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An analytic continuation method for obtaining
rigorous bounds on the effective complex permittivity
€* of polycrystalline composite materials is deve-
loped. It is assumed that the composite consists
of many identical anisotropic crystals, each with a
unique orientation. The key step in obtaining the
bounds involves deriving an integral representation
for €*, which separates parameter information
from geometrical information. Forward bounds are
then found using knowledge of the single crystal
permittivity tensor and mean crystal orientation.
Inverse bounds are also developed, which recover
information about the mean crystal orientation from
€*. We apply the polycrystalline bounds to sea ice, a
critical component of the climate system. Different ice
types, which result from different growth conditions,
have different crystal orientation and size statistics.
These characteristics significantly influence the fluid
transport properties of sea ice, which control many
geophysical and biogeochemical processes important
to the climate and polar ecosystems. Using a two-
scale homogenization scheme, where the single
crystal tensor is numerically computed, forward
bounds for sea ice are obtained and are in excellent
agreement with columnar sea ice data. Furthermore,
the inverse bounds are also applied to sea ice, helping
to lay the groundwork for determining ice type using
remote sensing techniques.
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1. Introduction

A polycrystalline composite material consists of many single crystals that can vary in shape,
size and orientation. A broad range of manufactured and naturally occurring materials are
polycrystalline, including metals, ceramics, rocks, glacial ice and sea ice. Here, we consider the
electromagnetic behaviour of polycrystalline media when the wavelength is much larger than
the scale of the underlying microstructure of the composite. When in this regime, the quasi-
static approximation is valid, and the electric and displacement fields can be viewed as time-
independent fields. Then the polycrystalline composite can be characterized electromagnetically
via the effective complex permittivity tensor €*.

The macroscopic permittivity or dielectric tensor €* of a polycrystalline composite depends
directly on its microstructural properties, such as the complex permittivity tensor of the
individual crystals and their microstructural geometry, i.e. how the crystals are oriented. Owing
to the complicated nature of the microstructure, explicitly calculating €* is highly non-trivial, and
can generally only be accomplished if the exact microstructure is known and with the assistance
of very powerful numerical computations. Therefore, using partial microstructural information
that may be available to estimate or bound €* is a very practical and useful approach.

There has been extensive work in the past on estimating and bounding €* for composite
materials. The books by Cherkaev [1] and Milton [2] thoroughly discuss much of this work. In
particular, €* has been intensively studied for two phase composites. Rigorous bounds were
first obtained in the early 1980s using the analytic continuation method, where the effective
parameter is treated as an analytic function of the ratio of the component parameters [3-6]. These
bounds assume that the complex permittivity of each component is known and that there is
some partial information available about the microstructure. The most general bounds assume
only knowledge of the relative volume fractions of each material, resulting in the complex
versions of the classical arithmetic and harmonic mean bounds for a two-component material.
Tighter bounds can be found when more geometrical information is available, such as knowing
that the microstructure is isotropic [7], or that the composite has a matrix—particle structure
[8,9], etc.

Additionally, the electromagnetic response of a composite material can be used to help
determine microstructural properties when approached as an inverse problem. That is, given
information on €*, different microstructural details can be resolved, such as the relative volume
fractions of each component of the material. This has also been extensively investigated for a two-
component composite [10-21], and computational approaches [15,16,18-20] as well as analytic
inverse bounds for geometric parameters [12-14] have been developed.

For some composite structures, it is more appropriate to assume that the material consists of
many identical anisotropic pieces that are oriented in different directions. This is the case for a
polycrystalline composite. Polycrystalline materials have been studied for decades [1,2,22-30],
and in particular, there has been a significant amount of work done on bounding the (real)
effective conductivity. The books by Cherkaev [1] and Milton [2] discuss the majority of this work.

Here we develop an analytic continuation method for obtaining complex bounds on €*
for a three-dimensional (transversely isotropic or uniaxial) polycrystalline composite material.
The key step in obtaining the bounds involves deriving an integral representation [3,6] for
the effective complex permittivity tensor. This approach was first employed by Bergman [3],
and the bounds for the diagonal elements of the complex permittivity tensor €* for a two-
component composite were derived in [3-6,31] using this approach. An important feature of the
integral representation is that it separates parameter information from geometrical information.
By making an assumption about the complex permittivity tensor of each individual crystal
and assuming some knowledge about the mean single crystal orientation, we obtain first-
order polycrystalline bounds on €* for the entire polycrystal. If we further assume that the
polycrystalline material has the ‘polycrystalline Hashin-Shtrikman condition” [2], which is
essentially geometric isotropy, second-order forward bounds are constructed. Further, we use an
inverse analytic bounds method [12-14] and derive inverse bounds for the mean orientation of
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crystals in the polycrystalline composite. Thus, knowing €* and the complex permittivity tensor
of an individual crystal, we bound the mean single crystal orientation.

As a demonstration of the complex polycrystalline bounds, we compare them to sea ice data.
Investigating the electromagnetic behaviour of sea ice is not only interesting from a composite
material point of view, but also because of the valuable information that can be recovered using
remote sensing techniques, such as sea ice thickness and fluid transport properties. Sea ice covers
between 7 and 10% of the Earth’s ocean surface and is both an indicator and agent of climate
change [32-34]. Since the 1980s, there has been a steady decline in Arctic summer sea ice extent,
with a much more rapid decline over the past decade [35]. During the winter months in the
Arctic and Antarctic, the extensive sea ice packs serve as the boundary layer which mediates
the exchange of heat, moisture and momentum between the atmosphere and ocean [33,36]. The
vast expanses of sea ice also serve as a habitat for rich microbial communities living in the brine
microstructure of porous sea ice [33,37,38]. In turn, these microbial communities are primary
providers for the complex food webs in the polar oceans.

Owing to the global nature of monitoring the Earth’s sea ice packs, large-scale information is
usually obtained via remote sensing from platforms on satellites, aircraft and ships [17,39-42].
One of the grand challenges of sea ice remote sensing is to accurately recover the thickness
distribution of the pack. Assessing the impact of climate change on the polar regions involves
monitoring not only the ice extent, but the ice volume, which requires knowledge of ice thickness.
Recently, there has been increasing interest in using low-frequency electromagnetic induction
devices to estimate sea ice thickness [43]. In addition to assessing ice thickness, remotely
monitoring the fluid transport properties of sea ice is of increasing interest because of the broad
range of geophysical and biological processes it mediates in the polar marine environment.
For example, the evolution of melt ponds and summer ice albedo is constrained by drainage
through porous sea ice [44], where ice-albedo feedback is believed to play a key role in the
decline of summer Arctic sea ice [35]. Fluid flow also facilitates snow-ice formation [45], the
evolution of the salt budget [33], convection-enhanced thermal transport [46], CO, exchange
[47] and biomass build-up sustained by nutrient fluxes [33,37]. There is evidence [48] that the
polycrystalline structure of the sea ice, such as granular versus columnar, can dramatically affect
its fluid transport properties. Thus, determining ice type using remote sensing techniques may be
a particularly useful application.

There has been considerable work in the past on estimating and bounding e€* for
sea ice, particularly in the microwave region [9,14,41,49-57]. The rigorous two-component
bounds mentioned above have successfully been used to bound €* for sea ice [9,14,54-57].
These bounds assume that sea ice is a two-component material, consisting of a pure ice and
brine phase. The forward bounds recover information on €* using information about the
microstructure, such as brine volume fractions or porosity ¢ (and sometimes further assuming
statistical isotropy), while the inverse bounds attempt to recover ¢ from €*.

