods is based on sampling (see, e.g., [51,34,32]).
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The implementations and the parallelism can be easily achieved for non-intrusive methods. However, such approximations
can be less accurate than the solutions of intrusive methods.

The class of intrusive methods, in the PCE context, usually refers to stochastic Galerkin (SG) method. In the SG frame-
work, the truncated PCE representations are projected by a Galerkin method in stochastic (parameter) space to obtain a
new system of deterministic partial differential equations (PDEs) that describes the evolution of the coefficients in the PCE
representation. The new system typically requires new solvers and a substantial rewrite of legacy codes. However, it is ex-
pected that the SG method will deliver a more accurate solution than, for example, some alternative non-intrusive strategies.
In particular, it is known that intrusive methods have near-optimal accuracy in an L? sense for static problems [1,30]. In
addition, for SG formulations, one can generally prove important properties of the system or of their subsequent numerical
discretizations. Because of this, applications of SG methods have found success in modeling uncertainty in diffusion equa-
tions, e.g. [53,11], kinetic equations, e.g. [18,42], and for conservation and balance laws with symmetric Jacobian matrices,
e.g. [44].

However, when the SG method is applied to a general hyperbolic system of conservation/balance laws such as the SWE,
the associated SG system may lose hyperbolicity [10,19,14]. The loss of hyperbolicity may lead to unphysical solutions and
prevent the use of robust numerical schemes. Efforts have been made to overcome this difficulty. In [48], a strategy to re-
gain hyperbolicity for the quasilinear form of hyperbolic systems is proposed. Hyperbolicity can be regained by multiplying
the SG formulation of the system by the left eigenvector matrix of the flux Jacobian matrix, but this approach is limited
to quasilinear forms, and the numerical schemes designed for conservative forms cannot be applied directly. Operator-
splitting approaches for one-dimensional Euler equations [7] and one-dimensional shallow water equations [6] have also
been investigated. The original systems are split into linear hyperbolic and scalar subsystems, whose SG formulations re-
main hyperbolic. However, it has been shown in [38] that the splitting approach may lead to an overall non-hyperbolic
system. Strategies that introduce a PCE of auxiliary variables have also been explored. For example, the SG system of a
balance/conservation laws in terms of the entropic variables can be shown to be hyperbolic [37,36]. An optimization-based
intrusive polynomial moment method (IPMM) was proposed to compute the PCE of entropic variables given the PCE of the
conserved variables [10,37,36]. But the IPMM method can be computationally expensive since one must solve an optimiza-
tion problem for each cell at each discrete time level. The PCE using a Roe variable formulation is introduced in [35,14,13],
where the flux of the SG system is constructed using PCE of the Roe variables. Thus, the conservative form of the system is
preserved. It has been shown that, for the Wiener-Haar expansion, both the SG Roe formulations of the Euler equation [35]
and of the 1D SWE [14] are hyperbolic. For the system of isothermal Euler equations, its SG Roe formulation is hyperbolic
under a positive definiteness condition of a matrix depending on the positive square root of the water height, regardless of
the choices of distributions of the random parameters [14]. However, the Roe formulation may still be expensive to imple-
ment since the PCE of the Roe variables need to be calculated by solving both a nonlinear equation and a linear equation.
More discussion about the SG Roe formulation can be found in [13]. Recently we developed a hyperbolicity-preserving SG
formulation for the one-dimensional shallow water equations [8], where we carefully tailored PCE truncation operators for
the nonlinear non-polynomial term in the system using only the conserved variables. For arbitrary choices of distributions
of the random parameters, the resulting SG system is hyperbolic under only a positive-definiteness condition on a matrix
which depends on the PCE of the water height. The condition is a stochastic variant of a positivity condition for the water
height for the deterministic system. The current paper is an extension of the work [8] to the two dimensional shallow water
equations.

In this work, the numerical scheme for the SG formulation in two-dimensional physical space is based on the extension
of the finite-volume central-upwind scheme. The semi-discrete central-upwind schemes [23] are a class of robust Godunov-
type Riemann-solver-free projection-evolution methods for hyperbolic systems. They are the generalizations of the central
Nessyahu-Tadmor scheme [33] and Kurganov-Tadmor high resolution central scheme [26]. The central Nessyahu-Tadmor
scheme, the Kurganov-Tadmor central scheme, and the family of the central-upwind schemes have been successfully applied
for the solution of the general multi-dimensional hyperbolic systems of conservation/balance laws, including for the solution
of the deterministic SWE and related models [20]. A second-order central-upwind scheme for the solution of SWE was first
proposed in [21], but it was not designed to preserve the positivity and the well-balanced property simultaneously. The
scheme was further improved in [24] to capture the “lake-at-rest” steady state and to preserve the positivity of the water
height. See [25,22,4,5,31,20] for more examples and details of other closely related work. The scheme in this paper is mainly
based on further extensions to stochastic SWE of the schemes proposed in [23,24]. We note that, although the developed
framework in [8] and in the current paper is not limited to the choice of central-upwind schemes, the Riemann-solver-free
nature of these schemes allows us to design an efficient deterministic solver as a part of the numerical discretization of the
random SWEs.

1.1. Contributions of this paper

In this paper we extend the ideas that we developed in [8] to stochastic shallow water equations in two-dimensional
physical space. In order to develop a hyperbolicity-preserving stochastic Galerkin formulation, we use specially tailored PCE
truncation operators for the SWE nonlinear term (q*q”)/h that occurs in both the x- and the y-component of the flux.
For any probability distributions of the random parameters, our SG formulation is conservative and we prove it is also
hyperbolic under a positive-definiteness condition on the matrix associated with the PCE of the water height (Theorem 3.1).
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This result is similar to our one-dimensional physical space result in [8] and is a generalization to the results in [14] for
matrices related to Roe variables. This positive-definiteness condition is a stochastic variant of the positivity condition on the
water height for the deterministic model. We show that the positive-definiteness condition can be guaranteed by enforcing
a finite collection of positivity conditions on the stochastic water height at the stochastic quadrature nodes. Based on our
SG formulation, we also develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme.

This paper is structured as follows. In Section 2, we introduce the parameterized stochastic shallow water model in 2D
physical space, as well as the stochastic Galerkin discretization of the system using a particular choice of the PCE truncation
for the nonlinear terms (g*)%/h, (q¥)?/h, and (q*q”)/h. In Section 3, we discuss the hyperbolicity of the resulting stochastic
Galerkin system and present a sufficient condition to guarantee hyperbolicity of the stochastic Galerkin formulation of the
2D shallow water system. In Section 4 we develop a well-balanced central-upwind scheme for the resulting model and
obtain a hyperbolicity-preserving CFL-type condition. In addition, we use a filter to avoid the possible loss of hyperbolicity
at pointwise reconstructed values. In Section 5 we demonstrate the accuracy and the robustness of the developed numerical
scheme on several challenging numerical tests. Conclusions and future directions are discussed in Section 6.

2. Modeling stochastic shallow water equations
2.1. Stochastic modeling of the two-dimensional shallow water equations
The two-dimensional system of shallow water equations read

oh ag® 9qY
o, 09” _ o

)

at ' ax | ay

ag* 9 [((@H*  gh? 3 (q*q” B

— — —_— — = — h_, 1
ot + 8x< h + 2 + ay \ h & 0x (1)
ag¥ 9 (q'¢¥ 3 (@) gh? B

a2 i & )= _gh=,

at + 8x< h + oy h + 2 & ay

where h is the height of the water, g is the gravitational constant, B is the time-independent bottom topography function,
and ¢* and ¢ are the discharges in the x- and y-directions, respectively. The quantities h, ¥, and q¥ depend on the spatial
variables (x, y) and time t, and B depends only on (x, y). We are interested in modeling a random/uncertain variant of this
system.

