

Lévy Processes

Recall that a Lévy process $\{X_t\}_{t \geq 0}$ on \mathbf{R}^d is a cadlag stochastic process on \mathbf{R}^d such that $X_0 = 0$ and X has i.i.d. increments. We say that X is *continuous* if $t \mapsto X_t$ is continuous. On the other hand, X is *pure jump* if $t \mapsto X_t$ can move only when it jumps [this is not a fully rigorous definition, but will be made rigorous en route the Itô–Lévy construction of Lévy processes].

Definition 1. If X is a Lévy process, then its *tail sigma-algebra* is $\mathcal{T} := \bigcap_{t \geq 0} \sigma(\{X_{r+t} - X_r\}_{r \geq 0})$. \square

The following is a continuous-time analogue of the Kolmogorov zero-one law for sequences of i.i.d. random variables.

Proposition 2 (Kolmogorov zero-one law). *The tail sigma algebra of a Lévy process is trivial; i.e., $P(A) \in \{0, 1\}$ for all $A \in \mathcal{T}$.*

The Lévy–Itô construction

The following is the starting point of the classification of Lévy processes, and is also known as the *Lévy–Khintchine formula*; compare with the other Lévy–Khintchine formula (Theorem 6).

Theorem 3 (The Lévy–Khintchine formula; Itô, 1942; Lévy, 1934). *For every Lévy exponent Ψ on \mathbf{R}^d there exists a Lévy process X such that for all $t \geq 0$ and $\xi \in \mathbf{R}^d$,*

$$Ee^{i\xi \cdot X_t} = e^{-t\Psi(\xi)}. \quad (1)$$

Conversely, if X is a Lévy process on \mathbf{R}^d then (1) is valid for a Lévy exponent Ψ .

In words, the collection of all Lévy processes on \mathbf{R}^d is in one-to-one correspondence with the family of all infinitely-divisible laws on \mathbf{R}^d .

We saw already that if X is a Lévy process, then X_1 [in fact, X_t for every $t \geq 0$] is infinitely divisible. Therefore, it remains to prove that if Ψ is a Lévy exponent, then there is a Lévy process X whose exponent is Ψ . The proof follows the treatment of Itô (1942), and is divided into two parts.

Isolating the pure-jump part. Let $B := \{B_t\}_{t \geq 0}$ be a d -dimensional Brownian motion, and consider the Gaussian process defined by

$$W_t := \sigma B_t - at. \quad (t \geq 0).$$

A direct computation shows that $W := \{W_t\}_{t \geq 0}$ is a continuous Lévy process with Lévy exponent

$$\Psi^{(c)}(\xi) = ia'\xi + \frac{1}{2}\|\sigma\xi\|^2 \quad \text{for all } \xi \in \mathbf{R}^d.$$

[W is a Brownian motion with drift $-a$, where the coordinates of W are possibly correlated, unless σ is diagonal.] Therefore, it suffices to prove the following:

Proposition 4. *There exists a pure-jump Lévy process Z with characteristic exponent*

$$\Psi^{(d)}(\xi) := \int_{\mathbf{R}^d} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z) \mathbf{1}_{(0,1)}(\|z\|) \right) m(dz),$$

for all $\xi \in \mathbf{R}^d$.

Indeed, if this were so, then we could construct W and Z independently from one another, and set

$$X_t = W_t + Z_t \quad \text{for all } t \geq 0.$$

This proves Theorem 3, since $\Psi = \Psi^{(c)} + \Psi^{(d)}$. In fact, together with Theorem 6, this implies the following:

Theorem 5. (1) *The only continuous Lévy processes are Brownian motions with drift, and; (2) The continuous [i.e., Gaussian] and pure-jump parts of an arbitrary Lévy process are independent from one another.*

Therefore, it suffices to prove Proposition 4.

Proof of Proposition 4. Consider the measurable sets

$$A_{-1} := \left\{ z \in \mathbf{R}^d : \|z\| \geq 1 \right\}, \quad \text{and} \quad A_n := \left\{ z \in \mathbf{R}^d : 2^{-n+1} \leq \|z\| < 2^{-n} \right\},$$

as n varies over all nonnegative integers. Now we can define stochastic processes $\{X^{(n)}\}_{n=-1}^{\infty}$ as follows: For all $t \geq 0$,

$$X_t^{(-1)} := \int_{A_{-1}} x \Pi_t(dx), \quad X_t^{(n)} := \int_{A_n} x \Pi_t(dx) - tm(A_n) \quad (n \geq 0).$$

Thanks to the construction of Lecture 5 (pp. 26 and on), $\{X^{(n)}\}_{n=-1}^{\infty}$ are independent Lévy processes, and for all $n \geq 0$, $t \geq 0$, and $\xi \in \mathbf{R}^d$,

$$\mathbb{E} e^{i\xi \cdot X_t^{(n)}} = \exp \left\{ -t \int_{A_n} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z) \mathbf{1}_{(0,1)}(\|z\|) \right) m(dz) \right\}.$$

Moreover, $X^{(-1)}$ is a compound Poisson process with parameters $m(\bullet \cap A_{-1})/m(A_{-1})$ and $\lambda = m(A_{-1})$, for all $n \geq 0$, $X^{(n)}$ is a compensated compound Poisson process with parameters $m(\bullet \cap A_n)/m(A_n)$ and $\lambda = m(A_n)$.