Here we apply the first-order forward polycrystalline bounds to sea ice. We see a dramatic
improvement over the classic two-component bounds, because these new bounds include
additional information about single crystal orientations. Here, we use the dataset presented in
[52] to compare the polycrystalline bounds to sea ice. This dataset is the same one used in
[9,14,54], thus helping provide some continuity between different types of bounds. In addition
to providing €* and ¢ measurements, the dataset provides detailed crystallographic data, which
will be critical when applying the bounds. Notationally, we will reserve Ry and R; to indicate
the previously reported two-component forward bounds and use Rz and Ry to describe the
new polycrystalline forward bounds. The single crystal complex permittivity tensor is obtained
by numerical simulation using X-ray CT data on sea ice, along with known brine volume
fractions and ice and brine permittivities. A governing single crystal complex permittivity
tensor, that is applicable to an entire sea ice column, is then obtained using several generalizing
assumptions and approximations. Further, the inverse method that we develop is applied to
sea ice and we obtain bounds on the mean single crystal orientation. Columnar and granular
microstructures (figure 1) have different mean single crystal orientations [58], thus this inverse
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Figure 1. Cross-polarized images of various types of sea ice with different crystalline structures. (a,b) Two images showing the
polycrystalline structure of columnar sea ice from Antarctica. (c,d) Images of platelet ice from the Ross Sea (c) and granular ice
from the Bellingshausen Sea (d). Granular ice can be viewed as a statistically isotropic polycrystalline composite material, while
columnar ice has crystals predominantly oriented in the vertical direction. Image 1(d) courtesy of Jean-Louis Tison; parts (a—c)
courtesy of Kenneth Golden.

approach helps lay the groundwork for determining ice type when using remote sensing
techniques.

2. Forward bounds on the effective complex permittivity of a polycrystalline
material

Consider the constitutive relation D(x, ) = €(x, w)E(x, ®), where D(x, ) and E(x, ») are stationary
random displacement and electric fields and €(x, w) is the permittivity tensor of some medium.
Here x e R? and w € £2, where d is the spatial dimension and £2 is the set of all realizations
of the random medium. Let us consider a polycrystalline material, where each crystal has
the same complex permittivity tensor but with different orientation. Thus, we let e(x, )=
B! (x, w)esB(x, w), where B(x,w) is a rotation matrix describing the orientation of a crystal at
location x and realization w, and €, is the same permittivity tensor for each crystal and can be
written

eqc 0 O
€eg=10 e 0
0 0 e

Here, we are assuming that each crystal has the same permittivity value €, in both horizontal
directions (transversely isotropic or uniaxial) with anisotropy occurring in the vertical direction
with permittivity value €;. It is assumed that €; and €, can take complex values. Then making
the assumptions that we are in the quasi-static regime and there is no free charge, we can write
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V x E(x,w) =0 and V - D(x, w) = 0. Now, letting () represent an ensemble average over 2 or a
spatial average over all of R?, we then write (E(x, w)) = e, where ey is a unit vector in the kth
direction for some k=1,...,d. For notational simplicity, we write E(x,w) =E and D(x,w) =D.
The effective complex permittivity tensor is then defined via

(D) = €*(E). 2.1)

From this, we can write [e*]y = e{e*ek = (eEeE) and then define €* = [¢*]i. This allows us
to strictly examine the kkth component of the effective permittivity tensor and simplifies the
notation. Thus, we can rewrite the equation as €* = (eEBfledBE). Owing to the homogeneity of
the effective parameters €*(ie1, Aex) = Ae* (€1, €2), € depends only on the ratio 1 =€1/€; and we
define m(h) = €*/e;. Therefore, we have the equation

- h 0 0
m(h):=<e,fB—1 010 BE>.
2 00 1

Note that this is equivalent to
m(h) = (e} (I — (1 — h)B~'CB)E),

where C=ej(e1), Iisa3 x 3 identity matrix, and e is a unit vector in the first direction [2,29].
To simplify the notation, we define R = B~!CB, and can then write m(h) = (el (I — (1 — h)R)E).
The two main properties of m(h) are that it is analytic off (—oo,0] in the h-plane, and that it
maps the upper half plane to the upper half plane [3,6], so that it is an example of a Herglotz or
Stieltjes function [59]. The key step for obtaining forward bounds is to use an analytic continuation
method which involves obtaining an integral representation for €*. If we let s =1/(1 — k), then we

can define .

Fs)=1—m(h)=1— Z* = (s 'eIR)E).
2

From here, we must now obtain a resolvent representation for E, which will allow us to find an
integral representation for F(s).

To find the resolvent representation of E, first examine V - D = 0, which implies that V - €E=0.
Then, let G be a vector representing the mean fluctuations in the electric field and call E = e} + G.
Expand € and E using the previous definitions and formulate the equation

V.- (I-5s"R)(er+G)=0, (2.2)

where I is again a 3 x 3 identity matrix. After multiple algebraic manipulations, one can obtain
the equation
sG 4+ V(—=A)"'V . (RE) =0. (2.3)

As in [6], we denote I' as the operator V(—A)"1V., which projects fields onto a subspace of curl-
free mean-zero fields
r=v(-Aa)lv. (2.4)

In the derivation of the integral representation for the effective permittivity of two-component
composites, a similar operator acting on the scalar potential was introduced as G in [60,61] and
was shown to be self-adjoint, see also I' in [62]. The same operator is also used in [16,54,56,57].
Using it, we find the resolvent representation for E to be

E=s[sI+ I'R] 'e. (2.5)
This resolvent representation allows us to express F(s) using the following equation:
F(s) = (e R(sI + I'R]ley). (2.6)

The spectral theorem results in a representation for F(s) which takes the particularly nice form

1
F(s) :J dr@@) 2.7)

0s—z’
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where the positive measure  on [0, 1] is the spectral measure of the self-adjoint operator I'R. F(s)
is also analytic off [0, 1] in the s-plane, which is the only restriction for this integral representation.
All of the geometrical information is now contained inside of p and all of the parameter

information is contained in s, including the electromagnetic wave frequency. Expanding F(s), we
find

F(s)=

T T
e, Re e; RI'Re
<ks k>+<k k)+”' 2.8)

52

and

Fo)=20 4 By 2.9)
S S

Thus, statistical assumptions about the geometry that are incorporated into w via its moments
Uy = f(l) z" du(z), can be calculated from the correlation functions of the random medium, with
wn = (—1)" (eER[(I‘ R)"ex]). For the complex elementary bounds, it is assumed that we know only
no = (ezRek). This quantity can be easily and quickly calculated provided we know the dimension
of the composite and crystal orientation statistics. A calculation of this will be done when the
bounds are compared to actual sea ice data in §4. The statistical average (eERek) can be thought
of as the ‘mean orientation’, or as the percentage of the single crystals in the kth direction.

Bounds on €*, or F(s), are obtained by fixing s in (2.7), varying over admissible measures
p (or admissible geometries), such as those that satisfy only pug= (egRew, and finding the
corresponding range of values of F(s) in the complex plane [6]. The bound R3 assumes only that
the mean crystal orientation (eERek) of the single crystals is known, with pp = (eERek) satisfied.
In this case, the admissible set of measures form a compact, convex set M. Since (2.7) is a linear
functional of u, the extreme values of F are attained by extreme points of Mg, which are the Dirac
point measures (eERek)ﬁz. The values of €* lie inside the region R3 bounded by circular arcs, one
of which is parametrized in the F-plane by

(e Rey)

Ca(z) = s, ™ <z <oo. (2.10)

To display the other arc, we use the auxiliary function [3,31] E(s) =1 — €1 /€*, which is a Herglotz
function like F(s), analytic off [0,1]. Then in the E-plane, we can parametrize the other circular
boundary of R3 by

R 1— (efRey)

Cs(z) = s —00 <z <o00. (2.11)
In the common e*-plane, R3 takes the following form for the ‘lower” and “upper’ bounds, which
are still circular arcs, €/ and €}, respectively.