Let (2, F, P) be a complete probability space with event space 2, o-algebra F, and probability measure P defined on
F. Uncertainty can enter the deterministic system, for example, via the bottom topography B. For example, the stochastic
bottom can be modeled by a d-dimensional random field

d
B=B(X y.£(®))=BoX. y)+ Y Br(x, ).
k=1
where &(w) = (§1(w), ..., &4(w)) is a d-dimensional random variable for @w € Q. Such a stochastic bottom function will

lead to a &-parameterized version of the 2D shallow water equations (1), so that now h =h(x, y,t, &), ¢* =q*(x, y,t, &),
¢’ =q*(x,y,t,€), and B = B(x, y,&). Our results can be generalized to other models of uncertainty, e.g., the uncertainty
from the measurements of the initial water displacements 1 := h+ B. In the following context, we will refer to the quantities
associated only with (x, y) as “physical” quantities and the quantities associated only with & as “stochastic” quantities.

2.1.1. Polynomial chaos expansion - a review

In this section, we briefly review the results and notation for polynomial chaos expansions (PCE), which are similar to
what is used in [8]. We include this section here in order to be self-contained; interested readers can find a more technical
discussion of PCE in [9,50,43].

Let p be the Lebesgue density function for the random variable & € RY. The strategy of PCE is to approximate the
dependence of a square-integrable random field by a polynomial of &. Let v = (vq,...,V4) € 1Ng be a multi-index. For a
d-dimensional vector ¢ € RY, the standard notation for the monomials with multi-index v reads

) Vj 0 0,0,....0) _
¢v=1¢  =¢@00=1.
j=1
We consider the PCE approximations in the polynomial subspace defined by A:

Py =span{¢” | veA}, dimPy =K = |A],
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where A C ]Ng denotes any non-empty, size-K finite set of multi-indices with 0 = (0,0,...,0) € A. We will also need
“powers” of this set, defined by r-fold products of P, elements:

.
. . K K+r—1
"\ = span l_[pj|pjePA,]=1,...,r , dlsz\f((r)):( . ) (2)

j=1

where the dimension bound results from a combinatorial argument. Note that since 0 € A, then P, C P for any r <s. We
will later exercise the notation above for r =3 (Theorem 3.2). Define the function space

1
2

L®RY={fR >R /fz(s),o(s)ds < +o0
d

Assuming finite polynomial moments of all orders for p, there exists an L%(Rd)—orthonormal polynomial basis {¢}p2, of
PA, i.e.,

(i, de)p = /¢k(S)¢e (8)p(s)ds = bye, 1 (E)=1, (3)
]Rd

for all k, £ € N, where & ¢ is the Kronecker delta.
If z(x,y,t,-) € Lf,(]Rd), then under mild conditions on the probability measure p (see [12]) there exists a convergent
expansion of z in these basis functions,

2
2%, y,6,8) £ Y 7%, y, D¢ (&),

k=1

where Zy(x, y, t) are (deterministic) Fourier coefficients in the basis {¢y}xen. If P = span{¢y | 1 <k < K}, then we define
the K-term PCE approximation of z on P, to be the truncation of the first K terms in the summation above,
K
2, Y.t )~ Y Z(X, Y, (&) = TIALZI(X, ¥, £, £). (4)

k=1

The operator ITx :Lf) (R%) — P, is the linear projection operator onto P.
Orthogonality of the basis functions allows us to compute statistics of the truncated PCE by manipulating the coefficients
in a straightforward way. For example, the expectation and the variance of ITx [z](x, y, t, &) are given by

K
E[MAlZ)(x. y.t.6)]=Z1(x. y. 1), Var[[IA[zl(x. y.t.6)] = Y Zp(x. y. 1), (5)
k=2

respectively.
We introduce the pseudo-spectral product as the approximation to the K-term PCE of the product of two random fields
a(x,y,t, &) and b(x, y,t,§),

K K
Mala.b):=Ta [Malal T =Y | Y Gbe(drde. dm)p | $m(E)- (6)
m=1 \k,{=1

This expression is an exact projection onto P, of the product of two P, projections. The approximation (6) is a widely
used strategy for computing PCE expansion of products (e.g. [9,14]). The choice above is not the only approximation to
[T [ab], but is one that renders the 1D SG formulation to be hyperbolicity-preserving [8]. This choice is also a natural one
since ITx [a,b] = T4 [ab] if (ab) € P,. For general a, b, then T1y [a,b] and I1, [ab] are not equal since (6) truncates the
polynomial terms of a and b whose multi-indices are not in A. Such an operation can be cast in linear algebraic terms
by considering vectors comprised of the PCE expansion coefficients. Let Z € RX denote the vector of the ¢,-expansion
coefficients of z € P. Define the linear operator P : RK — RK*X a5

K
PR =) ZaMi  MeROK (M = ($r. dedm)p, (7)
k=1

where M, is a symmetric matrix for each k. The following properties can be verified:
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P@ = (Mi@Msal...IMc@),  P@b=P®a  Tiala,bl=P@pb, (8)
where the last property is due to (6). If P(@) is invertible, we further have
IP@P~'@) ol

== = 07
day day
aP@ P~ 1@
= fop_l@ +P@f(j=0, (9)
ady dag
P l@
06 aa(? — P @MP@.
74

Equation (9) will be exercised later for computing the Jacobian matrix of (17).
We will also need to compute P, truncations of ratios of random fields (when for each (x, y,t) the denominator is a
single-signed variable with probability 1). For a single-signed random field a, we have

b

Using (10) as motivation, we make the assumption that the PCE of b is equal to the pseudo-spectral product of a and b/aq,

—

M, [a,Z]:HA[b] & P@(S) —b. (11)

In particular, if b € P (which is that case that we consider later), then implication (11) is true. Equation (11) then motivates
the definition for a new operator for the K-term PCE of the ratios,

b K
my H €)=Y ap(®), (12)
k=1

where ¢y is the kth element of g defined by (11), assuming P (@) is invertible. Equation (12) is a frequently used strategy

for computing the PCE of the ratio of two polynomials [9]. In the following section we will exercise (12) for the case where
be Py.

2.2. Stochastic Galerkin formulation for 2D SWE

Following a standard Galerkin procedure in stochastic (¢) space, we first reduce the problem to a finite-dimensional one
by making the ansatz that the solutions to h, g%, and ¢” lie in the polynomial space P,,

K

hehy =) Iy, 06,

k=1

K
=y =) (@ y, O (&), (13)

k=1

K
¢ ~q) =) @ y. 0(&).

k=1

respectively, and B is replaced by IT5[B]. We then apply the projection operator IT, to both sides of (1) and enforce
equality. Similar to [8], we make the assumption that,

@? ¢ X (qu )? x qu
_ _ n
hnh q —  Ip ha =1TIa | gy T, |l

@)? ¢ (q)? v i | Th
B S PN (.t ot | da |
nooond M Thy A9A A g

In addition, we make another crucial assumption on the approximation of the nonlinear term (g*qY)/h that occurs in the
fluxes of both x- and y-directions. Specifically, for the nonlinear term q*q¥/h in (q*q” /h)x, we use the approximation,

XY y X Y y

axq q
T —@9® — ma |22 gyl [ 2] (15)
h h ha ha

5

(14)
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Fig. 1. Numerical verification: the two approximations (15)-(16) are in general not the same. The difference is computed as the maximum of Lf) norm of
the difference between the two PCE approximations of q*q” /h in corresponding cells over the whole computational domain. The data are taken from the
numerical solutions to (62)-(63) at t = 0.07 for different 2D grid sizes. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

while for the same nonlinear term in (q*q” /h)y, we adopt the approximation,

y X x .Y X
anqg q
Tl — |, |gnl |2l (16)
h h ha ha

X

q

The two different approximations (15)-(16) turn out to be the crucial ingredient of our hyperbolicity-preserving SG formu-
lation (Theorem 3.1). The two approximations are in general not equal. But as K increases, we observe empirically that the
discrepancy decreases exponentially (see Fig. 1).

