Sctrore 7

The Strong Markov
Property

Throughout, X := {X{ }¢~0 denotes a Lévy process on R? with triple (a , o, m),
and exponent V. And from now on, we let {F}¢~o denote the natural fil-
tration of X, all the time remembering that, in accord with our earlier
convention, {%¢ }4~o satisfies the usual conditions.

Transition measures and the Markov property

Definition 1. The fransition measures of X are the probability measures
Di(x ,A):=P{x + XA}

defined for all t > 0, x € R%, and A € B(RY). In other words, each Py(x , )
is the law of X; started at x € RY. We single out the case x = 0 by setting
n¢(A) := P¢(0, A); thus, p1; is the distribution of X¢ for all t > 0. O

Note, in particular, that j10 = & is the point mass at 0 € R€.

Proposition 2. For all s,t > 0, and measurable f : R? — R,

E[f (Xt1s)| Fs] = y fly)Pi(Xs,dy)  as.
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Consequently, for all xo € RY, 0 < 4 < ty < --- < t, and measurable
f1 ..... fk . Rd — R+,

k
E [—[fj(ro + th) (1)
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=/ Pn(rOIdIl)/ Py, ¢, (21, dxg) / Pty (-1, dxg) | | flx)).
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Property (1) is called the Chapman—Kolmogorov equation. That prop-
erty has the following ready consequence: Transition measures determine
the finite-dimensional distributions of X uniquely.

Definition 3. Any stochastic process {Xy} >0 that satisfies the Chapman-
Kolmogorov equation is called a Markov process. This definition continues
to make sense if we replace (R, B3(R%)) by any measurable space on which
we can construct infinite families of random wvariables. ([l

Thus, Lévy processes are cadlag Markov processes that have special
“addition” properties. In particular, as Exercise below 1 shows, Lévy pro-
cesses have the important property that the finite-dimensional distributions
of X are described not only by {Pt(x, ) }¢~0rcre but by the much-smaller
family {p(-) Fe>o.

Note, in particular, that if f : RY — R_ is measurable, t > 0, and x € RY,
then

Bfle+ X0 = [ flo)Pite dy) = [ flx + ) ldy)
Therefore, if we define
f¢(A) = py(—=A)  forall t > 0and A € BRY),

where —A = {—a : a € A}, then we have the following convolution
formula, valid for all measurable f:R¢ - R,, x € R4, and t > 0:

Ef(xc + Xi) = (f * i) (x).
And, more generally, for all measurable f :R? - R,, x e R4, and s,t > 0
E[f (Xtss) | Fs] = (f x 1)(Xs)  as.
[Why is this more general?]
Proposition 4. The family {u }+~o of Borel probability measure on R? is
a “convolution semigroup” in the sense that iy * pis = p¢,s for all s, t > 0.

Moreover, [i;(£) = exp(—t¥(&)) for all t > 0 and & € RY. Similarly, {fit}+>0
is a convolution semigroup with [1(£) = exp(—t¥(—£&)).
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Proof. The assertion about fi follows from the assertion about g [or you
can repeat the following with 1 in place of pJ.

Since ¢ is the distribution of Xy the characteristic function of Xy is
described by [1;(€) = exp(—t¥(£)). The proposition follows immediately
from this, because [1(£) - fis(&) = exp(—(t + s)¥(&)) = frr+5(&). O

The strong Markov property

Theorem 5 (The strong Markov property). Let T be a finite stopping time.
Then, the process X! := {X;T}tzo, defined by XtT = X7yt — X7 is a Lévy
process with exponent ¥ and independent of .

Proof. X is manifestly cadlag [because X is]. In addition, one checks that
whenever 0 < t; < --- < fp and Aq,..., Ap € B(RY),

k k
Pl () {Xrey —Xre A} | Fr| =P () {X €4} as;
j=1 j=1

see Exercise 2 on page 32. This readily implies that the finite-dimensional
distributions of X7 are the same as the finite-dimensional distributions of
X, and the result follows. O

Theorem 5 has a number of deep consequences. The following shows
that Lévy processes have the following variation of strong Markov prop-
erty. The following is attractive, in part because it can be used to study
processes that do not have good additivity properties.

Corollary 6. For all finite stopping times T, every t > 0, and all measur-
able functions f : RY — R..

E[fXr) | F1] = [ flo)piXr.ap)  as

Let T be a finite stopping time, and then define ") = { gET)}tZO to
be the natural filtration of the Lévy process X'. The following is a useful
corollary of the strong Markov property.

