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1 Statistical Models

It is convenient to have an abstract framework for discussing statistical theory.
The general problem is that there exists an unknown parameter θ0, which we
wish to find out about. To have something concrete in mind, consider for
example a population with the N(θ0 , 1) distribution, where θ0 is an unknown
constant. If we do not have any a priori information about θ0 then it stands to
reason that we consider every distribution of the form N(θ , 1), as θ ranges over
R, and then use data to make inference about the real, unknown θ0.

The general framework is this: We have a parameter space Θ and the real θ0

is in Θ, but we do not its value. For every θ ∈ Θ, let Pθ denote the underlying
probability, which is computed by assuming that θ0 = θ. Similarly define Eθ,
Varθ, Covθ, etc. Then, the idea is to take a sample—typically an independent
sample—X = (X1 , . . . , Xn)—from Pθ0 . If the true (unknown) θ0 were equal to
some (known) θ1 ∈ Θ, then one would expect X to behave like an independent
sample from Pθ1 . If so, then we declare that θ0 might well be θ0. Else, we reject
the notion that θ0 = θ1. The remainder of these notes make this technique
precise in more special settings.
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2 Classical Parametric Inference

The typical problem of classical statistics is the following: Given a family of
probability densities {fθ}θ∈Θ how can we decide whether or not ours is fθ? More
precisely, we have an unknown density fθ0 ; we wish to estimate it by choosing
one from the family {fθ}θ∈Θ of densities available to us. [Alternatively, you
could replace fθ by a mass function pθ.] Here, Θ is the “parameter space,” and
θ0 is the unknown “parameter.”

To estimate θ0 one typically considers an independent sample X1, . . . , Xn

from the true distribution with density fθ0 , and constructs an estimator θ̂.

Example 1 Let Θ := R, and fθ the N(θ , 1) density. The standard approach
is to estimate θ0 with

θ̂ :=
X1 + · · ·+Xn

n
. (1)

There are many reasons why θ̂ is a good estimate of θ.

1. [Unbiasedness] Evidently,

Eθ(θ̂) = θ, for all θ ∈ Θ. (2)

This is called unbiasedness. In general, a random variable T is said to be
an unbiased estimator of θ if Eθ(T ) = θ for all θ ∈ Θ.

2. [Consistency] By the law of large numbers, for all θ ∈ Θ,

θ̂
Pθ→ θ as n→∞. (3)

This is called consistency. In general, a random variable T is said to be a

consistent estimator of θ0 if T
Pθ→ θ for all θ ∈ Θ as the sample size tends

to infinity.

3. [MLE] The maximum likelihood estimate of θ0—in all cases–is an esti-
mator that maximizes θ 7→ fθ(X1 . . . , Xn) for an independent sample
(X1 , . . . , Xn), where fθ here represents the joint density function of n
i.i.d. random variables each with density N(θ , 1). In the present example.

fθ(X1 , . . . , Xn) =
1

(2π)n/2
exp

−1

2

n∑
j=1

(Xj − θ)2

 . (4)

To find a MLE, it is easier to maximize the log likelihood,

L(θ) := ln fθ(X1 , . . . , Xn), (5)

which is the same as minimizing h(θ) :=
∑n
j=1(Xj − θ)2 over all θ. But

h′(θ) = −2
∑n
j=1(Xj − θ) and h′′(θ) = 2n > 0. Therefore, the MLE is

uniquely θ̂.
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The statistics θ̂ has other optimality features too. See for instance Example 8
(page 7) below.

Example 2 Suppose Θ := R×(0 ,∞). Then, we can write θ ∈ Θ as θ = (µ , σ2)
where µ ∈ R and σ > 0. Suppose fθ is the N(µ , σ2) density. Then the usual

estimator for the true parameter θ0 = (µ0 , σ
2
0) is θ̂ := (µ̂ , σ̂2), where

µ̂ :=
1

n

n∑
j=1

Xj ,

σ̂2 :=
1

n

n∑
j=1

(Xj − µ̂)2.

(6)

[As before, X1, . . . , Xn is an independent sample.] As in the previous example,

θ̂ is the unique MLE, and is consistent. However, it is not unbiased. Indeed,

Eθ(θ̂) =

(
µ[

1− 1
n

]2
σ2

)
, for all θ = (µ , σ2) ∈ Θ. (7)

So θ̂ is “biased,” although it is asymptotically unbiased ; i.e., Eθ(θ̂) → θ as
n→∞.