The steps introduced above lead to a new system of balance laws for the PCE vector of the stochastic state variables,

0 ~ 0 ~ ~ 0 ~ ~ ~
a—(U)+—(F(U))+—(G(U))=S(U,B)- (17)
t ax ay

Here U = (/ITF,&?‘T,LIA}’T)T, where ﬁ, ff‘ and cﬁ’ are each length-K vectors whose entries are the coefficients introduced in
(13). The flux terms are,

7" 7
FO) =|P@P g +3gPmh |,  CO=| _ P@)pP e |, (18)
PP~ (h)g? P@)P~1(h)gY + gP(h
and the source term is
0
S(U,B)= —gP(ﬂ)Bx . (19)
—gP(h)By

Using Equation (7)-(9) and following a similar calculation as in [19], we obtain the flux Jacobians written in terms of
K x K blocks,

oF N 9 LA 0
—=|gP) - P@P'IPW PEHP'W+P@ 0 |, (20)
ou —P@P (PO P@) P@P1 ()
Yl R 0 . _ 0 R I
—= = —P@@)P~ ' (WP@) P@P 'y P@ : (21)
W\ gp@m)— P@P ' yPO) 0 PP~ 1(h) +P@)
where we have introduced
=P '@, V=P (g (22)

which can be interpreted as PCE coefficients of the x- and y-velocity, respectively.
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Remark 2.1. In the Section 4, our scheme requires us to compute the maximum and minimum eigenvalues of both (%5

and % Some algebraic manipulations can accelerate the computation. For example, the flux Jacobian % has the same
eigenvalues as the block diagonal matrix

0] I 0
gP(h) — P@P\(P@ PE@P ' +P@ 0
0 0 P@)P~1(h)

One can first compute the maximum and minimum eigenvalues of the first 2K x 2K submatrix and the K x K submatrix
on the right corner, and then determine the maximum and minimum eigenvalues of the original matrix by comparing the

eigenvalues of the submatrices. Similar calculations can be applied to %57' where we can replace the —P(&E’)P‘l(ﬁ)P@
and P (1) blocks by zero matrices when computing eigenvalues.

3. Hyperbolicity of the SG system

In this section we will present a sufficient condition to ensure hyperbolicity of the system (17) as well as a computa-
tionally tractable way to preserve hyperbolicity of the system.

Theorem 3.1. If the matrix 77(71\) is strictly positive definite for every point (x, y, t) in the computational spatial-temporal domain,
then the SG formulation (17) is hyperbolic.

Proof. To show that the system (17) is hyperbolic, we need to show that, for any unit vector n = (ny, ny)T. the matrix

n oF +n o (23)
YoUu T YoU
is real diagonalizable. Define,
A=gP@), B:=P@, C=gP@), D=P@), E=gPh), (24)
where /M is the (unique) symmetric positive definite square root of a symmetric positive definite matrix M. Define
I 0 I

P=| B+nyE —nyE B-—nyE
D+nyE nyE D-—nyE

’

whose inverse is given by

1 E—nyB —nyD Nyl nyl
pl= <§> I®E™Y| 2yB—nD) —2ny1 2n,l
E+nyB+nyD —nxl —nyl

Recall that ® represents the Kronecker product between matrices.
Using (20)-(21), direct calculation leads to

B 9F e 1 Ju 0  Ji3
J=P nxﬁ—knyﬁ P= 3 0 J»n O |. (25)
Js1 0 Js3,

where,
J11=2E+ny(B+ETAE") +ny(D+ETCETY),
Jiz=nx(B—E'AETY) +ny,(D—ET'CETY) = J3,
Jo2 =2nyE"VAE~! 420, E71CET,
J33=—2E+ny(B+E'AE™Y) +n,(D+E"'CE™D).

(26)

From (24), the matrices A, B,C, D and E are all symmetric. Thus, it can be verified that Ji1, J13, J22, J31, and J33 are all
symmetric. Since J13 = J31, the matrix J is symmetric and therefore the similar matrix (nx% + nyg—%) is real diagonaliz-
able. O

Remark 3.1. When the system is deterministic, the matrix P and the matrix J in the proof above reduce to the eigenmatrix
that symmetrizes the deterministic Jacobian matrix and the diagonal matrix after symmetrization, respectively.

7
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From Theorem 3.1, the hyperbolicity of the SG system relies only on the positive definiteness of the matrix P(ﬁ), a
stochastic variant of the hyperbolic condition for the deterministic 2D SWE. In [8], a computationally convenient sufficient
condition to guarantee P(h) > 0 is given by the following theorem.

Theorem 3.2. Given A, let nodes &, and weights t, satisfying {(&m, 7,},,)},’1‘{,’:1 c RY x (0, co) represent any M-point positive quadra-
ture rule that is exact on P3, i.e.,

M
[p@w©de =Y pewm.  perd. 27)
RY m=1
i
hA(X, y,t.6n) >0 ¥Ym=1,.... M, (28)

then the SG system of the 2D SWE (17) is hyperbolic.
Proof. See Theorem 3.4 in [8]. O

Thus, to preserve the hyperbolicity of (17), we only need to preserve a finite number of positivity conditions on the
stochastic water height. In the worst-case scenario, the number M of quadrature points used in the stochastic space is of
order O(dimPf’\) < K3 (see (2) for the definition of Pf’\). For one-dimensional stochastic space, one can use the M-point

Gaussian quadrature associated with the density p of &, with M any integer satisfying M > (%-‘ - 1.

Instead of preserving the positive definiteness of P(H), one could choose to preserve the positivity of the expectation E
of hy. The following corollary states that this condition is guaranteed by P(h) > 0.