T
e _Re
)= —e <(;‘Zk)) , —00<z<00 (2.12)
and .
1—(efRey)\
@) =€ (1— :ekzek)> , —00=<z<o00. (2.13)

When €7 and ¢ are real and positive, the bounds collapse to the interval
1/((e{Rex)/e1 + (1 — (e[ Rey))/e2) < €* < (ef Rey)er + (1 — (e Rex))ea.

These are the analogous arithmetic (upper) and harmonic (lower) mean bounds for a
polycrystalline material in the single direction k.

To obtain second-order complex bounds further assumptions need to be made. For instance,
if the polycrystalline composite is assumed to have the ‘polycrystalline Hashin-Shtrikman
condition” [2] or essentially geometric isotropy, then 1 = —(eERF Rey) = (d — 1)/d®, where d is
the dimension of the polycrystalline composite. In two dimensions, we define a polycrystalline
material to be geometrically isotropic if for every crystal in the polycrystalline composite with
orientation off the vertical direction described by the normalized vector (x,y), there exist three
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other crystals that have orientations (x, —y), (y,x) and (y, —x). A similar definition can be made
for three dimensions, where groups of 24 crystals are needed instead of groups of four. (Note:
several special examples in two dimensions where only groups of two are required include
polycrystalline materials where all the single crystals are vertically and horizontally aligned or
all the single crystals have an orientation angle of £ /4 radians or +45° off the vertical axis. In a
similar manner, if all the single crystals are vertically or horizontally aligned in three dimensions,
only groups of three crystals are required.)

Here we show the derivation for the value of u; = —(eERF Rey) for two dimensions. (An
analogous argument can be demonstrated for three dimensions.) Recall that I' = V(-A)"1v.
and define (—A)~! in terms of a Green’s function so that ((—A)*lf)(x) = IIU g(x, y)f (v) dy, where
Ag(x) = —8y(x) and U is a translationally invariant domain. Therefore, we can write

H1= <eERVJ g0, y)V - Reg dy>, (2.14)
U
where in two dimensions R takes the form
_ cos2(6) —cos(@)sin(@) | | a —b
~ | —cos(8) sin(h) sin%(9) “l=b |’
where for notation simplicity define a = cos2(8), —b = — cos(f)sin(f) and ¢ =sin?(9), where 6

is the angle of orientation off the vertical axis. Define R=R- I((e$Re1), (eERez))T, which is
translationally invariant, and then under the divergence theorem we can write

o =(~€RY [ (V5,0 Ry
~elRV | (9g(x,) - W(elRes), (e} Rez)) ey

+ e"kFRvJ (g(x, y)Rey) - n dA>, (2.15)
U

where 9U is the boundary of domain U.

Again for simplicity, let us consider the terms separately. The intent here is to find crystal
orientation combinations so that the Laplacian operator is recovered, and together with g(x, y) we
obtain a delta function inside the integral, or for the term to become zero. Examining the first
term, analysing the first direction (k = 1), and using the notation D, = d/dx, we see that

— e?RV LU(Vg(x, Y)) -Re;dy = LU(aZDxx — 2abDyy + bZDyy)g(x, y)dy. (2.16)

A similar result is found when examining the second direction

—elRV JU(Vg(x, ) - Reydy = JU(szxx — 2bcDyy, + ?Dyy)g(x, y) dy. (2.17)

Together, these describe the vertical and horizontal components of a single crystal inside a
statistical average. If we now impose the condition that the vertical and horizontal components
have the same statistical average for a single crystal, we observe that

<—eERV JU(Vg(x, y)) - Reg dy> = % <LU[(112 + bz)Dxx — 2(ab + bc)Dyy

+ * + cz)DW]g(x, 1) dy>. (2.18)

Thus, for the term [(a* 4 b?)Dyy — 2(ab + bc)Dyy + (. CZ)DW] to become the Laplacian operator,
a*> =% and b= 0. This is equivalent to every crystal in the polycrystalline material having either
perfect vertical or horizontal rotations with an equal amount of crystals in the vertical and

horizontal directions. Therefore, (—eERV IU(Vg(x, Y) - Repdy) =1 /d2.
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This same line of reasoning can be expanded into a geometrically isotropic polycrystalline
material. That is, let us now consider ‘groups’ of four single crystals under the statistical average.
If four crystals are examined at once, the condition for recovering the Laplacian operator becomes

@3 + a3 + a3 + a5 + b3 + b3 + b3 + b2)Dyy
— 2(a1by + azby + a43b3 + agby + bicy 4 bacy + b3z + bacy) Dy
+ (02 + 03+ b3+ 03 + 3 + 3 + &+ Dy = q(Dxx + Dyy), (2.19)

where g is some constant. Thus, a% + u% + ag + ai = c% + c% + C% + ci and a1b1 + axby + a43b3 +
agby + bic1 + bacy + bzez + bacy = 0. These conditions are satisfied provided that the orientation
off the vertical directions for the four crystals, in terms of normalized vectors are (x,y), (x, —V),
(y,—x) and (y,x). Conveniently, for these four specific crystals, g takes the value of g=1/d.
Therefore, the same result holds for the statistical average as before and we see that

<—eng JU(Vg(x, v)) - Rey dy> = ;7' (2.20)

Now consider the second term from equation (2.15), which is —e; TRV Ju(Ve(x,y)) -
I((e Re1 (e2 Re;)) e, dy. Similar to the technique applied above, if we consider a group of four
crystals and examine the vertical and horizontal components (i.e. k =1, 2), then over the statistical
average

<— J (Vg(x,y) - I((elRey), (e Rey)) ey dy>
= E((JRel) <JU[(ﬂ1 + a2 + a3 + a4)Dyy — (b1 + b2 + b3 + bg)Diylg(x,y) dy>

+ (e5Rey) <LU[(61 +¢2 + 3 +c4)Dyy — (b1 + by + b3 + by)DxyIg(x, y) d]/>' (2.21)

If geometric isotropy as defined above is assumed, then (e$Re1) (e2 Rey), a1 +ax +a3 +as=
c1+¢2 +c3 + cg and by + by + b3 + by =0. Therefore, the second term also introduces a Laplacian
operator and we see that

<— J (Vg(x,y)) - (el Rey), (e Rey) )Tekdy> (;) (%) (%) (2.22)

Finally, consider the third term from equation (2.15), which is eERV faU(g(x, y)ﬁek) -ndA.
Here, we see that if we consider the same group of four crystals as above that are geometrically
isotropic, and under the statistical average,

~ 1
<e}Rv LU(g(x, y)Rey) - ndA> = (3) <<J3U[(a% + a3 + a3+ a3 + b3 + b5 + b3 + b3)Dy

+ (=a1by — agby — azbs — aghy — bycy — byca — byes — bacy)Dy,
(=a1b1 — azby — azbs — agby — bicy — bycy — bzez — bycy)Dy

+(@+S+G++bE+b5+b5+b)DyIT - ndA
1
- J s (E) [(a1 + a2 + a3 +a4)Dx + (=b1 — bz — b3 — by)Dy,
9

(=b1 — by — b3 — by)Dx + (c1 + 2 +c3 + i)D" - ndA> =0.
(2.23)

Putting all together, we see that i1 in equation (2.15), under the assumption of geometrical
isotropy, satisfies

