
The Strong Markov
Property

Throughout, X := {X�}�≥0 denotes a Lévy process on R� with triple (� � σ� �),
and exponent Ψ. And from now on, we let {��}�≥0 denote the natural fil-
tration of X, all the time remembering that, in accord with our earlier
convention, {��}�≥0 satisfies the usual conditions.

Transition measures and the Markov property

Definition 1. The transition measures of X are the probability measures

P� (� � A) := P {� + X� ∈ A}

defined for all � ≥ 0, � ∈ R� , and A ∈ �(R�). In other words, each P� (� � •)
is the law of X� started at � ∈ R� . We single out the case � = 0 by setting
µ� (A) := P� (0 � A); thus, µ� is the distribution of X� for all � > 0. �

Note, in particular, that µ0 = δ0 is the point mass at 0 ∈ R� .

Proposition 2. For all �� � ≥ 0, and measurable � : R� → R+,

E[� (X�+�) | ��] =
�

R�
� (�) P� (X� � d�) a.s.
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54 9. The Strong Markov Property

Consequently, for all �0 ∈ R� , 0 < �1 < �2 < · · · < �� , and measurable
�1� � � � � �� : R� → R+,

E




��

�=1
�� (�0 + X�� )



 (1)

=
�

R�
P�1 (�0 � d�1)

�

R�
P�2−�1 (�1 � d�2) · · ·

�

R�
P��−��−1 (��−1 � d��)

��

�=1
�� (�� )�

Property (1) is called the Chapman–Kolmogorov equation. That prop-
erty has the following ready consequence: Transition measures determine
the finite-dimensional distributions of X uniquely.

Definition 3. Any stochastic process {X�}�≥0 that satisfies the Chapman-
Kolmogorov equation is called a Markov process. This definition continues
to make sense if we replace (R� � �(R�)) by any measurable space on which
we can construct infinite families of random variables. �

Thus, Lévy processes are cadlag Markov processes that have special
“addition” properties. In particular, as Exercise below 1 shows, Lévy pro-
cesses have the important property that the finite-dimensional distributions
of X are described not only by {P� (� � ·)}�≥0��∈R� but by the much-smaller
family {µ� (·)}�≥0.

Note, in particular, that if � : R� → R+ is measurable, � ≥ 0, and � ∈ R� ,
then

E� (� + X� ) =
�

R�
� (�) P� (� � d�) =

�

R�
� (� + �) µ� (d�)�

Therefore, if we define
µ̃� (A) := µ� (−A) for all � ≥ 0 and A ∈ �(R�),

where −A := {−� : � ∈ A}, then we have the following convolution
formula, valid for all measurable � : R� → R+, � ∈ R� , and � ≥ 0:

E� (� + X� ) = (� ∗ µ̃� )(�)�
And, more generally, for all measurable � : R� → R+, � ∈ R� , and �� � ≥ 0

E[� (X�+�) | ��] = (� ∗ µ̃� )(X�) a.s.
[Why is this more general?]

Proposition 4. The family {µ�}�≥0 of Borel probability measure on R� is
a “convolution semigroup” in the sense that µ� ∗ µ� = µ�+� for all �� � ≥ 0.
Moreover, µ̂� (ξ) = exp(−�Ψ(ξ)) for all � ≥ 0 and ξ ∈ R� . Similarly, {µ̃�}�≥0
is a convolution semigroup with ˆ̃µ� (ξ) = exp(−�Ψ(−ξ)).
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Proof. The assertion about µ̃ follows from the assertion about µ [or you
can repeat the following with µ̃ in place of µ].

Since µ� is the distribution of X� , the characteristic function of X� is
described by µ̂� (ξ) = exp(−�Ψ(ξ)). The proposition follows immediately
from this, because µ̂� (ξ) · µ̂�(ξ) = exp(−(� + �)Ψ(ξ)) = µ̂�+�(ξ). �

The strong Markov property

Theorem 5 (The strong Markov property). Let T be a finite stopping time.
Then, the process XT := {XT

� }�≥0, defined by XT
� := XT+� − XT is a Lévy

process with exponent Ψ and independent of �T .