Corollary 3.2.1. If the assumptions of Theorem (3.2) hold, then 11\1 > 0.
Proof. See Corollary 3.6 in [8]. O
4. Numerical scheme for stochastic shallow water equations

The family of central-upwind schemes ([26,23], etc.) are Riemann-solver-free, second-order, high-resolution MUSCL
schemes [45]. The generalized minmod limiter is used for the piecewise linear approximation of the solution. In this section,
we present a well-balanced central-upwind scheme that preserves the hyperbolicity of the system (17) at every time step.
4.1. Central-upwind scheme for the SG system

For simplicity, we consider only rectangular spatial domains. Let {Ci, j} be a uniform rectangular partition over

the rectangular computational domain, where

= [y iy ] < vy vy ]
[Nx] is the index set {1,2,..., Ny}, and [Ny] is defined similarly. Define Ax:=x,_ 1 —x_1,Ay=y, 1 -y, 1. Let |Cj]
2 2 J+3 =3 '

i€[Nx]. j€[Ny]

denote the size AxAy of cell (i, j). Define the approximation to the cell average of the vector U over cell Cij to be

_ hij® h(x, y,0)
U jo) = ¢ ;0 | ~ T (x. y.t) | dxdy e R**.
q’; j(t) S \P .y, 0
LJ
Since U with subscripts has been used for the polynomial moments, we use the bold letter U with superscripts and sub-
scripts here and in the following subsections to represent the cell averages and the pointwise values of the reconstructions,
respectively, for the vector function U(x, y, t). For example, U l"‘j is the reconstructed value of U at the west-side (xl._% .Y

of the cell C; ;. A similar reasoning applies to the pairs (h,ﬁ), (q*, (f‘), and (q7, cﬁ’ ). To minimize clutter, we will notationally
suppress t dependence from here onward.
For a continuous bottom topography, the pointwise values of the reconstructions are given by

E - AX W . AX
Ui,j=Ui,j+_2 (Ux)i,j, Ui,jzuf,j_T(Ux)i,j,
U =Uij+ 5 Uy Ul =Uij— = WUy,
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where Uy and U, are computed using the generalized minmod limiter,

Ui i-Up1; Uy ;—Ui1; Uiqj—Uj;
(Uy)i,j = minmod (9 Ly T Fihy Fiy T Ml P 1,1)’

AX ’ 2AX ’ AX

(Uy);,j = minmod <6E = Uijor Uijer = Uijr eﬁi’jﬂ _Hi”)
' y

Ay ’ 2Ay ’ A
The minmod function for scalars is defined by
max;{c;}, ifc;j <0 Vj,
minmod(cy, €2, ..., Cq) i= { minj{c;}, ifc; >0 Vj,
0, otherwise,

and the minmod function for vector is simply applying the scalar minmod function for each component. The parameter
6 € [1, 2] controls how dissipative the limiter is. The limiter is less dissipative for larger value of 6, but it remains non-
oscillatory for any choice of 6 [23].

The speeds of local propagation are then estimated by,

- ; OF ¢

a,, ;= min A "(U1+1 )M ﬁ(ui’j) 0!,

+ = uw oF ui) o
ai+%.j =max ) Ask A( i+1.) | - 23K ﬁ( i) 0p,
- . d S 3G N
bi’j+% = min {M <ﬁ(ui’j+1)) s (ﬁ(ui,j)) , 0} ,

3G 3G

+ G s G oy
bi.,j+% = max {)\3K <8ﬁ(ui'j+1)> A3k <8ﬁ(ui’j)> , 0} i

where A1 and Azg are the smallest and the largest eigenvalues of the matrix, respectively. The semi-discrete version of the
central-upwind scheme is given by

A = Tirdi Ty G ") o (30)
e " Ax Ay b2

(29)

where fi.j ~ ﬁjl fc,-,-g(u* B)dxdy is the well-balanced discretization of the source term to be discussed in the following
section. The numerical fluxes for x- and y-direction are given by

+ E\_ + -
' az+ JF(U ) a+1 le“ 7 ai+%,jai+%,j E
Fivl = + - T3 = [Ul+11 Ui.,j]’ (31)
a, 1 . —a, 1 - a. 1 . —a, 1
l+§,] l+§,] l+7,] l+7,]
and
+ N us + -
] bu+1G(U )~ +1G( ij+1) bi,j+%bi,j+% uS  _gN 12
Giry.j= bt - T b [ Lt f’f]’ (32)
Ly i+l ij+y  Cij+i
respectively.

4.2. Well-balanced flux discretization

For deterministic 2D SWE, the numerical scheme should accurately capture the “lake-at-rest” steady state solution, or
small perturbations to this state on coarse meshes. The scheme is said to be well-balanced if it possesses such a property. A
stochastic variant to the “lake-at-rest” property is given by

Ty, 6E) =% (%, y,t,E)=0, hp+TA[BIX, y,t,&) =C(&), (33)

where C(&) is a random variable depending only on &. The solution to (33) represents a still water surface with a flat but
stochastic water surface. The corresponding vector equations for the PCE coefficients are

-~

*=q

AA

0, h+B=C (34)
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Within the framework of central-upwind scheme, the bottom function B is first replaced by its continuous piecewise
bilinear interpolant B,

Ay (35)
+<BH%H1_BH1F1_BF%‘%+BF;p

(x XDy =y 1)
AXAYy

ST
N—"

, (%) eCij.

For a general (possibly discontinuous) bottom topography function, the values at the corners of the cells are estimated by
the average of the lower and the upper limits,

1 ~ —~
=- liminf B(x,y)+ lim sup Bx,y)|. (36)

i+l j+d
2:J+2 2\ xy)—>&. 1,y
*.y)=>( i+ yj:t% (X,Y)ﬁ(xii%,yji%)

For continuous E(x, y), (36) reduces to

The cell average of E in the cell C; ; is equal to the averages of the values of § at centers of the edges of the cell, i.e.,

— 1 "X
B; = // B(x, y)dxdy,
’ Ci, ]
Cij

1
= Z(Bi+%,j+Bi—%,j+Bl]+l +Bi,j—%)’

where

By 1 ;=B 1.y).  Bij1=B(iy1) (37)

IRNE

Note that, since B is a piecewise continuous bilinear function, the cell average B;, j is equal to the value of the interpolant

at the center of the cell /E(x,-, i

At every time step, we compute the cell averages of the PCE vector of the water surface 7; ; := E', j + B, j and their

WESN

second-order-accurate pointwise values U of the reconstructions. The pointwise values of the reconstructions for the

water heights are then computed by

w.
hi,j'=”1] B 1

E ._ E
i1 Mij=mni;—B

i+3.)°
(38)
S ._ S N ._ N
hij=mi =By M= By
The numerical fluxes {(f 1,G 1 )} are then computed using the heights defined in (38). With the recon-
T2 7L ) ielNy), jelNy)
structions for the heights and the fluxes, we are now ready to propose the well-balanced discretization for the source

term.

Proposition 4.1. The central-upwind scheme (30) is well-balanced if we choose Sij = ((S(l))T (S(Z))T (5(3))T> where

(1)

5;; =0,
B..1.—B: 1
(2) i+5,] i—5,]j
Sii=- h; ,
gP( l])( AX ) (39)
B...1—B. . 1
(3) Lj+3 L,j—3
S - h
gP( 1])( Ay >

10
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Proof. Let nlW].’E’S’N be the pointwise values of the reconstructions for the water surface at cell C; ;. Assume at time ¢, the
stochastic water surface is flat and the water is still, that is,

ﬁi,j =" = const vector, ?i,j = q_yi,j =0,
for all cell C; ;. The piecewise linear reconstructions yield nw PN =p* and (qx)xvj'E’s’N = 0. Hence, the numerical fluxes
{(]:fﬂL%J’gi~j+%>}ie[Nx],jE[Ny] e
0
For .= 5P@* =B Do —B1 ) o
1=\ 2 i+5.] b XA I
0
and
0
Gy = 0 . (41)

%7’('7* - Biyj_;,_%)(ﬂ* - Bi,j_;,_%)

The semidiscrete form for the stochastic “lake-at-rest” problem is thus given by

(1) (39)
dth”_ ij =0
d_ 1g * * * 2
0= =5 [P0 = Biyy )" =By )= P@* =By )" —B_y )] +51). (42)
d— 1 g " 3
v [PO* B, )"~ B, ;) — P — By, (' — B 0] +5.).