BIOROIDIE
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This value for p; is analogous to the p1=(1/d)[p1 — p%] value found for a two-component
material in [6].
Thus, if the polycrystalline material is further assumed to have the Hashin-Shtrikman
condition, then F(s) is known to second order, with wg =1/d and 1 = (d — 1)/d3, so that
1 d-1

(2.25)
A convenient transform Fi(s)=1/ ((egRek)) — 1/sF(s) allows for this information to be
included. It is known [63] that Fi(s) is an upper half plane function analytic off [0,1] and has
the representation
1d
Fi(s) =J dua(e) (2.26)
0 $—Z
Under the additional assumption of geometric isotropy Fi(s) is known only to first order,
where Fi(s)=(d —1)/(ds)+---, and /,L(lj = (d — 1)/(ds). Thus, the values of F1(s) lie in the circular
arc (d — 1)/[(d)(s — z)], —oo < z < co. Mapping this arc back into the F-plane, we can parametrize
one boundary of R4 by
(1/d)(s — 2)

Cu(z)= Gz @)D —00 <z <00. (2.27)

Similarly, to display the other arc, we use the auxiliary function E(s)=1—¢€1/e*=
(1 —sF(s))/(s(1 — F(s))), and find that E(s) = (d — 1)/(ds) + (4> — 2d — 1)/(d®s?). Again, using a
similar method as with F(s), an arc can be found in the E-plane, and we can parametrize the
other circular boundary of R4 by
(d=1)/d)(s — 2)

Ca(z) = G_z-@d_1)D) —00 <z <o00. (2.28)

When €] and € are real and positive, the bounds collapse to the interval
el —1/(ds —[d—1]/d)) <€* <e1/(1 = [(d — 1)/(ds — [d — 1]/d))), (2.29)

where s=e¢p/(e2 —€1) and e <€1. These are exactly the Hashin—Shtrikman bounds for an
isotropic polycrystalline composite [22]. Further, if we evaluate the two-dimensional second-
order complex forward bounds for a two-component material [4-6], where each material has a
volume fraction of 50%, we see that they are in agreement with the two-dimensional second-order
complex forward polycrystalline bounds. The three-dimensional bounds are also in agreement.

For the purpose of comparing these bounds to previously established ones on the (real)
effective permittivity [1,2,23-27], let us further consider that the polycrystal is isotropic in the
sense that (e?Rel) = (egRez) = (egRe3>. Then (egRek) = % in two dimensions and (eERek) = % in
three dimensions. Here, our upper bound is in agreement with the upper bound presented in
[25] for a uniaxial isotropic polycrystal. However, our lower bound is in disagreement with the
lower bound presented in [25] for a uniaxial isotropic polycrystal. A quick argument can justify
the difference. The lower bound in Avellaneda et al. [25] is achieved with the sphere assemblage
model conjectured by Schulgasser [23,24]. The reason being that the conductivity in each direction
is simultaneously minimized in the equation €* = (1/3) tr(e*) > €5 [25], where ¢ is the permittivity
of the sphere assemblage model and €* is the full permittivity tensor. Therefore, a minimum is found
and achieved with the sphere assemblage model because all directions have the same minimum
permittivity. The lower bound we find here is only for (eERek> the same in each direction, not
necessarily the permittivity to be the same. Thus, in a single direction, the minimum value that can
be obtained is still the harmonic bound (i.e. resistors in series). Using a nearly identical argument,
there is also no reason for these lower bounds to be the same in the anisotropic case. The bounds
we find here are needed to examine sea ice because we are interested in the effective complex
permittivity for a single direction.
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3. Inverse bounds for structural parameters

The objective of inverse bounds is to use data from the electromagnetic response of a
polycrystalline material to recover information about its structural parameters. In previous work
[10-14,17], this is typically done to recover information about the volume fractions of the two
constituents of a composite material. Here, we will show how to recover information about the
mean crystal orientation (eERek) of the polycrystalline material. The inverse method [12-14],
we use here, yields intervals of uncertainty for the mean crystal orientation (eERek). Given an
observed value of the complex permittivity in a single direction €*, (egRek) is increased until the
value of €* touches one boundary of the region R3 described in the previous section and is then
decreased until the value touches the other boundary. This procedure gives an analytic estimate
(the first-order inverse bounds [12-14]) of the range of values of the mean crystal orientation
(ef Re)1 < (ef Rey) < (e{Reg)y, with

ImG) g . IgPIm(@)
m/ (exRe)u=1— 7Im(g) ,

where f is the known value of F(s) and g is the known value of G(f) =1 — €*/e; witht=1 —s.

The objective of the second-order inverse bounds would be to obtain a better estimate for the
mean orientation of crystals in the kth direction. However, as demonstrated in the second-order
forward bounds, the mean orientation must be the same in all directions. Thus, we already know
that, (eERek) =1/d and therefore, the second-order inverse bounds provide no new information
or are essentially meaningless for polycrystalline composites.

(ef Rey) = |f|? (3.1)

4. Comparison of the bounds to sea ice data

Here the polycrystalline bounds derived in the current work are applied to sea ice composite,
and the results are compared with the measured effective permittivity of sea ice in [52]. This
dataset is obtained from primarily columnar sea ice; it was previously used to compare effective
permittivity of sea ice with the bounds for the effective property of a two-component material
[14,54], of a statistically isotropic two-component composite [14,54] and of a two-component
matrix—particle material [9,21]. Applying the polycrystalline bounds to the same set of data allows
for comparison between different types of bounds and a deeper understanding of the physical
relationship the polycrystalline bounds provide in the case of sea ice data. To calculate the forward
polycrystalline bounds, the method uses information on the complex permittivity tensor of the
identical single crystals (i.e. €1 and €;) and the crystal orientation statistics (i.e. (egRek)). This
information is available for the set of data in [52] as it is accompanied by a detailed analysis of the
crystalline structure of the ice.

The single crystal complex permittivity tensor for sea ice is obtained by evaluating X-ray CT
data with known ice and brine permittivities and brine volume fractions ¢ using Comsol 3.5a. We
examine 222 single crystals at a frequency of 4.75 GHz and at a temperature of —6°C, where brine
has a permittivity value of 51.07 + 45.160i [64] and pure ice has a permittivity of 3.15 + 0.002i. In
reality, ice is a three-component composite consisting of pure ice with air bubbles and pockets of
brine. As was demonstrated in [14], it is important to model the effect of the air phase in sea ice
when calculating the complex permittivity. Thus, to account for the air phase, a Maxwell-Garnett
mixing formula is used to calculate the permittivity of the ice with air bubbles as was done in [14].
The air phase is disconnected, has a small volume fraction and is contained entirely within the ice
phase, making the Maxwell-Garnett mixing formula an extremely accurate approximation for the
permittivity of the combined air—ice phase. Therefore, the permittivity used for the air-ice phase is
3.07 + 0.002i. Different single crystal microstructures were calculated at different values of brine
volume fractions ¢ and a dataset of single crystal complex permittivity tensors was generated
(table 1).