Proof. XT is manifestly cadlag [because X is]. In addition, one checks that
whenever 0 < �1 < · · · < �� and A1� � � � � A� ∈ �(R�),

P




��

�=1

�
XT+�� − XT ∈ A�

�
������

�T



 = P




��

�=1

�
X�� ∈ A�

�


 a.s.;

see Exercise 2 on page 32. This readily implies that the finite-dimensional
distributions of XT are the same as the finite-dimensional distributions of
X, and the result follows. �

Theorem 5 has a number of deep consequences. The following shows
that Lévy processes have the following variation of strong Markov prop-
erty. The following is attractive, in part because it can be used to study
processes that do not have good additivity properties.

Corollary 6. For all finite stopping times T , every � ≥ 0, and all measur-
able functions � : R� → R+.

E
�
� (XT+� ) | �T

�
=

�

R�
� (�)P� (XT � d�) a.s.

Let T be a finite stopping time, and then define �(T) = {�(T)
� }�≥0 to

be the natural filtration of the Lévy process XT . The following is a useful
corollary of the strong Markov property.

Corollary 7 (Blumenthal’s zero-one law; Blumenthal, 1957). Let T be a
finite stopping time. Then �(T)

0 is trivial; i.e., P(A) ∈ {0 � 1} for all A ∈ �(T)
0 .
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The following are nontrivial examples of elements of �(T)
0 :

Υ1 :=
�

lim inf
�↓0

�XT+� − XT�
�1/α = 0

�
where α > 0 is fixed;

Υ2 :=
�

lim sup
�↓0

�XT+� − XT��
2� ln ln(1/�)

= 1
�

; or

Υ3 :=
�

∃�� ↓ 0 such that XT+�� − XT > 0 for all � ≥ 1
�

in dimension one, etc.

Proof of Blumenthal’s zero-one law. The strong Markov property [Corol-
lary 6] reduces the problem to T ≡ 0. And of course we do not need to
write �(0) since �(0)

� is the same object as �� .
For all � ≥ 1 define �� to be the completion of the sigma-algebra gen-

erated by the collection {X�+2−� − X2−�}�∈[0�2−�]. By the Markov property,
�1� �2� � � � are independent sigma-algebras. Their tail sigma-algebra � is
the smallest sigma-algebra that contains ∪∞

�=N�� for all N ≥ 1. Clearly �
is complete, and Kolmogorov’s zero-one law tells us that � is trivial. Be-
cause ∪∞

�=N�� contains the sigma-algebra generated by all increments of
the form X�+� −X� where �� � ∈ [2−� � 2−�+1] for some � ≥ N , and since
X� → 0 as � ↓ 0, it follows that � contains ∩�≥0�� , where �� denotes the
sigma-algebra generated by {X�}�∈[0��]. Since � is complete, this implies
�0 ⊆ � [in fact, � = �0] as well, and hence �0 is trivial because � is. �

Thus, for example, take the set Υ1 introduced earlier. We can apply
the Blumenthal zero-one to the Υ1 ∈ �0 and deduce the following:

For every α > 0, P
�

lim inf
�↓0

�XT+� − XT�
�1/α = 0

�
= 0 or 1�

You should construct a few more examples of this type.

Feller semigroups and resolvents

Define a collection {P�}�≥0 of linear operators by

(P�� )(�) := E� (� + X� ) =
�

R�
� (�)P� (� � d�) = (� ∗ µ̃� )(�) for � ≥ 0� � ∈ R� .

[Since X0 = 0, P0 = δ0 is point mass at zero.] The preceding is well defined
for various measurable functions � : R� → R. For instance, everything is
fine if � is nonnegative, and also if (P� |� |)(�) < ∞ for all � ≥ 0 and � ∈ R�

[in that case, we can write P�� = P��+ − P��−].
The Markov property of X [see, in particular, Proposition 4] tells us

that (P�+�� )(�) = (P� (P�� ))(�). In other words,
P�+� = P�P� = P�P� for all �� � ≥ 0� (2)
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where P�P�� is shorthand for P� (P�� ) etc. Since P� and P� commute, in
the preceding sense, there is no ambiguity in dropping the parentheses.