Now $Y_t^{(n)} := \sum_{k=0}^n X_t^{(k)}$ defines a Lévy process with exponent

$$\psi_n(\xi) := \int_{1 > \|z\| \geq 2^{-n+1}} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z) \mathbf{1}_{(0,1)}(\|z\|) \right) m(dz),$$

valid for all $\xi \in \mathbf{R}^d$ and $n \geq 1$. Our goal is to prove that there exists a process Y such that for all nonrandom $T > 0$,

$$\sup_{t \in [0, T]} \|Y_t^{(n)} - Y_t\| \rightarrow 0 \quad \text{in } L^2(\mathbb{P}). \quad (2)$$

Because $Y^{(n)}$ is cadlag for all n , uniform convergence shows that Y is cadlag for all n . In fact, the jumps of $Y^{(n+1)}$ contain those of $Y^{(n)}$, and this proves that Y is pure jump. And because the finite-dimensional distributions of $Y^{(n)}$ converge to those of Y , it follows then that Y is a Lévy process, independent of $X^{(-1)}$, and with characteristic exponent

$$\psi_{\infty}(\xi) = \lim_{n \rightarrow \infty} \psi_n(\xi) = \int_{1 > \|z\|} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z) \mathbf{1}_{(0,1)}(\|z\|) \right) m(dz).$$

[The formula for the limit holds by the dominated convergence theorem.] Sums of independent Lévy processes are themselves Lévy. And their exponents add. Therefore, $X_t^{(-1)} + Y_t$ is Lévy with exponent $\Psi^{(d)}$.

It remains to prove the existence of Y . Let us choose and fix some $T > 0$, and note that for all $j, k \geq 1$ and $t \geq 0$,

$$Y_t^{(n+k)} - Y_t^{(n)} = \sum_{j=k+1}^{n+k} \left(\int_{A_j} x \Pi_t(dx) - tm(A_j) \right),$$

and the summands are independent because the A_j 's are disjoint. Since the left-hand side has mean zero, it follows that

$$\begin{aligned} \mathbb{E} \left(\left\| Y_t^{(n+k)} - Y_t^{(n)} \right\|^2 \right) &= \sum_{j=k+1}^{n+k} \mathbb{E} \left(\left\| \int_{A_j} x \Pi_t(dx) - tm(A_j) \right\|^2 \right) \\ &\leq 2^{d-1} t \sum_{j=k+1}^{n+k} \int_{A_j} \|x\|^2 m(dx) = 2^{d-1} t \int_{\bigcup_{j=k+1}^{n+k} A_j} \|x\|^2 m(dx); \end{aligned}$$

see Theorem 3. Every one-dimensional mean-zero Lévy process is a mean-zero martingale [in the case of Brownian motion we have seen this in Math. 6040; the reasoning in the general case is exactly the same]. Therefore, $Y^{(n+k)} - Y^{(n)}$ is a mean-zero cadlag martingale (coordinatewise). Doob's maximal inequality tells us that

$$\mathbb{E} \left(\sup_{t \in [0, T]} \left\| Y_t^{(n+k)} - Y_t^{(n)} \right\|^2 \right) \leq 2^{d+1} T \int_{2^{-k} \leq \|x\| < 2^{n-k+1}} \|x\|^2 m(dx).$$

This and the definition of a Lévy measure (p. 3) together imply (2), whence the result. \square

Problems for Lecture 6

1. Prove the Kolmogorov 0-1 law (page 29).

2. Prove that every Lévy process X on \mathbf{R}^d is a strong Markov process. That is, for all finite stopping times T [in the natural filtration of X], $t_1, \dots, t_k \geq 0$, and $A_1, \dots, A_k \in \mathcal{B}(\mathbf{R}^d)$,

$$\mathbb{P} \left(\bigcap_{j=1}^k \{X_{T+t_j} - X_T \in A_j\} \mid \mathcal{F}_T \right) = \mathbb{P} \left(\bigcap_{j=1}^k \{X_{t_j} \in A_j\} \right) \quad \text{a.s.}$$

(Hint: Follow the Math. 6040 proof of the strong Markov property of Brownian motion.)