Different sea ice single crystal geometric configurations can have significantly different
permittivity tensors for the same brine volume fraction ¢ value as is shown in table 1. The
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Table 1. A sample of the range of complex permittivity values of a single crystal of sea ice. Note that at a constant brine volume
fraction (BVF) ¢ of 3.8 and 5.5%, the values of the vertical component can dramatically change. Also note that the vertical
component does not change on a linear scale with anincrease in ¢b. These data were generated by Comsol numerical simulations
of the complex permittivity of sea ice using X-ray CT sea ice microstructures.

vertical component horizontal component 1 horizontal component 2
0.025 3.47 4 0.08i 3354 0.04i 3.3+ 0.02i
Ve 391+038| ...................................... ; 33+003| .............................................. i +0 e
e i + o ; 50+ G 5 +010| ..................
T 380+021| ....................................... ; 36+003| ............................................. 356+009| ....................
e 389+035| ....................................... ; 36+003| ............................................. 374+019| .....................
Ve 493+146| .................................... ; 44+ Ga 372+010 s
T b + P 9 3+012 S 361+008| ...................
Ca 5 + P ; 50+ o 377+015| .....................
Te 653+317| ........................................ ; 47+003| .............................................. e + S
o 88+48 3340060 a8+03

differences observed for single crystals with the same brine volume fractions are largely due to
the different geometric configurations of the brine phase within the sample. The samples were
taken at a temperature of —6°C, which is close to the percolation threshold, and the effect of the
changes in the microgeometry could be very pronounced. This is in some sense a finite-size effect
but is expected due to the different samples having finite sizes. In particular, the permittivity
in the vertical direction can dramatically change depending on the brine connectedness in the
vertical direction. Furthermore, the two horizontal components tend to have slightly different
permittivity values. The polycrystalline bounds are derived under the assumption that the
composite material is transversely isotropic or uniaxial, i.e. it is composed of many identical
crystals with the same permittivity in two (horizontal) directions and a different permittivity
in the other (vertical) direction. As is quickly observed in table 1 actual sea ice does not exactly
satisfy these assumptions, namely ice crystals vary and the horizontal permittivities differ from
each other. Although the fraction of brine ¢ within a single crystal displays little variance from
the top of the crystal to the bottom of the crystal, the fraction of brine ¢ can dramatically change
across an entire sea ice column, thus substantially changing the single crystal permittivities at
different depths. For example, the very bottom layer of a sea ice column can have a brine fraction
¢ almost twice as large as the average, which is typical in classic columnar sea ice [65,66]. Further,
as displayed in table 1, the change of permittivity of the vertical component is not linear with
respect to ¢, and averaging permittivities over a small range of ¢ values to obtain a single crystal
permittivity tensor for the entire ice column will not accurately represent the physics of the ice.
To account for these differences between the assumptions under the polycrystalline bounds
and actual sea ice data, we will ‘idealize’ the sea ice data, so that the polycrystalline bounds
may still be applied. Inherently, this idealization changes the objective from finding an
exact forward bound for a specific configuration with identical single crystals to finding a
more general forward bound that can be applied to a large class of sea ice, such as all
columnar sea ice within a certain brine volume fraction ¢ range. As part of this idealization,
a governing single crystal permittivity must be found that reflects the overall effect of the
different single crystal permittivity tensors that span the entire ice column. Without detailed
information on the entire ice column, getting an exact permittivity for the governing single
crystal is incredibly difficult if not impossible. However, a plausible approximation for the
governing single crystal can be found by averaging different single crystal permittivities. Thus,
to obtain the governing single crystal permittivity tensor for a value of ¢ corresponding
to the entire ice column, we averaged the permittivities using arithmetic means in the
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vertical direction and both of the horizontal directions over a range of ¢, accounting for
a typical variation in ¢ across an entire ice column. For example, for an average value of
¢ =3.5% we used the following range of (averaged) ¢ values: 0.025, 0.025. 0.025, 0.03 and 0.07.
For an average value of ¢ =4%, we used the following range of (averaged) ¢ values: 0.03, 0.03,
0.03, 0.03, 0.04 and 0.08. Therefore, the governing single crystal permittivity tensor for an entire
column of sea ice with overall values of ¢ = 3.5% and ¢ =4% are: €1 = 3.74 + 0.62i (vertical), e, =
3.46 + 0.08i (horizontal) and €1 = 4.11 + 0.67i (vertical), o = 3.52 + 0.10i (horizontal), respectively.

The polycrystalline forward bounds also incorporate information on the single crystal
orientation statistics (eERek). Here we use the orientation statistics found in [58]. These data
describe the c-axis distribution statistics of sea ice as a function of depth for ice grown in a region
without a preferred current direction (thus, transversely isotropic). The big picture is that granular
ice (typically found in the top layer of a column of sea ice [58]) has an essentially random uniform
distribution across all angles, whereas columnar ice has a strongly preferred vertical orientation.
The effective complex permittivity dataset from Arcone et al. [52] is largely columnar and cross-
sectional slices show that the sea ice is transversely isotropic. Examining the orientation statistics
[58], it is very reasonable to conclude that the average crystal orientation (eERek) for the largely
columnar ice structure used in [52], is between 0° and 30° off the vertical axis.

Owing to the necessary idealizations describe above, the objective of the forward bounds is
to capture all possible effective complex permittivity variations that can occur in columnar ice.
The electromagnetic wave propagating through the sea ice column in [52] is orthogonal to the
horizontal plane, thus the electric field is in the horizontal plane. The sea ice structure in the
horizontal plane is isotropic, therefore, we examine one of the horizontal directions (depending
on the direction of the applied electric field). This allows us to reduce the three-dimensional
problem to a two-dimensional one and to use a two-dimensional rotation matrix, which gives the
same result as a three-dimensional rotation matrix in the case when the applied electric field is in
one of the horizontal directions. Therefore, if the electric field is in the k =2 horizontal direction,
for an average deviation off the vertical axis between 0° and 30° (i.e. columnar ice), the crystal
orientation (egRez) takes a value between sin2(0) =0and sin2(30) =0.25. For primarily granular
ice, the average crystal orientation statistics are uniform over the possible range of angles and the
average angle should be close to 45°. An acceptable range might be between 35° and 55°.

The first-order polycrystalline forward bounds can then be applied to the data and the largest
area of overlap between the bounds is assumed to be the region where the data must lie. It is
possible that the forward bounds overestimate the region because of this technique (namely, we
assume the mean orientation is between 0° and 30° off the vertical axis). However, each region
in these bounds could still be found by slightly adjusting the single crystal permittivity tensor
(which can have some variability) for a specific orientation. Further justification of this approach
is the large (and possibly unknown) variability in the general columnar crystal orientation
statistics from sample to sample. The bounds are general enough to accurately predict the
permittivity of primarily columnar sea ice without having to know specific orientation statistics
or a specific single crystal permittivity tensor. The second-order forward bounds cannot be
compared to this sea ice dataset, because they assume that the material is geometrically isotropic.
This is not the case for columnar sea ice. However, the second-order bounds are applicable to
granular ice.