&q BT T Ay y 2
The well-balanced property requires that the numerical fluxes to be balanced by the source term, i.e., the right-hand-side
of (42) needs to vanish. Clearly, S _(1) = 0. Using the linearity of the operator P and the property (8), one can show that if

we choose S i and S(]) by (39), the right-hand-side of (42) will vanish and the well-balanced property of the scheme can
be satisfied (see also [8], Lemma 4.1). O

The numerical approximations in (39) can be treated as the approximation of the cell average of the source term using
midpoint quadrature rule with the partial derivatives By(x;, y;), By (x;, yj) approximated by the central difference.

4.3. Hyperbolicity-preserving time discretization

The hyperbolicity of the system (17) depends only on the vector h and so we focus on the first K equations in (30) in
this subsection,

]_—h _ rh h
d— i+1.j i—1,j gl i+l gl i3
—h; j= ; (43)
dt AX Ay
where
+ x\E X -
Fh, o=t s S e (44)
i+l + - + - i+1,j — i,j ’
+3.J a. 1 .—da, 1 a. 1 . —da, 1
i+5,] i+5,] i+5.] i+5.]
and
y b | bT
g @N T @ b e (45)
i+l = + - + - ij+1 Lifr
It b’ -b. b’ -b-.
ij+3 i,j+3 ij+3 i,j+3

The following lemma presents a computable restriction on a hyperbolicity-preserving time step for a forward Euler time
discretization.

Lemma4.1. Let {&y} e ) be the nodes of a quadrature rule satisfying the conditions ofTheorem 3.2and <I>($) =(p1(&), ..., P ENT.

Denote the numerical approximation to hl (™) by h and AT = "1 " Assume that h, jEm) = (hl ])Td>(§m) > Oform e [M].
If At" satisfies

11
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—n
(h; ;)" ®(n)
At" < Atf = m[ihr/l” - LT T - : (46)
me i _ch
AXx + Ay ‘I’(fm)

then the flux Jacobian (25), | (Un

i, ) is diagonalizable with real eigenvalues when (17) is discretized using forward Euler solver.

Proof. From Theorem 3.2, we only need to guarantee that (H;}r])T@(sm) > 0 for all m € [M], which, for a forward Euler
discretization, gives the inequality

n+1

0 <) @)
At g T
=) @) — o [y (= )] @G (47)
At

Ay Gy 4] jf%an)] (6n). (48)

Direct calculation and minimization over all the cells as well as all the quadrature points yields (46). O

Combining the hyperbolicity-preserving condition (46) with the wave-speed-based CFL stability conditions, we choose

min{Ax, Ay} }

>a (49)

t" = 0.9min {Atg,

Here, a = max; j{q; 1} is the maximum possible magnitude of the propagation speeds at time level t", where

1+ ,J? 1]+

tLo—a ), b, . max{b

—b- .
i+3.07 ity ivj+3 }

a; 1 ;=max{a 1, o
+§ l,]+§

1+3,]

For now, we assume the local propagation speeds a bi _are real, i.e., the SG system is hyperbolic at the pointwise
+3.

values of the reconstructions. The timestep condltlon ana1y51s for (49) is limited to the cell averages. For second-order or
higher-order central upwind schemes, we need an additional treatment for the pointwise values U; W ESN of the recon-

structions. Further discussion on the procedure to preserve the hyperbolicity at Uv‘g ESN will be prov1ded in Section 4.3.1.

Our numerical scheme uses high-order strong stability-preserving Runge-Kutta schemes [17] for time discretization,
which corresponds to a convex combination of several forward Euler steps and thus the analysis above for deriving a
hyperbolicity-preserving time step restriction still holds. An adaptive time control is introduced for the time discretization
[5,20]. Note that our analysis above can be applied to any other finite volume scheme.

Remark 4.1. If the signs of the fluxes at quadrature points are taken into account, the condition (46) can be relaxed and the
scheme will be more efficient.

4.3.1. Hyperbolicity-preserving filtering for the pointwise values of the reconstructions
Assuming (EL)T@(Sm) > 0, we are able to guarantee that (Hﬁ])nb(ém) > 0 for m € [M] by the condition (49), provided
the local propagation speeds are real. However, the local propagation speeds are evaluated by the eigenvalues of the matrices

a_'LT and %= C’G (see (20)-(21)) at U; W ESN and, unfortunately, the hyperbolicity at the pointwise values of the reconstructions

is not guaranteed by positivity of (h?, j)T<I>(ém) due to the nonlinearity of the generalized minmod limiter. The problem can
be resolved by filtering the higher-order stochastic moments [38,8].

Let pz(¢§) = Zzlc;]?kd’k@) be a polynomial in P, with positive moment Z;. Our goal is to determine the smallest possible
weight ' such that the weighted average of the polynomial p3(¢) and the moment Z; are nonnegative at given quadrature
points {&m}me[m, i€,

K

W7+ (1= p)pzEm) =20 & 21 + Y (1 — 1) Zki(Em) = 0,m & [M], (50)
k=2

and we filter the coefficients in the following way,

o~

71 =71, Zk=0- Wz, k=2,....K, (51)

12
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where p = min{u’ + 8, 1}, and we select § = 1079 in our scheme. The filtered polynomial p(¢) = Z,’le'z‘kqb (&) is positive
at quadrature points {&n}memy.

The hyperbolicity at the pointwise values of the reconstructions requires the positivity of the corresponding reconstructed
water height to satisfy (h:’_vj’E‘N‘S)Ttb(ém) > 0 for all m € [M]. We will use the filter defined in (50)-(51) to filter the mo-
ments of these polynomials. Our strategy is to take the smallest filtering parameter uf j» among the filtering parameters of
all the pointwise values h}fvj’E’N’s of the reconstructions in the same cell C; j, and use it as the common filtering parameter

for h}"/j’E‘N’S,

W.EN,S\ _ (1 W.EN,S
(h"»f )1 - (hi’f )1 ’

W,E,N,S W,E,N,S (52)
SE,IV, — n s B, IV, —
(R EN0), = =l p (BENS) k=2, k.
The corresponding cell averages are recomputed accordingly,
wn 1T/w E N S
hl,]:Z(hl,]+hl,]+hl,]+h1]) (53)

With (53), we are also able to preserve the first moment of the cell averages before filtering. There are other choices of
filters to further reduce the oscillations (e.g., see [27,39,28]), but we adopt this filter because of its simplicity. Note that, in
(52)-(53), we only filter the polynomial moments for k" -£-N-5 and do not filter the discharges.

Remark 4.2. We use a filtering strategy because we cannot theoretically guarantee that our second-order reconstructions
—W,E,N,S
h; ; are positive, even if the corresponding cell averages h, j and positive and the stochastic pointwise assumption

(28) from Theorem 3.2 is satisfied. If a first-order numerical scheme is used i.e., the approximated solutions are piecewise
constant functions, the filtering procedure is not necessary as long as h,»_ j satisfies Theorem 3.2 for all i, j. A positivity-
preserving condition for such an approximation can be derived in a similar manner to Lemma 4.1.

The above strategy requires that the first moments of hW ENS are positive during computation, but this is not necessar-
ily the case. Nonpositive first moments may lead to the fallure of the filtering procedure (52). This is an issue that happens
even for the deterministic system of 2D SWE [24]. Therefore, we propose the following correction for the PCE vector of the
reconstructed water height with nonpositive first moment,

T

. w w E h
if (hl-’j)1 <0 thentake h;’; =0, h;;=2h, ;,

T

if (hf’j)1 <0 then take hfj =0, hl"‘g =2h; ;,

T

if (hf\”j)1 <0 thentake hi!; =0, h}; =2h;
T

if (hf;) <0 then take b)Y, =0, ;=2 ;.