Corollary 7 (Blumenthal's zero-one law; Blumenthal, 1957). Let T be a
finite stopping time. Then @éT) is trivial; i.e, P(A) € {0,1} forall A € 93(()T).
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The following are nontrivial examples of elements of 55(()71):

X - X
Y4 := {liminf —” T ll =
t10 ti/a

Xrpt — X
Yo = {limsup”THT” = 1}; or

O} where a > 0 is fixed;

t10 2tInIn(1/t)

Yz = {atn | O such that Xr.¢, — X7 > O forall n > 1} in dimension one, etc.

Proof of Blumenthal’s zero-one law. The strong Markov property [Corol-
lary 6] reduces the problem to T = 0. And of course we do not need to

write F9 since 5550) is the same object as F.

For all n > 1 define A, to be the completion of the sigma-algebra gen-
erated by the collection {X¢i9-n — Xo-n}tc02-n. By the Markov property,
Ay, Ay, ... are independent sigma-algebras. Their tail sigma-algebra I is
the smallest sigma-algebra that contains U2y A; for all N > 1. Clearly T
is complete, and Kolmogorov's zero-one law tells us that I is trivial. Be-
cause U72y A; contains the sigma-algebra generated by all increments of
the form X, ., — Xy where u,v € [27™ ,2*’”“} for some m > N, and since
Xy = 0asu |0, it follows that I contains Ng>0 XL, where XLy denotes the
sigma-algebra generated by {X; }rc0,s). Since I is complete, this implies
Fo C I [in fact, I = %] as well, and hence F is trivial because I is. [

Thus, for example, take the set Y¢ introduced earlier. We can apply
the Blumenthal zero-one to the Yy € 9y and deduce the following:

Xret — X
For every a > 0, p liminfw=0 =0 or 1.
t10 ti/a

You should construct a few more examples of this type.

Feller semigroups and resolvents

Define a collection {P;}~0 of linear operators by

(Dyf)(x) = Eflx + X;) = /R )Pl dy) = (f % pi)lx) for £ 20,7 € R

[Since Xo = 0, Py = & is point mass at zero.] The preceding is well defined
for various measurable functions f : RY — R. For instance, everything is
fine if f is nonnegative, and also if (Py|f|)(x) < oo for all t > 0 and x € R¢
[in that case, we can write Pif = Pif ™ — Pyf 7).

The Markov property of X [see, in particular, Proposition 4] tells us
that (Ps,sf)(x) = (P¢(Psf))(x). In other words,

Di.s = DiPs = P, Dy forall s, t >0, (2)
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where P¢P.f is shorthand for P¢(Psf) etc. Since Py and Py commute, in
the preceding sense, there is no ambiguity in dropping the parentheses.

Definition 8. The family {P; }+-¢ is the semigroup associated with the Lévy
process X. The resolvent {Rj },-0 of the process X is the family of linear
operators defined by

(Rof)(x) = /OOO e~ (Dyf)(x) df — E/OOO eMflx + X)dt (A > 0).

This can make sense also for A = 0, and we write R in place of Ry. Finally,
R, is called the A-potential of f when A > 0; when A = O, we call it the
potential of f instead. O

Remark 9. It might be good to note that we can cast the strong Markov
property in terms of the semigroup {P; }¢~¢ as follows: For all s > 0, finite
stopping times T, and f : R? — R, measurable, E[f(Xr.¢)| Fr] = (Psf)(X71)
almost surely. O

Formally speaking,
R = / eMpidt (A >0)
0

defines the Laplace transform of the [infinite-dimensional] function { — P;.
Once again, R;f is defined for all Borel measurable f : R? — R, if either
f > 0; or if R, |f| is well defined.

Recall that Cy(RY) denotes the collection of all continuous f : RY — R
that vanish at infinity [f(x) — 0 as ||Jx|| — oco]; Co(R?) is a Banach space in
norm |[f]| = supy e [f(x)]

The following are easy to verify:

(1) Each Py is a contraction [more precisely nonexpansive] on Co(RY).
That is, |P¢f| < [|f| forall t > 0;

(2) {Pt}>0 is a Feller semigroup. That is, each Py maps Co(RY) to
itself and limy o || Ptf — f]| = O;

(3) If A > 0, then AR, is a contraction [nonexpansive] on Co(RY);
(4) If A > 0, then AR, maps Co(RY) to itself.