As displayed in figure 2a, the polycrystalline bounds provide a much tighter bound than
those bounding the permittivity of a general two-component material and statistically isotropic
two-component material for sea ice. This makes sense because we are essentially applying a two-
scale homogenization and including the additional information about rotation statistics. If we
zoom in on the new polycrystalline bounds, we see that except for one data point, the bounds
accurately capture the data for the corresponding volume fraction ¢ for the ice column (figure 3a).
We suspect that the data point outside the bounds is explained by the variations in single crystal
permittivities. However, we suggest that the three tighter bounds in figure 22 and the bounds in
figure 31 might be viewed as bounds for a set of columnar sea ice permittivities for the whole
column, where brine volume fractions ¢ vary in the interval 3.3% < ¢ <4.1%.
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Figure 2. Comparison of previously known and newly derived forward bounds with complex permittivity data. (a) Forward
elementary bounds and isotropic bounds for a two component material are displayed in red [14,54]. The forward polycrystalline
bounds for columnar sea ice are shown in green, brown and black for the brine volume fraction equal, respectively, to 4, 3.75
and 3.5%. The displayed data points correspond to complex permittivity data taken at 4.75 GHz on the ice samples with the
brine volume fraction approximately changing between 3.1and 4.1%. (b) The forward polycrystalline bounds for columnar sea
ice with the brine volume fraction of 3.75% (blue) are compared with the averaged effective complex permittivity data taken at
4.75 GHz, on the samples of the averaged brine volume fraction 3.65%. Forward elementary bounds and isotropic bounds for a
two component material are displayed in red [14,54].
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Figure 3. Comparison of new forward bounds with complex permittivity data. (a) ‘Zoomed-in" version of figure 2a displaying
the forward polycrystalline bounds for columnar sea ice, where the single crystal permittivity tensor has a brine volume fraction
of 4% (green), 3.75% (brown) and 3.5% (black), compared with effective complex permittivity data taken at 4.75 GHz where the
averaged brine volume fraction is 4% (green), 3.65% (brown) and 3.33% (black). The brown data point that is captured by
both the black and brown bounds is used in both (black and brown) data averages. Note how multiple data points fall within
multiple bounds. (b) "Zoomed-in’ version of figure 2b displaying the forward polycrystalline bounds for columnar sea ice, where
the single crystal permittivity tensor has a brine volume fraction of 3.75% (blue), compared with the averaged effective complex
permittivity data taken at 4.75 GHz where the averaged brine volume fraction is 3.65% (blue).

Although the bounds accurately capture the data, due the large variability and potential
noise in both the data in [52] and the single crystal permittivity tensor obtained by numerical
simulations, we further average the data in [52] and compare it to bounds corresponding to the
single crystal permittivity tensor of the averaged value of ¢ = 3.75%. This is displayed in figures 2b
and 3b, which show that the bounds accurately capture the data point.
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Figure 4. Inverse bounds on the mean crystal orientation. Deviation angle off the vertical axis (y-axis) is shown for 15 different
effective complex permittivity data values (x-axis). The dashed lines represent inverse bounds for the case when instead of the

exact permittivity of a single crystal, we used an estimate given by the permittivity of sea ice with a slightly different brine
volume fraction. The upper inverse bounds are given in red, the lower inverse bounds are in blue.

Table 2. Isotropic polycrystalline composite: Effective complex permittivity and calculated lower 6, and upper 8, bounds for
the angle of deviation off the vertical. The true value of the deviation angle is & = 45°.

We further apply inverse polycrystalline bounds method to evaluate crystal orientation in sea
ice samples using measured data of the ice permittivity. The goal of the inverse bounds is to
estimate the mean crystal orientation potentially revealing the type of ice. For the data falling
within a certain range of the brine fraction ¢, the method gives bounds for the mean crystal
orientation. The results are displayed in figure 4. The mean crystal orientation of the ice crystals
in the ice column from the Arcone et al. experiments is between 8° and 30° off the vertical
axis. Therefore, the ice is certainly columnar. We also examined images [52] of the typical sea
ice structure, representative of the measured ice samples, and estimated that the mean crystal
orientation should be between 11.5° and 19° off the vertical axis. These estimates are within the
range of the inverse bounds on the mean single crystal orientation displayed in figure 4.

To compare the inverse mean crystal orientation bounds for columnar ice with the bounds
for isotropic granular ice, we use an analytic model of a two-dimensional statistically isotropic
polycrystalline material to calculate the effective permittivity of an isotropic polycrystal. From
[23], it follows that the effective permittivity of such a polycrystalline composite coincides with
the effective permittivity €* = ,/é1€; of a polycrystal made of grains with laminar sub-structure.
Assuming the components of the single crystal take the values of the ice crystal components
shown in table 1, we calculate the values of the effective permittivity of a statistically isotropic
polycrystal and use them as the data for the inverse bounds. These calculated values of the
effective permittivity of an isotropic polycrystalline composite of ice and brine are shown in
table 2 together with the resulting inverse bounds on mean single crystal orientation. The lower
inverse bounds 0 and the upper inverse bounds 6, for the angle of deviation from the vertical
axis are shown for 10 different effective complex permittivity values. The calculated bounds
are in excellent agreement with the exact value of the deviation angle equal to 45°. The results
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demonstrate a significant difference in the reconstructed bounds for the mean orientation of a
single crystal in columnar and in granular ice, which provides a foundation for distinguishing
the types of ice using electromagnetic measurements.

5. Conclusion

We have developed both first- and second-order forward bounds on the effective complex
permittivity €* for a polycrystalline material using the analytic continuation method.
Additionally, we have derived first-order inverse bounds on the mean single crystal orientation
for a polycrystalline material. The first-order forward bounds assume a priori knowledge about
the complex permittivity tensor for a single crystal and the mean single crystal orientation to
bound €*. The second-order polycrystalline forward bounds further require the material to be
geometrically isotropic in the polycrystalline Hashin—-Shtrikman sense. The inverse bounds for
the polycrystalline material assume knowledge of the effective permittivity €* and the complex
permittivity tensor for a single crystal to provide bounds for the mean crystal orientation.
Comparison of the derived bounds with actual sea ice data show excellent agreement. These
results provide a foundation for determining ice type with remote sensing techniques.

Funding statement. We gratefully acknowledge support from the Division of Mathematical Sciences and the
Division of Polar Programs at the U.S. National Science Foundation (NSF) through grant nos. DMS-1009704,
ARC-0934721, DMS-0940249, DMS-0602219 and DMS-1413454. We are also grateful for support from the
Office of Naval Research (ONR) through grant no. N00014-13-10291. Finally, we would like to thank the NSF
Math Climate Research Network (MCRN) for their support of this work.

References

1. Cherkaev A. 2000 Variational methods for structural optimization. Applied Mathematical
Sciences, vol. 140. New York, NY: Springer.

2. Milton GW. 2002 Theory of composites. Cambridge, UK: Cambridge University Press.

3. Bergman DJ. 1978 The dielectric constant of a composite material—a problem in classical
physics. Phys. Rep. C. 43, 377-407.

4. Bergman DJ. 1980 Exactly solvable microscopic geometries and rigorous bounds for the
complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44, 1285.
(doi:10.1103/PhysRevLett.44.1285)

5. Milton GW. 1980 Bounds on the complex dielectric constant of a composite material. Appl.
Phys. Lett. 37, 300-302. (d0i:10.1063/1.91895)

6. Golden K, Papanicolaou G. 1983 Bounds for effective parameters of heterogeneous media by
analytic continuation. Comm. Math. Phys. 90, 473-491. (doi:10.1007 /BF01216179)

7. Hashin Z, Shtrikman S. 1962 A variational approach to the theory of effective magnetic
permeability of multiphase materials. J. Appl. Phys. 33, 3125-3131. (doi:10.1063/1.1728579)

8. Bruno OP. 1991 The effective conductivity of strongly heterogeneous composites. Proc. R. Soc.
Lond. A 433, 353-381. (d0i:10.1098 /rspa.1991.0053)

9. Sawicz R, Golden K. 1995 Bounds on the complex permittivity of matrix—particle composites.
J. Appl. Phys. 78, 7240-7246. (d0i:10.1063 /1.360436)

10. McPhedran RC, McKenzie DR, Milton GW. 1982 Extraction of structural information
from measured transport properties of composites. Appl. Phys. A 29, 19-27. (doi:10.1007/
BF00618111)

11. McPhedran RC, Milton GW. 1990 Inverse transport problems for composite media. Mat. Res.
Soc. Symp. Proc. 195, 257-274. (doi:10.1557 /PROC-195-257)

12. Cherkaeva E, Tripp AC. 1996 Bounds on porosity for dielectric logging. In ECMI 96.
Ninth Conf. of the European Consortium for Mathematics in Industry, 25-29 June, pp. 304-306.
Lyngby/Copenhagen, Denmark: Technical University of Denmark.