In this way, the cell averages remain consistent, i.e., the cell average is equal to the average of the pointwise values for the
corresponding cell. Note that, in the case when the first moment is corrected, the filter will not be applied. This correction
reduces to a similar procedure in the central-upwind scheme for the deterministic shallow water equations [24].

4.3.2. Velocity desingularization

In computation, the matrix P(h,m; E.N, S) may be near singular at the pointwise values of the reconstructions and may
result in large round-off errors when determining the PCE vector for the velocity (22). An approach for stochastic velocity
desingularization is proposed in [8]. To recall the idea, we consider P(h ;) as an example. But our process can be extended
naturally to the other point values of the reconstructions. Let

Ph)=Q"3Q, (54)

be the eigenvalues decomposition of P(h ) where X = diag(oq,...,0k). For k € [K] and a prescribed €, defined the
corrected inverse of X to be,

«/EO'k

Joi + max{o}, €4}

In our simulation, € = min{Ax, Ay}. The PCE coefficients for the velocity vector are then computed by,

=" = diag(o, ..., 0%, o = (55)

13
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ul;=Q =@}, v =Q Q@) (56)
For well-conditioned P(hm), the correction (56) reduces to (22) and no further reconstruction is needed. In the case when
P(hm) is ill-conditioned, to remain the consistency of the PCE vector of the discharges, we recompute the discharges using
the corrected velocity

PN W, W W _ Wy, W

(q )i,j _p(hi‘j)ui!jv (q )i,j —’P(hi,j)vi,j- (57)

If there is no uncertainty in the system (all moments beyond the first vanish), the desingularization procedure reduces to

the deterministic velocity desingularization procedure proposed in [24,20]. Readers can also find other desingularization
options there.

5. Numerical results
In this section, we will demonstrate the capability of our scheme to capture the solutions to small perturbations of the

stochastic “lake-at-rest” solution for different choices of the random variables &. The distributions we consider are from the
families of distributions with Beta density. For a single random variable £, its density is given by,

pE D)= p@PED) =Cl. pa—eM*a+eD)Y. C.p)T =2TBE+1La+ ), (58)
where B(., -) is the Beta function, and the parameters «, 8 > —1 can be chosen freely and control how mass concentrates at
£M =1 and £ = —1, respectively. The associated orthonormal polynomial basis is the Jacobi polynomials with parameter

« and B. In particular, & = 8 = 0 corresponds to the uniform distribution ¢/(—1, 1) and the Legendre polynomial basis.

In our numerical tests, we consider the cases with both the one-dimensional random variable £ = ¢ and the two-
dimensional random variable & = (¢, £@)T  where £ and €@ are independent one-dimensional random variables with
different distributions, and thus the density function for £ is defined by p(&) == p(€™M)p(&@). The multi-index set A
associated with the polynomial space P, is chosen to be the tensor-product set,

A={0D @) eN? |0<vD V@ <3) (59)

for all the two-dimensional random field numerical examples.

Throughout the numerical section, the gravitational constant is g = 1, the parameter for the generalized minmod limiter
is set to be & = 1.3 (except for Section 5.5, where 6 = 1.0). The filtering parameter is set to be § = 10~1°, We further
observe that, in all of our numerical examples, only Section 5.1 requires filters.

5.1. Example 1: filtering

As we mentioned in Remark 4.2, filtering is employed to guarantee that the pointwise reconstructions satisfy
the sufficient condition Theorem 3.2. This section demonstrates the necessity of filtering by providing a comparison of the
filtered and nonfiltered numerical results.

We consider a deterministic water surface with perturbation

W,E,N,S
h;’;

140.0001(6 +1), if —0.4<x<—0.3,
nx,y,0) = ) u®,y,0=v(xy,0 =0, (60)
1, otherwise,

and with bottom topography,

0.9998, r<0o0.1,
B(x,y,£)=19.998(0.2—r), 0.1<r=<0.2, (61)
0.0001, otherwise.

The one-dimensional random variable is chosen to be & ~2/(—1, 1). We run the numerical test for the following 4 sets of
parameters up to time t =0.65 for both K =4 and K =8,

(nx, ny) = (100, 100), filtered = True,
(nx, ny) = (200, 200), filtered = True,
(nx, ny) = (100, 100), filtered = False,
(nx, ny) = (200, 200), filtered = False.

We first present a table of comparison of running time (in seconds) Table 1. The text “Failed” indicates that Equation (17)
loses hyperbolicity at some pointwise reconstructions before t = 0.65. We find that, for a 100 x 100 grid, the filtering
procedure was never activated (u =0 in Equation (51)). The slight difference in time for the 100 x 100 grid is from

14
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Table 1
Comparison of time for (60)-(61) with different choices of parameters.
Grid size K=4 K=8
Filtered Nonfiltered Filtered Nonfiltered
100 x 100 450.74 s 44127 s 159725 s 1556.59 s
200 x 200 3868.11 s Failed 1345943 s Failed

Number of filtered cells Number of filtered cells

12 T T 14 T T T
10} A2
10
st
0 0
8 3 gl
k] k]
o 6 et
8 8
€ E 6]
= 3
c c
4l
4t
2r oL
0 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
t t
Maximum filter values Maximum filter values
0.035 T T T T T T 0.035 T T T T T T
0.03 1 0.03
0.025 1 0.025
8 8
E 0.02 E 0.02
o o
> >
20015} £ 0015
0.01 1 0.01
0.005 1 0.005
0 : 0 ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

t t

Fig. 2. Study of the filtering procedure for (60)-(61), grid size 200 x 200. Top: number of filtered cells; Bottom: max magnitude of the filter p. Left: K =4;
Right: K =8.

determining whether a reconstruction satisfies the sufficient condition Theorem 3.2. The filtering scheme is more robust
as it consistently avoids possible loss of hyperbolicity at pointwise reconstructed values. We further keep track of the
number of filtered cells and the maximum magnitude of the filter values p at each time step (Fig. 2). The number of cells
that need filtering is relatively small (~ 0.03% of the total cells) and the filter values y are relative small.

5.2. Example 2: accuracy test

This subsection is devoted to checking the order of accuracy of the proposed scheme for our SG system of 2D SWE. We
consider a stochastic version of the accuracy test in [4,40,16] with deterministic initial water surface,

n(x7yvos€):15 U(Xay,0,5)20-3, V(xvyv()?%_):O? (62)

and stochastic elliptic-shaped hump bottom,
B(x, y) = 0.5e~ 2501 =500-057 4 0 1(¢ 4 1), (63)

15
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mean, t=0.07 std, t=0.07 %1074

‘ ‘ ‘ 4

0.8+ ] 1.02 0.8+ 4
06" 06!

1 2
04+ 04+

02} { o 02} L

: : : 0.96 : :
0.5 1 1.5 0.5 1 1:5

Fig. 3. Contours for the water surface of the reference solution. Left: mean. Right: standard deviation at t = 0.07.

Table 2
Order of convergence for (62)-(63) with different grid sizes and different K values at dif-
ferent times.

