
Lévy Processes

Recall that a Lévy process {X�}�≥0 on R� is a cadlag stochastic process
on R� such that X0 = 0 and X has i.i.d. increments. We say that X is
continuous if � �� X� is continuous. On the other hand, X is pure jump if
� �� X� can move only when it jumps [this is not a fully rigorous definition,
but will be made rigorous en route the Itô–Lévy construction of Lévy
processes].

Definition 1. If X is a Lévy process, then its tail sigma-algebra is � :=
∩�≥0σ ({X�+� − X�}�≥0). �

The following is a continuous-time analogue of the Kolmogorov zero-
one law for sequences of i.i.d. random variables.

Proposition 2 (Kolmogorov zero-one law). The tail sigma algebra of a
Lévy process is trivial; i.e., P(A) ∈ {0 � 1} for all A ∈ �.

The Lévy–Itô construction

The following is the starting point of the classification of Lévy processes,
and is also known as the Lévy–Khintchine formula; compare with the
other Lévy–Khintchine formula (Theorem 6).

Theorem 3 (The Lévy–Khintchine formula; Itô, 1942; Lévy, 1934). For
every Lévy exponent Ψ on R� there exists a Lévy process X such that for
all � ≥ 0 and ξ ∈ R� ,

Ee�ξ·X� = e−�Ψ(ξ)� (1)
Conversely, if X is a Lévy process on R� then (1) is valid for a Lévy
exponent Ψ.
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30 6. Lévy Processes

In words, the collection of all Lévy processes on R� is in one-to-one
correspondence with the family of all infinitely-divisible laws on R� .

We saw already that if X is a Lévy process, then X1 [in fact, X� for
every � ≥ 0] is infinitely divisible. Therefore, it remains to prove that if Ψ
is a Lévy exponent, then there is a Lévy process X whose exponent is Ψ.
The proof follows the treatment of Itô (1942), and is divided into two parts.

Isolating the pure-jump part. Let B := {B�}�≥0 be a �-dimensional Br-
ownian motion, and consider the Gaussian process defined by

W� := σB� − ��� (� ≥ 0)�

A direct computation shows that W := {W�}�≥0 is a continuous Lévy pro-
cess with Lévy exponent

Ψ(�)(ξ) = ���ξ + 1
2�σξ�2 for all ξ ∈ R��

[W is a Brownian motion with drift −�, where the coordinates of W are
possibly correlated, unless σ is diagonal.] Therefore, it suffices to prove
the following:

Proposition 4. There exists a pure-jump Lévy process Z with character-
istic exponent

Ψ(�)(ξ) :=
�

R�

�
1 − e�ξ·� + �(ξ · �)1l(0�1)(���)

�
�(d�)�

for all ξ ∈ R� .

Indeed, if this were so, then we could construct W and Z independently
from one another, and set

X� = W� + Z� for all � ≥ 0�

This proves Theorem 3, since Ψ = Ψ(�) + Ψ(�). In fact, together with Theo-
rem 6, this implies the following:

Theorem 5. (1) The only continuous Lévy processes are Brownian mo-
tions with drift, and; (2) The continuous [i.e., Gaussian] and pure-jump
parts of an arbitrary Lévy process are independent from one another.

Therefore, it suffices to prove Proposition 4.

Proof of Proposition 4. Consider the measurable sets

A−1 :=
�

� ∈ R� : ��� ≥ 1
�

� and A� :=
�

� ∈ R� : 2−�+1 ≤ ��� < 2−�
�

�



The Lévy–Itô construction 31

as � varies over all nonnegative integers. Now we can define stochastic
processes {X(�)}∞

�=−1 as follows: For all � ≥ 0,

X(−1)
� :=

�

A−1

� Π� (d�)� X(�)
� :=

�

A�

� Π� (d�) − ��(A�) (� ≥ 0)�

Thanks to the construction of Lecture 5 (pp. 26 and on), {X(�)}∞
�=−1 are

independent Lévy processes, and for all � ≥ 0, � ≥ 0, and ξ ∈ R� ,

Ee�ξ·X(�)
� = exp

�
−�

�

A�

�
1 − e�ξ·� + �(ξ · �)1l(0�1)(���)

�
�(d�)

�
�

Moreover, X(−1) is a compound Poisson process with parameters �(• ∩
A−1)/�(A−1) and λ = �(A−1), for all � ≥ 0, X(�) is a compensated com-
pound Poisson process with parameters �(• ∩ A�)/�(A�) and λ = �(A�).

Now Y (�)
� :=

��
�=0 X(�)

� defines a Lévy process with exponent

ψ�(ξ) :=
�

1>���≥2−�+1

�
1 − e�ξ·� + �(ξ · �)1l(0�1)(���)

�
�(d�)�

valid for all ξ ∈ R� and � ≥ 1. Our goal is to prove that there exists a
process Y such that for all nonrandom T > 0,

sup
�∈[0�T]

���Y (�)
� − Y�

��� → 0 in L2(P). (2)

Because Y (�) is cadlag for all �, uniform convergence shows that Y is cad-
lag for all �. In fact, the jumps of Y (�+1) contain those of Y (�), and this
proves that Y is pure jump. And because the finite-dimensional distribu-
tions of Y (�) converge to those of Y , it follows then that Y is a Lévy process,
independent of X(−1), and with characteristic exponent

ψ∞(ξ) = lim
�→∞

ψ�(ξ) =
�

1>���

�
1 − e�ξ·� + �(ξ · �)1l(0�1)(���)

�
�(d�)�

[The formula for the limit holds by the dominated convergence theorem.]
Sums of independent Lévy processes are themselves Lévy. And their ex-
ponents add. Therefore, X(−1)

� + Y� is Lévy with exponent Ψ(�).
It remains to prove the existence of Y . Let us choose and fix some

T > 0, and note that for all �� � ≥ 1 and � ≥ 0,

Y (�+�)
� − Y (�)

� =
�+��

�=�+1

��

A�

� Π� (d�) − ��(A� )
�

�
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and the summands are independent because the A� ’s are disjoint. Since
the left-hand side has mean zero, it follows that

E
����Y (�+�)

� − Y (�)
�

���
2
�

=
�+��

�=�+1
E




�����

�

A�

� Π� (d�) − ��(A� )
�����

2




≤ 2�−1�
�+��

�=�+1

�

A�

���2 �(d�) = 2�−1�
�

∪�+�
�=�+1A�

���2 �(d�);

see Theorem 3. Every one-dimensional mean-zero Lévy process is a mean-
zero martingale [in the case of Brownian motion we have seen this in Math.
6040; the reasoning in the general case is exactly the same]. Therefore,
Y (�+�) − Y (�) is a mean-zero cadlag martingale (coordinatewise). Doob’s
maximal inequality tells us that

E
�

sup
�∈[0�T]

���Y (�+�)
� − Y (�)

�

���
2
�

≤ 2�+1T
�

2−�≤���<2�−�+1
���2 �(d�)�

This and the definition of a Lévy measure (p. 3) together imply (2), whence
the result. �

Problems for Lecture 6
1. Prove the Kolmogorov 0-1 law (page 29).

2. Prove that every Lévy process X on R� is a strong Markov process. That is,
for all finite stopping times T [in the natural filtration of X], �1� � � � � �� ≥ 0, and
A1� � � � � A� ∈ �(R�),

P




��

�=1

�
XT+�� − XT ∈ A�

�
������

�T



 = P




��

�=1

�
X�� ∈ A�

�


 a.s.

(Hint: Follow the Math. 6040 proof of the strong Markov property of Brownian
motion.)