Definition 8. The family {P�}�≥0 is the semigroup associated with the Lévy
process X. The resolvent {Rλ}λ>0 of the process X is the family of linear
operators defined by

(Rλ� )(�) :=
� ∞

0
e−λ� (P�� )(�) d� = E

� ∞

0
e−λ�� (� + X� ) d� (λ > 0)�

This can make sense also for λ = 0, and we write R in place of R0. Finally,
Rλ is called the λ-potential of � when λ > 0; when λ = 0, we call it the
potential of � instead. �

Remark 9. It might be good to note that we can cast the strong Markov
property in terms of the semigroup {P�}�≥0 as follows: For all � ≥ 0, finite
stopping times T , and � : R� → R+ measurable, E[� (XT+�) | �T ] = (P�� )(XT )
almost surely. �

Formally speaking,

Rλ =
� ∞

0
e−λ�P� d� (λ ≥ 0)

defines the Laplace transform of the [infinite-dimensional] function � �� P� .
Once again, Rλ� is defined for all Borel measurable � : R� → R, if either
� ≥ 0; or if Rλ|� | is well defined.

Recall that C0(R�) denotes the collection of all continuous � : R� → R
that vanish at infinity [� (�) → 0 as ��� → ∞]; C0(R�) is a Banach space in
norm ��� := sup�∈R� |� (�)|.

The following are easy to verify:
(1) Each P� is a contraction [more precisely nonexpansive] on C0(R�).

That is, �P��� ≤ ��� for all � ≥ 0;
(2) {P�}�≥0 is a Feller semigroup. That is, each P� maps C0(R�) to

itself and lim�↓0 �P�� − �� = 0;
(3) If λ > 0, then λRλ is a contraction [nonexpansive] on C0(R�);
(4) If λ > 0, then λRλ maps C0(R�) to itself.

The preceding describe the smoothness behavior of P� and Rλ for fixed �
and λ. It is also not hard to describe the smoothness properties of them
as functions of � and λ. For instance,

Proposition 10. For all � ∈ C0(R�),
lim
�↓0

sup
�≥0

�P�+�� − P��� = 0 and lim
λ↑∞

�λRλ� − �� = 0�
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Proof. We observe that
�P�� − �� = sup

�∈R�
|E� (� + X� ) − � (�)| ≤ sup

�∈R�
E |� (� + X� ) − � (�)| �

Now every � ∈ C0(R�) is uniformly continuous and bounded on all of R� .
Since X is right continuous and � is bounded, it follows from the bounded
convergence theorem that lim�↓0 �P��−�� = 0. But the semigroup property
implies that �P�+�� − P��� = �P�(P�� − � )� ≤ �P�� − ��, since P� is a
contraction on C0(R�). This proves the first assertion. The second follows
from the first, since λRλ =

� ∞
0 e−�P�/λ d� by a change of variables. �

Proposition 11. If � ∈ C0(R�)∩L�(R�) for some � ∈ [1 � ∞), then �P���L�(R�) ≤
���L�(R�) for all � ≥ 0 and �λRλ��L�(R�) ≤ ���L�(R�) for all λ > 0.

In words, the preceding states that P� and λRλ are contractions on
L�(R�) for every � ∈ [1 � ∞) and �� λ > 0.

Proof. If � ∈ C0(R�) ∩ L�(R�), then for all � ≥ 0,
�

R�
|(P�� )(�)|� d� =

�

R�
|E� (� + X� )|� d� ≤

�

R�
E

�
|� (� + X� )|�

�
d�

=
�

R�
|� (�)|� d��

This proves the assertion about P� ; the one about Rλ is proved similarly. �

The Hille–Yosida theorem

One checks directly that for all µ� λ ≥ 0,
Rλ − Rµ = (µ − λ)RλRµ� (3)

This is called the resolvent equation, and has many consequences. For
instance, the resolvent equation implies readily the commutation property
RµRλ = RλRµ . For another consequence of the resolvent eqution, suppose
� = Rµ� for some � ∈ C0(R�) and µ > 0. Then, � ∈ C0(R�) and by the
resolvent equation, Rλ� − � = (µ − λ)Rλ� . Consequently, � = Rλ�, where
� := � + (λ − µ)Rλ� ∈ C0(R�). In other words, Rµ(C0(R�)) = Rλ(C0(R�)),
whence

Dom[L] :=
�

Rµ� : � ∈ C0(R�)
�

does not depend on µ > 0.