Time Grid size K=4 K=8
Error Order Error Order
t =0.067 100 x 100 1.475875e-05 — 1.456866e-05 —

200 x 200 4.287569e-06 1.764646 4.287573e-06 1.764635
400 x 400 1.279305e-06 1.744799 1.279306e-06 1.744799

t=0.07 100 x 100 1.475875e-05 - 1.475865e-05 -
200 x 200 4.343711e-06 1.764571 4.343714e-06 1.764559
400 x 400 1.296122e-06 1.744727 1.296122e-06 1.744727

t=0.073 100 x 100 1.494536e-05 - 1.494524e-05 -
200 x 200 4.398829¢-06 1.764506 4.398832e-06 1.764494
400 x 400 1.312592e-06 1.744700 1.312593e-06 1.744701

t=0.14 100 x 100 1.808672e-05 - 1.808651e-05 -
200 x 200 5.329017e-06 1.762990 5.329023e-06 1.762971
400 x 400 1.590317e-06 1.744555 1.590320e-06 1.744554

The one-dimensional random variable is chosen to be & ~U/(—1,1). The computational domain is [0, 2] x [0, 1]. All the
boundary conditions are obtained by zero-order extrapolation. The reference solution is computed on a 800 x 800 uniform
rectangular grid. The contour plots of the reference solution for the mean water surface and the standard deviation of the
water surface at t =0.07 are shown in Fig. 3.

We computed the error between the reference solution and the numerical solution using,

err(Ug) = [Ug(x, y,8) — Uret(x, ¥, €)||L1(Qxy;Lf,(Qg;R3))’ (64)

where y is the physical domain, Q¢ is the stochastic domain, Uy is the numerical K-term PCE solution to the &-
parameterized equation (1), and U is the K-term PCE reference solution to the &-parameterized equation (1). Here, for
the stochastic state variable in K-term PCE, U = (hu, g}, qﬁ)T, the norm || - ”L](Qxyll-%(Qg;R:;)) is defined to be,

||U(X, Yy, t’g)llll(ﬁxy;L%(Qg;R3)) =
/ [Iha Gk y. £ )l + 165 (6 y. £ Ol + g4 (% y. .l | dxdy.
Dy

From the orthogonality of the basis functions in the PCE, we have,

Iha (. y: §)li = I,

where h is the vector of the PCE coefficients of h A»and | - |2 is the Euclidean norm. The computations for the norm of g%
and qi’\ are similar. We compute orders of convergence for the solution with K =4, K =8 at various times t in Table 2.
The rate of convergence is comparable to the rates of the deterministic benchmark reported in [4,40,16] and we expect
that using a finer grid for the reference solution will yield second-order convergence. We also note that, for this example,
increasing the polynomial order will not have a significant effect on the order of the convergence, especially when K is
relatively large (K > 8).
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Mean (SG, N = 8, 200 x200)
I\ T T T T
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0.3 0.3
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011 011
0.996 0.996
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Mean (SG, N = 4, 400 x400) Mean (SG, N = 8, 400x400)
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. 1.004
0.7F 1008 0.71 y,
//
06+ 1.002 061 f'/ 1.002
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0.1 0.1
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0.994

Fig. 4. Numerical solutions to (65)-(66), mean water surface at t = 1.2. Top left: SG solution, K =4, 200 x 200 grid; Top right: SG solution, K = 8, 200 x 200
grid. Middle left: SG solution, K = 4, 400 x 400 grid; Middle right: SG solution, K = 8, 400 x 400 grid. Bottom: SC solution, K = 8, 400 x 400 grid. The
number of collocation points is 100.
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Fig. 6. Numerical solution to (67)-(68), water surface, 100 x 100 grid, disk-glyph over mean contours, where the radii of the disks indicate the magnitude of
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Fig. 7. Numerical solution to (67)-(68), 200 x 200 grid, water surface, disk-glyph over mean contours, where the radii of the disks indicate the magnitude of
the standard deviation, t = 0.6, 0.9, 1.2, 1.5, 1.8 (top left, top right, middle left, middle right, bottom). The largest disks are corresponding to the standard

deviation values 2.20e-3, 3.35e-3, 2.00e-3, 1.58e-3, and 1.20e-3, respectively.
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Fig. 8. Numerical solution to (69)-(70), 50 x 50, water surface, disk-glyph over mean contours, where the radii of the disks indicate the magnitude of the
standard deviation, t = 0.2, 0.35, 0.5, 0.65 (top left, top right, middle left, middle right). The largest disks are corresponding to the standard deviation values
4.87e-7, 6.28e-7, 8.45e-7, and 5.37e-8, respectively.

5.3. Example 3: comparison with collocation method

The third numerical example serves to compare our SG formulations (17) as well as our scheme with a collocation
procedure. Consider a deterministic initial water surface

1.01, if0.05 <x <0.15,
nx,y,08) = , u,y,0,§)=v(x,y,0,§) =0, (65)
1, otherwise,
with an uncertain bottom function
B(x, y, £) = 0.8e~>x~097=500=057% 4 ( 1(£ 4 1), (66)

where & has Beta density with parameters (&, 8) = (1, 3). At t =0, there is a small but deterministic perturbation to the
“lake-at-rest” state n =1 at 0.05 < x < 0.15. The uncertainty of the bottom skews toward the positive direction, i.e., the
probability for & to be a positive number is higher. The computational domain is [0, 2] x [0, 1]. The boundary conditions
for the upper and the lower boundaries are periodic boundary conditions. The boundary conditions for the left and right
boundaries are outflow boundary conditions. We compute the SG solution for K =4,8 on 200 x 200 and 400 x 400 grid
up to time T = 1.2. As a comparison, we compute the stochastic collocation (SC) solution Usc for K =8 with M = 100
collocation points on 400 x 400 grid for the same terminal time, where the SC solution is obtained by

M

K
USC (X, y’ t7 ;) = Zasc,k(xa y9 t)¢k(§)v GSC,k(X’ y7 t) = Z USC(X7 ys tv {m)¢k(§m)zm-
k=1 m=1
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Fig. 9. Numerical solution to (69)-(70), 200 x 200, water surface, disk-glyph over mean contours, where the radii of the disks indicate the magnitude of
the standard deviation, t = 0.2, 0.35, 0.5, 0.65 (top left, top right, middle left, middle right). The largest disks are corresponding to the standard deviation
values 4.83e-8, 6.57e-6, 4.20e-6, and 3.50e-6, respectively.

Here, {¢m, Zm}mem) is an M-point p-Gaussian quadrature rule. The comparison of the contours of the statistics of the water
surface is shown in Fig. 4 (mean) and Fig. 5 (standard deviation). Since the SG solutions and the SC solutions are obtained
from numerically solving different partial differential equations, we do not expect that one solution will converge to the
other solution by, for example, increasing the number M of quadrature points and/or refining the mesh. The contour lines
look different near the intermediate region from peak to valley of the mean water surface, but overall they are similar,
especially between the SG solutions on 400 x 400 grid with K =8 and the SC solution.

5.4. Example 4: a two-dimensional random variable example

In this example, we will consider a more difficult variant of (65)-(66). Consider a deterministic initial water surface

1.01, if0.05<x<0.15,

nx,y,08) = ) u,y,0,)=v(x,y,0,&) =0, (67)
1, otherwise,

and a stochastic bottom

B(x,y,§) = 0.86_5(){_0'94'0‘1&(1))2—50(y—0,5+0_]§(2))2’ -

where & = (6, £@)T is a two-dimensional random variable, with £1) having Beta density with parameters (o, 8) = (1, 3),
and £@ ~1/(—1, 1). The randomness is put on the position of the center of the Gaussian-shape “hump”.