13. Tripp AC, Cherkaeva E, Hulen J. 1998 Bounds on the complex conductivity of geophysical
mixtures. Geophys. Prospect. 46, 589—-601. (doi:10.1046/j.1365-2478.1998.00108.x)

14. Cherkaeva E, Golden KM. 1998 Inverse bounds for microstructural parameters of composite
media derived from complex permittivity measurements. Waves Random Media 8, 437-450.
(doi:10.1088/0959-7174 /8 /4/004)

20L0¥107 L ¥ 205 4 20l BioBuiysigndiaposieforeds;


http://dx.doi.org/doi:10.1103/PhysRevLett.44.1285
http://dx.doi.org/doi:10.1063/1.91895
http://dx.doi.org/doi:10.1007/BF01216179
http://dx.doi.org/doi:10.1063/1.1728579
http://dx.doi.org/doi:10.1098/rspa.1991.0053
http://dx.doi.org/doi:10.1063/1.360436
http://dx.doi.org/doi:10.1007/BF00618111
http://dx.doi.org/doi:10.1007/BF00618111
http://dx.doi.org/doi:10.1557/PROC-195-257
http://dx.doi.org/doi:10.1046/j.1365-2478.1998.00108.x
http://dx.doi.org/doi:10.1088/0959-7174/8/4/004
http://rspa.royalsocietypublishing.org/

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

Downloaded from http://rspa.royalsocietypublishing.org/ on January 14, 2015

Day AR, Thorpe MFE. 1999 The spectral function of composites: the inverse problem. J. Phys:
Cond. Matt. 11, 2551-2568. (doi:10.1088/0953-8984/11/12/010)

Cherkaev E. 2001 Inverse homogenization for evaluation of effective properties of a mixture.
Inverse Probl. 17, 1203-1218. (d0i:10.1088/0266-5611/17 /4 /341)

Golden KM et al. 1998 Inverse electromagnetic scattering models for sea ice. IEEE Trans. Geosci.
Rem. Sens. 36, 1675-1704. (d0i:10.1109/36.718638)

Cherkaev E, Ou MJ. 2008 De-homogenization: reconstruction of moments of the spectral
measure of composite. Inverse Probl. 24, 065008. (d0i:10.1088/0266-5611/24/6/065008)
Bonifasi-Lista C, Cherkaev E. 2009 Electrical impedance spectroscopy for recovering bone
porosity. Phys. Med. Biol. 54, 3063-3082. (d0i:10.1088/0031-9155/54/10/007)

Zhang D, Cherkaev E. 2009 Reconstruction of the spectral function from effective permittivity
of a composite material using rational function approximations. J. Comput. Phys. 228, 5390
5409. (doi:10.1016/j.jcp.2009.04.014)

Orum C, Cherkaev E, Golden KM. 2012 Recovery of inclusion separations in strongly
heterogeneous composites from effective property measurements. Proc. R. Soc. A 468, 784-809.
(doi:10.1098 /rspa.2011.0527)

Hashin Z, Shtrikman S. 1963 Conductivity of polycrystals. Phys. Rev. 130, 129-133.
(doi:10.1103 /PhysRev.130.129)

Schulgasser K. 1977 Bounds on the conductivity of statistically isotropic polycrystals. J. Phys.
C 10, 407.

Schulgasser K. 1983 Sphere assemblage model for polycrystals and symmetric materials.
J. Appl. Phys. 54, 1380. (doi:10.1063/1.332161) (d0i:10.1063/1.332161)

Avellaneda M, Cherkaev AV, Lurie KA, Milton GW. 1988 On the effective conductivity of
polycrystals and a three-dimensional phase interchange inequality. ]. Appl. Phys. 63, 4989.
(doi:10.1063/1.340445)

Nesi V, Milton GW. 1991 Polycrystalline configurations that maximize electrical resistivity.
J. Mech. Phys. Sol. 39, 525-542. (doi:10.1016/0022-5096(91)90039-Q)

Helsing J. 1994 Improved bounds on the conductivity of composites by interpolation. Proc. R.
Soc. Lond. A 444, 363-374. (doi:10.1098 /rspa.1994.0025)

Clark KE. 1997 A continued fraction representation for the effective conductivity of a two-
dimensional polycrystal. J. Math. Phys. 38, 4528. (d0i:10.1063/1.532141)

Barabash S, Stroud D. 1999 Spectral representation for the effective macroscopic response of
a polycrystal: application to third-order non-linear susceptibility. . Phys. Condens. Matter. 11,
10323. (d0i:10.1088/0953-8984/11/50/324)

Chinh PD. 2011 Bounds on the effective conductivity of statistically isotropic
multicomponent materials and random cell polycrystals. ]. Mech. Phys. Sol. 59, 497-510.
(doi:10.1016/j.jmps.2011.01.006)

Bergman DJ. 1982 Rigorous bounds for the complex dielectric constant of a two—component
composite. Ann. Phys. 138, 78-114. (d0i:10.1016/0003-4916(82)90176-2)

Untersteiner N. 1990 Some problems of sea ice and climate modelling. Verhoff Univ. Innsbruck.
178, 209-228.

Thomas DN, Dieckmann GS (eds) 2009 Sea ice, 2nd edn. Oxford, UK: Wiley-Blackwell.
Serreze MC, Holland MM, Stroeve J. 2007 Perspectives on the Arctic’s shrinking sea-ice cover.
Science 315, 1533-1536. (d0i:10.1126/science.1139426)

Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV. 2007 Increasing solar
heating of the Arctic Ocean and adjacent seas, 1979-2005: attribution and role in the ice-albedo
feedback. Geophys. Res. Lett. 34, 1.19505. (doi:10.1029/2007GL031480)

Jeffries MO (ed.) 1998 Antarctic sea ice: physical processes, interactions and variability. Washington
DC: American Geophysical Union.

Fritsen CH, Lytle VI, Ackley SF, Sullivan CW. 1994 Autumn bloom of Antarctic pack-ice algae.
Science 266, 782-784. (d0i:10.1126 /science.266.5186.782)

Lizotte MP, Arrigo KR (eds) 1998 Antarctic sea ice: biological processes, interactions and variability.
Washington DC: American Geophysical Union.

Shuchman RA, Onstott RG. 1990 Remote sensing of the Polar Oceans. In Polar oceanography,
part A, physical science (ed. WO Smith), pp. 123-169. New York, NY: Academic Press.

Carsey FD (ed.) 1992 Microwave remote sensing of sea ice. Geophysical Monograph, no. 68.
Washington DC: American Geophysical Union.

Winebrenner DP et al. 1992 Microwave sea ice signature modeling. In Microwave remote sensing
of sea ice (ed. FD Carsey). Geophysical Monograph, no. 68, pp. 137-175. Washington DC:
American Geophysical Union.