And Dom[L] is dense in C0(R�) [Proposition 10].
For yet another application of the resolvent equation, let us suppose

that Rλ� ≡ 0 for some λ > 0 and � ∈ C0(R�). Then the resolvent equation
implies that Rµ� ≡ 0 for all µ. Therefore, � = limµ↑0 µRµ� = 0. This implies
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that every Rλ is a one-to-one and onto map from C0(R�) to Dom[L]; i.e., it
is invertible!

Definition 12. The [infinitesimal] generator of X is the linear operator
L : Dom[L] → C0(R�) that is defined uniquely by

L := λI − R−1
λ �

where I� := � defines the identity operator I on C0(R�). The space Dom[L]
is the domain of L. �

The following is perhaps a better way to think about L; roughly speak-
ing, it asserts that P�� − � � �L� for � small, and λRλ� − � � λ−1L� for λ
large.

Theorem 13 (Hille XXX, Yosida XXX). If � ∈ Dom[L], then

lim
λ↑∞

sup
�∈R�

����
λ(Rλ� )(�) − � (�)

1/λ − (L� )(�)
���� = lim

�↓0
sup
�∈R�

����
(P�� )(�) − � (�)

� − (L� )(�)
���� = 0�

Because � = P0� , the Hille–Yosida theorem implies, among other
things, that (∂/∂�)P� |�=0 = L, where the partial derivative is really a right
derivative. See Exercise 4 for a consequence in partial integro-differential
equations.

Proof. Thanks to Proposition 10 and the definition of the generator, L� =
λ� − R−1

λ � for all � ∈ Dom[L], whence

λRλL� = λRλ� − �
1/λ → L� in C0(R�) as λ ↑ ∞�

This proves half of the theorem. For the other half recall that Dom[L] is
the collection of all functions of the form � = Rλ�, where � ∈ C0(R�) and
λ > 0. By the semigroup property, for such λ and � we have

P�Rλ� =
� ∞

0
e−λ�P�+�� d� = eλ�

� ∞

�
e−λ�P�� d�

= eλ�
�

Rλ� −
� �

0
e−λ�P�� d�

�
�

Consequently, for all � = Rλ� ∈ Dom[L],
P�� − �

� =
�

eλ� − 1
�

�
Rλ� − eλ�

�

� �

0
e−λ�P�� d�

→ λRλ� − � in C0(R�) as � ↓ 0�

But λRλ� − � = λ� − R−1
λ � = L� . �
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The form of the generator

Let � denote the collection of all rapidly-decreasing test functions � : R� →
R. That is, � ∈ � if and only if � ∈ C∞(R�), and � and all of its partial deriva-
tives vanish faster than any polynomial. In other words, if D is a differential
operator [of finite order] and � ≥ 1, then sup�∈R� (1 + ����)|(D� )(�)| < ∞.
It is easy to see that � ⊂ L1(R�) ∩ C0(R�) and � is dense in C0(R�). And it
is well known that if � ∈ �, then �̂ ∈ � as well, and vice versa.

It is possible to see that if � � �̂ ∈ L1(R�), then for all � ≥ 0 and λ > 0,

�P�� (ξ) = e−�Ψ(−ξ)�̂ (ξ)� �Rλ� (ξ) = �̂ (ξ)
λ + Ψ(−ξ) for all ξ ∈ R�� (4)

Therefore, it follows fairly readily that when � ∈ Dom[L] ∩ L1(R�), L� ∈
L1(R�), and �̂ ∈ L1(R�), then we have

�L� (ξ) = −Ψ(−ξ)�̂ (ξ) for every ξ ∈ R�� (5)

It follows immediately from these calculations that: (i) Every P� and Rλ
map � to �; and (ii) Therefore, � is dense in Dom[L]. Therefore, we can
try to understand L better by trying to compute L� not for all � ∈ Dom[L],
but rather for all � in the dense subcollection �. But the formula for
the Fourier transform of L� [together with the estimate |Ψ(ξ)| = O(�ξ�2)]
shows that L : � → � and

