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Lévy Processes

Recall that a Lévy process {X¢}¢~o on R? is a cadlag stochastic process
on RY such that Xo = 0 and X has iid. increments. We say that X is
continuous if t +— Xy is continuous. On the other hand, X is pure jump if
t — Xt can move only when it jumps [this is not a fully rigorous definition,
but will be made rigorous en route the [t6-Lévy construction of Lévy
processes].

Definition 1. If X is a Lévy process, then its tail sigma-algebra is I :=
Ne200({Xp st — Xt fro)- a

The following is a continuous-time analogue of the Kolmogorov zero-
one law for sequences of iid. random variables.

Proposition 2 (Kolmogorov zero-one law). The tail sigma algebra of a
Lévy process is trivial; ie, P(A) € {0,1} forall A e 7.

The Lévy-Itd construction

The following is the starting point of the classification of Lévy processes,
and is also known as the Lévy-Khintchine formula; compare with the
other Lévy-Khintchine formula (Theorem 6).

Theorem 3 (The Lévy-Khintchine formula; 1t6, 1942; Lévy, 1934). For
every Lévy exponent ¥ on RY there exists a Lévy process X such that for
all t > 0 and & € RY,

EeltXt — o 1VE), (1)
Conversely, if X is a Lévy process on R? then (1) is valid for a Lévy
exponent V.
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30 0. Lévy Processes

In words, the collection of all Lévy processes on R? is in one-to-one
correspondence with the family of all infinitely-divisible laws on R4,

We saw already that if X is a Lévy process, then X; [in fact, X; for
every t > 0] is infinitely divisible. Therefore, it remains to prove that if ¥
is a Lévy exponent, then there is a Lévy process X whose exponent is V.
The proof follows the treatment of 1t6 (1942), and is divided into two parts.

Isolating the pure-jump part. Let B := {B¢};~0 be a d-dimensional Br-
ownian motion, and consider the Gaussian process defined by
Wy := 0By — at. (t >0).

A direct computation shows that W := {W; };~¢ is a continuous Lévy pro-
cess with Lévy exponent

Yele) = ia'e + %“ogHQ for all £ ¢ R%.

[W is a Brownian motion with drift —a, where the coordinates of W are
possibly correlated, unless o is diagonal] Therefore, it suffices to prove
the following:

Proposition 4. There exists a pure-jump Lévy process Z with character-
istic exponent

v [ (1=e wile o lzl)) midz),
for all £ € R4,

Indeed, if this were so, then we could construct W and Z independently
from one another, and set

Xy = Wi + Z; forall t > 0.

This proves Theorem 3, since ¥ = W©) + W) In fact, together with Theo-
rem 6, this implies the following:

Theorem 5. (1) The only continuous Lévy processes are Brownian mo-
tions with drift, and; (2) The continuous [i.e, Gaussian] and purejump
parts of an arbitrary Lévy process are independent from one another.

Therefore, it suffices to prove Proposition 4.

Proof of Proposition 4. Consider the measurable sets

Aqi={zeRh: |z 21}, and A= {zeRI2 <z <2,
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as n varies over all nonnegative integers. Now we can define stochastic
processes {X™]>°  as follows: For all f > 0,

X\ :=/A cI(dx), XM :=/Axﬂt(dx)~tm(An) (n>0).
-1 n

Thanks to the construction of Lecture 5 (pp. 26 and on), {Xm)}ff:_1 are
independent Lévy processes, and for all n > 0, t > 0, and £ € RY,

Feit X" _ exp {—t/ (1 _E7 (e Z)1(0,1)(||ZH)> m(dz)} .

Moreover, X=!) is a compound Poisson process with parameters m(e N
A_{)/m(A_y) and A = m(A_4), for all n > 0, X is a compensated com-
pound Poisson process with parameters m(e N A,)/m(A,) and A = m(A,).

Now Yt(m =30 ng) defines a Lévy process with exponent
wnle) i [ (1 - e il 2o yl2])) mldz)
1>|z] >2-n+t

valid for all £ € RY and n > 1. Our goal is to prove that there exists a
process Y such that for all nonrandom T > O,

an w0 miw

Because Y™ is cadlag for all n, uniform convergence shows that V is cad-
lag for all n. In fact, the jumps of Y™+ contain those of VI, and this
proves that ¥ is pure jump. And because the finite-dimensional distribu-
tions of Y™ converge to those of ¥, it follows then that V is a Lévy process,
independent of X(~!), and with characteristic exponent

Unle) = Jim wnle) = [ (1€ 1 ile - 2oy (l2]) midz)
oo 1> 2|

[The formula for the limit holds by the dominated convergence theorem.]
Sums of independent Lévy processes are themselves Lévy. And their ex-

1)

ponents add. Therefore, Xf + Y is Lévy with exponent ¥(@).

It remains to prove the existence of Y. Let us choose and fix some
T > 0, and note that forall j,k >1and t > 0,

n+k

Yt(n+k) _ Yt(n) _ Z </A x IT¢(dx) — tIH(Aj)> ,
J

j=k+1
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and the summands are independent because the A;'s are disjoint. Since
the left-hand side has mean zero, it follows that

n+k 2
. <Hyt<n+k) g > Z E / T (dx) - tm(A)
=k+1
n+k
d—1 2 _ od-1 2
<ot T f ]2 m(dx) = 2 t/m el i
j=k+1 ]k+1 J

see Theorem 3. Every one-dimensional mean-zero Lévy process is a mean-
zero martingale [in the case of Brownian motion we have seen this in Math.
6040; the reasoning in the general case is exactly the same]. Therefore,
yintk) _ y(n) is a mean—zero cadlag martingale (coordinatewise). Doob’s
maximal inequality tells us that

2
> < odHiT / Jx])? m(dx).
2—k§[12“<2n—k+1

This and the definition of a Lévy measure (p. 3) together imply (2), whence
the result. O

E | sup HYMk yin
te[0,T] !

Problems for Lecture 6

1. Prove the Kolmogorov 0-1 law (page 29).

2. Prove that every Lévy process X on R is a strong Markov process. That is,
for all finite stopping times T [in the natural filtration of X], f4,..., t, > 0, and

Ai, ., A € BRY),
k
QCT> =p <m {th S A]}> a.s.
j=1

k

p m {XT+ti —Xr € A]}
j=1

(Hint: Follow the Math. 6040 proof of the strong Markov property of Brownian

motion.)