The computational domain is [0, 2] x [0, 1]. We compute the numerical solution on 100 x 100 and 200 x 200 grid at
various time. We plot the contours of mean overlaid with disk glyphs (Fig. 6 and Fig. 7) whose radius are proportional
to the uncertainties at the corresponding cells. We uniformly downsample the cells for the disk glyphs to better present
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Fig. 10. Numerical solution to (69)-(70) for non-well-balanced scheme, 50 x 50, water surface, disk-glyph over mean contours, where the radii of the disks
indicate the magnitude of the standard deviation, t = 0.2, 0.35, 0.5, 0.65 (top left, top right, middle left, middle right). The largest disks are corresponding
to the standard deviation values 4.38e-4, 4.45e-4, 3.92e-4, and 3.73e-6, respectively. The well-balanced counterpart is Fig. 8.

the uncertainties in the figures. The water propagates towards the right in the computational domain and the uncertainties
remain small for most of the sampled cells at the beginning (t = 0.6). As the water interacts with the hump, the water
splits and propagates along all directions. The contours of the mean water surface generate more complicated structures
and the uncertainties propagate along the directions of the mean waves. The largest uncertainties were concentrated near
the peak of the water surface (t = 0.6, 0.9) but then gradually “spread out” following the mean waves (t =1.2,1.5,1.8). One
can also compare the middle left contours (corresponding to the solution at t = 1.2) in Fig. 7 or Fig. 6 with the contours of
the mean water surfaces in Fig. 4. The uncertainties imposed in the position shifts the peak of the mean towards the right.
It is reasonable because £ follows a distribution that skews negatively so the mean center of the hump (0.9 — 0.16M)
is skews towards the right. On the other hand, the uncertainties on the center increase the width of the peak and valley
structures.

5.5. Example 5: a submerged flat plateau
We consider a deterministic initial water surface with deterministic perturbation

1.0001, if —0.4<x< —0.3,
nx,y, 0= ) ux,y,00=v(x,y,0 =0, (69)
1, otherwise,

and with stochastic bottom topography,
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Fig. 11. Numerical solution to (69)-(70) for non-well-balanced scheme, 200 x 200, water surface, disk-glyph over mean contours, where the radii of the disks
indicate the magnitude of the standard deviation, t =0.2,0.35, 0.5, 0.65 (top left, top right, middle left, middle right). The largest disks are corresponding
to the standard deviation values 7.07e-4, 6.56e-4, 4.22e-4, and 6.60e-4, respectively. The well-balanced counterpart is Fig. 9.

0.9998, r<o.1,
B(x,y,&) = {9.997(0.2 —r) + 0.0001(¢V +1), 0.1<r=<0.2, (70)
0.0001, otherwise,

where 1 := /x2 + y2 4+ 0.0001(¢® + 1). The bottom is a flat plateau beneath, but very close to, the water surface. It is con-
tinuous but not smooth in the physical domain. The uncertainties £ ~1/(—1, 1) are on the heights of the bottom in the
transition region between the plateau and the lowland in the water. The uncertainties &® (with Beta density (o, 8) = (1, 3))
are on the radius of the disk-shaped plateau. We compute the solutions at various time on the computational domain
[—0.5,0.5] x [—0.5,0.5] with a 50 x 50 and 200 x 200 grid. The mean contour plots with disk glyphs are presented in Fig. 8
and Fig. 9. The initial deterministic perturbation is split into two waves. The left-going wave propagates out of the compu-
tational region while the right-going wave interacts with the plateau and generates complicated waves as the interaction
starts. The initial deterministic perturbation on the water surface is 10~* and largest level of the mean water displacement
from the steady state stay in the same order during the computation. The uncertainties (standard deviation) remain small
and are close to the island, which shows the capability of our scheme to capture the stochastic “lake-at-rest” solution (33).

As a comparison, we also include the results of a non-well-balanced scheme, where the numerical source term is given
by a straightforward midpoint quadrature rule:

El{,]]') =0,

— 2 J—

S = —gP(; (B ). (71)
J— 3 J—

S{) = —gP(hi ))(By)i j,
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Fig. 12. Numerical solution to (72)-(73), water surface t = 0.07, 100 x 100 grid. Top left: mean water surface; Top right: the standard deviation of wa-

ter surface; Bottom: disk-glyph over mean contours, where the radii of the disks indicate the magnitude of the standard deviation. The largest disk is
corresponding to the standard deviation 8.10e-3.

where (By); j and (By); ; are the partial derivatives of the bottom function B at the center of cell Ci,j. The numerical
results of this non-well-balanced scheme are presented in Fig. 10 and Fig. 11. As we can observe, the perturbations in
the non-well-balanced scheme are far larger than the corresponding well-balanced results. Refining the mesh can reduce
the magnitude of the oscillation. However, we cannot observe the correct wave propagation from Fig. 10 and Fig. 11. The
uncertainty exercised on the radius of the island seems to be the major cause of the unphysical results since it affects the
“width” of the transition region.

5.6. Example 6: another two-dimensional example

We consider the deterministic initial water surface

nx,y,0,6)=1, u(xy,0,§)=03, v(xy,0,&=0, (72)
with stochastic bottom

B(x, y,&) = 0.56712.5@“41)(#1)2725(s<2>+1)(y70.5)2’ (73)

where & = (6, £@) is a random vector, £ is the distribution with Beta density («, 8) = (3,1), €@ ~U(—1,1). This
example is a multidimensional variant of Section 5.2. Here, we put the uncertainties on the width of the Gaussian-shape
hump. The computational domain is [0, 2] x [0, 1]. We compute the solution numerically on 100 x 100 (Fig. 12) and 200 x
200 (Fig. 13) grids up to t = 0.07. Compared with the solution in Fig. 3, where only a simple additive uncertainty is imposed,
the contours in Fig. 12 (or Fig. 13) are more complicated with the introduction of the two dimensional uncertainties on the
width of the hump. The largest uncertainties occur near the peak and the lowest part of the mean waves. The region
between them, however, has very small uncertainties.

6. Conclusion
We have introduced a hyperbolicity-preserving SG formulations for the two-dimensional shallow water equations. A
sufficient condition for preserving the hyperbolicity of our SG system has been introduced and can be interpreted as a

“stochastic” positivity condition. Our formulation remains in conservative form. Based on our theoretical results, we develop
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Fig. 13. Numerical solution to (72)-(73), water surface t = 0.07, 200 x 200 grid. Top left: mean water surface; Top right: the standard deviation of wa-
ter surface; Bottom: disk-glyph over mean contours, where the radii of the disks indicate the magnitude of the standard deviation. The largest disk is
corresponding to the standard deviation 8.58e-3.

a well-balanced hyperbolicity-preserving central-upwind solver and illustrate the effectiveness of our solver on some chal-
lenging numerical examples. However, our theoretical framework is not limited to central-upwind type schemes, and can
be extended to other finite-volume-type schemes (e.g., [41]) or discontinuous Galerkin schemes ([49]) with modifications
on the discretization of the well-balanced source term, as well as the CFL-type time condition.

Currently, our scheme is not designed to handle the dry/wet interfaces, for example, a wave arriving or leaving the shore.
The presence of dry or partially dry cells may cause computationally impractical time step even for deterministic problems.
In deterministic cases, the “draining” time step strategy has been introduced to capture the wet/dry interfaces [3,2,31].
Future design of stochastic version of “draining” time step may adapt our scheme to more challenging problems. Another
possible extension is to preserve the strict positivity of the water height rather than the positivity at a finite number of
quadrature points, which requires an efficient algorithm to preserve the positivity of high-order polynomials (e.g., [54]).
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