(L� )(�) = − 1
(2π)�

�

R�
e−�ξ·�Ψ(−ξ)�̂ (ξ) dξ for all � ∈ R� and � ∈ ��

Consider the simplest case that the process X satisfies X� = �� for some
� ∈ R�; i.e., Ψ(ξ) = −�(� · ξ). In that case, we have

(L� )(�) = 1
(2π)� ·

�

R�
(� · �ξ)e−�ξ·��̂ (ξ) dξ = − 1

(2π)�
�

R�
e−�ξ·�(� · �∇� (ξ)) dξ

= −� · (∇� )(�)�

thanks to the inversion formula. The very same computation works in the
more general setting, and yields

Theorem 14. If � ∈ �, then L� = C� + J� , where

(C� )(�) = −� · (∇� )(�) + 1
2

� �

1≤���≤�
(σ �σ )��

∂2

∂��∂��
� (�)�

and

(J� )(�) :=
�

R�

�
� (� + �) − � (�) − � · (∇� )(�)1l[0�1)(���)

�
�(d�) for all � ∈ R��

Moreover, J is the generator of the pure-jump part; and C = −� · ∇ +
1
2∇�σ �σ∇ is the generator of the continuous/Gaussian part.
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Here are some examples:
• If X is Brownian motion on R� , then L = 1

2∆ is one-half of the
Laplace operator [on �];

• If X is the Poisson process on R with intensity λ ∈ (0 � ∞), then
(L� )(�) = λ[� (� + 1) − � (�)] for � ∈ � [might be easier to check
Fourier transforms];

• If X is the isotropic stable process with index α ∈ (0 � 2), then for
all � ∈ �,

(L� )(�) = const ·
�

R�

�
� (� + �) − � (�) − � · (∇� )(�)1l[0�1](���)

����+α

�
d��

Since �L� (ξ) ∝ −�̂ (ξ)·�ξ�α, L is called the “fractional Laplacian” with
fractional power α/2. It is sometimes written as L = −(−∆)α/2;
the notation is justified [and explained] by the symbolic calculus
of pseudo-differential operators.

Problems for Lecture 9
1. Prove that P� (� � A) = P� (A − �) for all � ≥ 0, � ∈ R� , and A ∈ �(R�), where
A − � := {� − � : � ∈ A}. Conclude that the Chapman–Kolmogorov equation is
equivalent to the following formula for E

��
�=1 �� (�0 + X�� ):

�

R�
P�1 (d�1)

�

R�
P�2−�1 (d�2) · · ·

�

R�
P��−��−1 (d��)

��

�=1
�� (�0 + · · · + �� )�

using the same notation as Proposition 2.

2. Suppose Y ∈ L1(P) is measurable with respect to σ ({X�}�≥� ) for a fixed non-
random � ≥ 0. Prove that E(Y | �� ) = E(Y | X� ) a.s.

3. Verify that −X := {−X�}�≥0 is a Lévy process; compute its transition measures
P̃� (� � d�) and verify the following duality relationship: For all measurable � � � :
R� → R+ and � ∈ R� ,�

R�
� (�) d�

�

R�
�(�) P� (� � d�) =

�

R�
�(�) d�

�

R�
� (�) P̃� (� � d�)�

4. Prove that �(� � �) := (P�� )(�) solves [weakly] the partial integro-differential
equation

∂�
∂� (� � �) = (L�)(� � �) for all � > 0 and � ∈ R��

subject to �(0 � �) = � (�).

5. Derive the resolvent equation (3).

6. Verify (4) and (5).
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7. First, improve Proposition 11 in the case � = 2 as follows: Prove that there
exists a unique continuous extension of P� to all of L2(R�). Denote that by P� still.
Next, define

Dom2[L] :=
�

� ∈ L2(R�) :
�

R�
|Ψ(ξ)|2 · |�̂ (ξ)|2 dξ < ∞

�
�

Then prove that lim�↓0 �−1(P�� − � ) exists, as a limit in L2(R�), for all � ∈ Dom2[L].
Identify the limit when � ∈ C�(R�).