20L0¥107 L ¥ 205 4 20l BioBuiysigndiaposieforeds;


http://dx.doi.org/doi:10.1088/0953-8984/11/12/010
http://dx.doi.org/doi:10.1088/0266-5611/17/4/341
http://dx.doi.org/doi:10.1109/36.718638
http://dx.doi.org/doi:10.1088/0266-5611/24/6/065008
http://dx.doi.org/doi:10.1088/0031-9155/54/10/007
http://dx.doi.org/doi:10.1016/j.jcp.2009.04.014
http://dx.doi.org/doi:10.1098/rspa.2011.0527
http://dx.doi.org/doi:10.1103/PhysRev.130.129
http://dx.doi.org/doi:10.1063/1.332161
http://dx.doi.org/doi:10.1063/1.332161
http://dx.doi.org/doi:10.1063/1.340445
http://dx.doi.org/doi:10.1016/0022-5096(91)90039-Q
http://dx.doi.org/doi:10.1098/rspa.1994.0025
http://dx.doi.org/doi:10.1063/1.532141
http://dx.doi.org/doi:10.1088/0953-8984/11/50/324
http://dx.doi.org/doi:10.1016/j.jmps.2011.01.006
http://dx.doi.org/doi:10.1016/0003-4916(82)90176-2
http://dx.doi.org/doi:10.1126/science.1139426
http://dx.doi.org/doi:10.1029/2007GL031480
http://dx.doi.org/doi:10.1126/science.266.5186.782
http://rspa.royalsocietypublishing.org/

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Downloaded from http://rspa.royalsocietypublishing.org/ on January 14, 2015

Lubin D, Massom R. 2006 Polar remote sensing, volume I: atmosphere and oceans. New York, NY:
Springer.

Reid JE, Worby AP, Vrbancich J, Munro AIS. 2003 Shipborne electromagnetic measurements
of Antarctic sea-ice thickness. Geophysics 68, 1537-1546. (d0i:10.1190/1.1620627)

Eicken H, Grenfell TC, Perovich DK, Richter-Menge JA, Frey K. 2004 Hydraulic controls of
summer Arctic pack ice albedo. J. Geophys. Res. (Oceans) 109, C08007.1-C08007.12.

Maksym T, Markus T. 2008 Antarctic sea ice thickness and snow-to-ice conversion from
atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res. 113, C02512.
(doi:10.1029/2006JC004085)

Lytle VI, Ackley SF. 1996 Heat flux through sea ice in the Western Weddell Sea: convective
and conductive transfer processes. J. Geophys. Res. 101, 8853-8868. (doi:10.1029/95]C03675)
Rysgaard S, Glud RN, Sejr MK, Bendtsen ], Christensen PB. 2007 Inorganic carbon transport
during sea ice growth and decay: a carbon pump in polar seas. ]. Geophys. Res. 112, C03016.
(doi:10.1029/2006]C003572)

Golden KM, Ackley SF, Lytle, VI. 1998 The percolation phase transition in sea ice. Science 282,
2238-2241. (d0i:10.1126/science.282.5397.2238)

Stogryn A. 1985 An analysis of the tensor dielectric constant of sea ice at microwave
frequencies. IEEE Trans. Geosci. Remote Sens. GE-25, 147-158. (d0i:10.1109/ TGRS.1987.289814)
Vant MR, Ramseier RO, Makios V. 1978 The complex-dielectric constant of sea ice at
frequencies in the range 0.1-40 GHz. ]. Appl. Phys. 49, 1264-1280. (doi:10.1063/1.325018)
Golden KM, Ackley SE. 1981 Modeling of anisotropic electromagnetic reflection from Sea Ice.
J. Geophys. Res. (Oceans) 86, 8107-8116. (doi:10.1029/JC086iC09p08107)

Arcone SA, Gow AJ, McGrew S. 1986 Structure and dielectric properties at 4.8 and 9.5 GHz of
Saline Ice. J. Geophys. Res. 91, 14 281-14 303. (d0i:10.1029/JC091iC12p14281)

Sihvola AH, Kong JA. 1988 Effective permittivity of dielectric mixtures. IEEE Trans. Geosci.
Remote Sens. 26, 420-429. (doi:10.1109/36.3045)

Golden K. 1995 Bounds on the complex permittivity of sea ice. J. Geophys. Res. (Oceans) 100,
13699-13 711. (doi:10.1029/94]JC03007)

Golden KM et al. 1998 Forward electromagnetic scattering models for sea ice. IEEE Trans.
Geosci. Remote Sens. 36, 1655-1674. (d0i:10.1109/36.718637)

Golden KM. 1997 The interaction of microwaves with sea ice. In Wave propagation in complex
media (ed. G Papanicolaou). IMA Volumes in Mathematics and its Applications, vol. 96,
pp- 75-94. Berlin, Germany: Springer.

Gully A, Backstrom LGE, Eicken H, Golden KM. 2007 Complex bounds and
microstructural recovery from measurements of sea ice permittivity. Physica B 394, 357-362.
(doi:10.1016/j.physb.2006.12.067)

Weeks WE, Ackley SF. 1982 The growth, structure and properties of sea ice. CRREL Monograph
no. 82-1, p. 130. Hannover, NH: US Army Corps of Engineers, Cold Regions Research and
Engineering Laboratory.

Bergman D. 1993 Hierarchies of Stieltjes functions and their application to the calculation
of bounds for the dielectric constant of a two-component composite medium. SIAM |. Appl.
Math. 53, 915-930. (doi:10.1137/0153045)

Bergman DJ. 1979 Dielectric constant of a two-component granular composite: a
practical scheme for calculating the pole spectrum. Phys. Rev. B 19, 2359-2368.
(doi:10.1103/PhysRevB.19.2359)

Bergman DJ. 1979 The dielectric constant of a simple-cubic array of identical spheres. J. Phys.
C 12, 4947-4960.

Bergman D. 1985 Bulk physical properties of composite media. In Les Méthodes de
L’'Homogénéisation: Théorie et Applications en Physiques. Paris, France: Editions Eyrolles, pp. 1-
128.

Golden K, Papanicolaou G. 1985 Bounds for effective parameters of multicomponent media
by analytic continuation. J. Stat. Phys. 40, 655-667. (doi:10.1007 /BF01009895)

Stogryn A, Desargant GJ. 1985 The dielectric properties of brine in sea ice at microwave
frequencies. IEEE Trans. Antennas Propagat. AP-33, 523-532. (doi:10.1109/TAP.1985.1143610)
Weeks WF, Ackley SF. 1986 The growth, structure and properties of sea ice. In The geophysics
of sea ice (ed. N Untersteiner), pp. 9-164. New York, NY: Plenum Press.

Eicken H. 2003 Growth, microstructure and properties of sea ice. In Sea ice: an introduction to
its physics, chemistry, biology and geology (eds DN Thomas, GS Dieckmann), pp. 22-81. Oxford,
UK: Blackwell.

20L0¥10C L ¥ 205 Y 20l BioBuiysiigndfaposieforeds; H


http://dx.doi.org/doi:10.1190/1.1620627
http://dx.doi.org/doi:10.1029/2006JC004085
http://dx.doi.org/doi:10.1029/95JC03675
http://dx.doi.org/doi:10.1029/2006JC003572
http://dx.doi.org/doi:10.1126/science.282.5397.2238
http://dx.doi.org/doi:10.1109/TGRS.1987.289814
http://dx.doi.org/doi:10.1063/1.325018
http://dx.doi.org/doi:10.1029/JC086iC09p08107
http://dx.doi.org/doi:10.1029/JC091iC12p14281
http://dx.doi.org/doi:10.1109/36.3045
http://dx.doi.org/doi:10.1029/94JC03007
http://dx.doi.org/doi:10.1109/36.718637
http://dx.doi.org/doi:10.1016/j.physb.2006.12.067
http://dx.doi.org/doi:10.1137/0153045
http://dx.doi.org/doi:10.1103/PhysRevB.19.2359
http://dx.doi.org/doi:10.1007/BF01009895
http://dx.doi.org/doi:10.1109/TAP.1985.1143610
http://rspa.royalsocietypublishing.org/

	Introduction
	Forward bounds on the effective complex permittivity of a polycrystalline material
	Inverse bounds for structural parameters
	Comparison of the bounds to sea ice data
	Conclusion
	References