The preceding describe the smoothness behavior of Py and R, for fixed t
and A. It is also not hard to describe the smoothness properties of them
as functions of t and A. For instance,

Proposition 10. For all f € Co(RY),
limsup ||Pisf — Psf|| =0 and lim [|AR:f —f| = 0.
t10 s>0 Aloo
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Proof. We observe that
|Pef —fll = sup [Ef(x + X{) — f(x)] < sup E|f(x + X;) — f(x)].

xeRd xeRd

Now every f € Co(Rd) is uniformly continuous and bounded on all of R4,
Since X is right continuous and f is bounded, it follows from the bounded
convergence theorem that limy | | Ptf —f| = 0. But the semigroup property
implies that ||Prisf — Psf| = ||Ps(P¢f — f)| < ||[Pef — f||, since Ps is a
contraction on Cp(R?). This proves the first assertion. The second follows
from the first, since AR, = [;” e "Dy, dt by a change of variables. O

Proposition 11. If f ¢ Co(RY)NLP(RY) for somep € [1,0), then [ Pef || 1pray <
“f”Lp(Rd) fOF all t > 0 and H)LR)L]C“L;;(Rd) < ||f”LD(R(l) fOI” all A > 0.

In words, the preceding states that P and AR, are contractions on
LP(RY) for every p € [1,00) and t,A > 0.

Proof. If f € Co(R?) n LP(RY), then for all t > 0,

] (Def)) P dx = f [Ef(x + X de < f E(|f(x + X0P) dx
Rd Rd Rd

- / F(9)|P dy.
Rd

This proves the assertion about Py; the one about R}, is proved similarly. [J

The Hille-Yosida theorem

One checks directly that for all gz, A > 0,
Ry — Ry = (= A)RyRy. (3)

This is called the resolvent equation, and has many consequences. For
instance, the resolvent equation implies readily the commutation property
R,R; = RyR,. For another consequence of the resolvent eqution, suppose
g = Ryf for some f € Cy(R?) and p1 > 0. Then, g € Co(RY) and by the
resolvent equation, R,f — g = (1 — A)R,g. Consequently, g = Ry h, where
h:=f+ @ —pRig € Co(RY). In other words, R,(Co(RY)) = Ry(Co(RY)),
whence

Dom(L] := {R,lf i fe Co(Rd)} does not depend on pu > 0.

And Dom[L] is dense in Cy(R4) [Proposition 10].

For yet another application of the resolvent equation, let us suppose
that R,f = 0 for some A > 0 and f € Co(R?). Then the resolvent equation
implies that R,,f = O for all p. Therefore, f = limyyo pR,f = 0. This implies
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that every R; is a one-to-one and onto map from Cy(R?) to Dom([L]; i.e, it
is invertible!

Definition 12. The [infinitesimal] generafor of X is the linear operator
L :Dom[L] — Co(R?) that is defined uniquely by

L:=AI - R,

where If := f defines the identity operator I on Cy(R%). The space Dom][L]
is the domain of L. O

The following is perhaps a better way to think about L; roughly speak-
ing, it asserts that Pif — f ~ tLf for t small, and AR;f — f ~ A~'Lf for A
large.

Theorem 13 (Hille XXX, Yosida XXX). If f € Dom[L], then

tim sup | 2B =T o0 i sup | PO IE 0] 2o
ATeo xeRd /A 0 xeRd t
Because f = DPyf, the Hille-Yosida theorem implies, among other

things, that (8/0t)P¢|t—0 = L, where the partial derivative is really a right
derivative. See Exercise 4 for a consequence in partial integro-differential
equations.

Proof. Thanks to Proposition 10 and the definition of the generator, Lf =

Af — Ry Yf for all f € Dom([L], whence

AR —f
1/

This proves half of the theorem. For the other half recall that Dom[L] is

the collection of all functions of the form f = R;h, where h € CO(Rd) and
A > 0. By the semigroup property, for such A and h we have

AR, Lf = > Lf  in Co(RY) as A 1 oo.

P¢Rh =/ e_}‘SPt+5hds=e’“/ e P hds
0 t

t
— M <R;Lh —] eASPShds> )
0

Consequently, for all f = R, h € Dom[L],

D.f — At At ot
J-f_ (e Rih— S | e*P.hds
f t t Jo

- ARyh—h  in Co(R% ast]O.
But ARy h — h = Af — R;'f = Lf. 0
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The form of the generator

Let S denote the collection of all rapidly-decreasing test functions f : RY —
R. Thatis, f € S if and only if f € C*(R9), and f and all of its partial deriva-
tives vanish faster than any polynomial. In other words, if D is a differential
operator [of finite order] and n > 1, then sup,cga(1 + |x||™)|(Df)(x)| < 0.
It is easy to see that S ¢ LY(RY) N Cy(RY) and S is dense in Co(R9). And it
is well known that if f € S, then f € S as well, and vice versa.

It is possible to see that if f,f € L* (RY), then for all t > 0 and A > 0,

A

D7 _ o tY(=8)7 D 7 _ f(g) d

Pfe) = e "), Rifle) = 5y forangeRrl
Therefore, it follows fairly readily that when f € Dom[L] N L (Rd), Lf €
LY(RY), and f € L'(RY), then we have

Lf(&) = —W(-£)f(&)  for every £ € R™. (5)

It follows immediately from these calculations that: (i) Every P; and R;
map S to S; and (ii) Therefore, S is dense in Dom[L]. Therefore, we can
try to understand L better by trying to compute Lf not for all f € Dom][L],
but rather for all f in the dense subcollection S. But the formula for
the Fourier transform of Lf [together with the estimate |V(£)| = O(||&]|%)]
shows that L: S — § and

(Lf)(x) = _(271T)d /Rd e ETY(_)f(e)de forallx e R%and f € S.

Consider the simplest case that the process X satisfies X; = at for some
a e R ie, V(&) = —i(a- £). In that case, we have

1 . —i&xy 1 —i&x < 1
W) = gy [ fa-te1e ) at =~ [ e St ae
- —a-(Vf)l)

thanks to the inversion formula. The very same computation works in the
more general setting, and yields

Theorem 14. If f € S, then Lf = Cf + Jf, where

(CAlE) = —a - (V) + L3S o)y

2
‘ax‘f
1<ij<d L

(x),
and

)= [ [fle sz =t =2 (90 2] midz) - for atlx <R,

Moreover, | is the generator of the pure-jump part, and C = —a - V +
%V/o/d V is the generator of the continuous/Gaussian part.
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Here are some examples:
e If X is Brownian motion on RY, then L = %A is one-half of the
Laplace operator [on §J;

e If X is the Poisson process on R with intensity A € (0, c0), then
(Lf)(x) = Alf(x + 1) — f(x)] for f € S [might be easier to check
Fourier transformsj;

e If X is the isotropic stable process with index a € (0, 2), then for

all f € S,
— flx) —z- (Vf)(x)1
(Lf)(x) = const - / flx +2) — fx) — 2 (V) hon(lz])]
Rd I|Z”d+a
Since i}(é) o —f(€)-]|€]|%, L is called the “fractional Laplacian” with
fractional power a/2. It is sometimes written as L = —(—A)%2;

the notation is justified [and explained] by the symbolic calculus
of pseudo-differential operators.

Problems for Lecture 9

1. Prove that P(x,A) = P((A —x) for all t > 0, x € R%, and A € $B(R?), where
A —x:={a—-x:a e A}. Conclude that the Chapman-Kolmogorov equation is
equivalent to the following formula for E ]—[;11 filxo + X¢):

k
/ Py, (dxy) f Py, (dxg) - - - / Pyt (dxe) | [filxo + -+ + ),
Rd Rd Rd it
using the same notation as Proposition 2.

2. Suppose Y € L!(P) is measurable with respect to o({X, },>¢) for a fixed non-
random t > 0. Prove that E(V| %) = E(Y | Xy) as.

3. Verify that —X := {—X; }¢>0 is a Lévy process; compute its transition measures
Pt(x,dy) and verify the following duality relationship: For all measurable f, g :
R? —» R, and z € RY,

[ e [ gwpiedy) = [ gty [ )by dx)

4. Prove that u(s,x) := (Psf)(x) solves [weakly| the partial integro-differential

equation

Z—z(s,r) = (Lu)(s,x) forall s >0andx e RY,

subject to u(0, x) = f(x).
5. Derive the resolvent equation (3).

6. Verify (4) and (5).
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7. First, improve Proposition 11 in the case p = 2 as follows: Prove that there
exists a unique continuous extension of P; to all of L*(R9). Denote that by P still.
Next, define

Dom(1) - {1 € LRY: [ [vie [7ie) de < ool

Then prove that limyj t~*(P;f — f) exists, as a limit in L?(RY), for all f € Domy|L].
Identify the limit when f € C,(RY).