Example 3 Suppose Θ = (0 ,∞), and fθ is the uniform-(0 , θ) density for all
θ ∈ Θ. Given an independent sample X1, . . . , Xn, we consider

θ̂ := max
1≤j≤n

Xj . (8)

The distribution of θ̂ is easily computed, viz.,

Pθ

{
θ̂ ≤ a

}
= [Pθ{X1 ≤ a}]n = (a/θ0)n, 0 ≤ a ≤ θ0. (9)

This gives the density fθ̂(a) = nθ−n0 an−1 for 0 ≤ a ≤ θ0. Consequently,

Eθ(θ̂) = θ−n0

∫ θ0

0

nan da =
nθ0

n+ 1
. (10)

Therefore: (i) θ̂ is biased; but (ii) it is asymptotically unbiased. Next we show

that θ̂ is consistent. Note that θ̂ ≤ θ0, by force. So it is enough to show that
with high probability θ̂ is not too much smaller than θ0. Fix ε > 0, and note
that

Pθ

{
θ̂ ≤ (1− ε)θ0

}
=

∫ (1−ε)θ0

0

nθ−n0 an−1 da = (1− ε)n. (11)

Thus,

Pθ

{∣∣∣∣∣ θ̂θ0
− 1

∣∣∣∣∣ > ε

}
≤ 1− (1− ε)n → 0. (12)
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That is, θ̂ is consistent, as asserted earlier. To complete the example let us
compute the MLE for θ0. Evidently,

fθ(X1 , . . . , Xn) =
1

θn
I{θ > θ̂}, (13)

where I{A} is the indicator of A. So to find the MLE we observe that I{A} ≤ 1,

so that fθ(X1 , . . . , Xn) ≤ 1/θ̂n. The MLE is θ̂ uniquely.

One can consider a variant of θ̂, here, that is unbiased and consistent, but
only “approximately” MLE for large n. Namely, we can consider the statistic
θ̃ := (n+ 1) max1≤j≤nXj/n = (1 + 1

n ) max1≤j≤nXj .

3 The Information Inequality

Let us concentrate on the case where every θ ∈ Θ is one-dimensional, and hence
so is θ0.

Let X := (X1 , . . . , Xn) be a random vector with joint density fθ(x). The
Fisher information of the family {fθ}θ∈Θ is defined as the function I(θ), where

I(θ) := Eθ

[(
∂

∂θ
ln fθ(X)

)2
]
, (θ ∈ Θ), (14)

provided that the expectation exists and is finite. If X is discrete we define I(θ)
in the same way, but replace fθ by the joint mass function pθ.

In the continuous case, for example, the Fisher information is computed as
follows:

I(θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
∂

∂θ
ln fθ(x)

)2

fθ(x) dx

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

1

fθ(x)

(
∂

∂θ
fθ(x)

)2

dx.

(15)

So in fact I(θ) is always defined, but could be any number in [0 ,∞].

Example 4 In the case of independent N(θ , 1)’s,

ln fθ(x) = −n
2

ln(2π)− 1

2

n∑
j=1

(xj − θ)2. (16)

The θ-derivative is
∑n
j=1(xj − θ). Therefore,

I(θ) = Eθ


 n∑
j=1

Xj − nθ

2
 = Varθ

 n∑
j=1

Xj

 = n. (17)

[Here it does not depend on θ.]
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Example 5 Suppose X1, . . . , Xn ∼ Poisson(θ) are independent, where θ ∈
Θ := (0 ,∞). [Remember that “Y ∼ D” means that “Y is distributed as
D.”] Now we have the joint mass function pθ(x) instead of densities. Then,

ln pθ(x) = −nθ + ln θ

n∑
j=1

xj −
n∑
j=1

ln(xj !). (18)

Differentiate with respect to θ in order to obtain

∂

∂θ
ln pθ(x) = −n+

1

θ

n∑
j=1

xj . (19)

Therefore,

I(θ) =
1

θ2
E


 n∑
j=1

Xj − nθ

2
 =

Var(
∑n
j=1Xj)

θ2
=
n

θ
. (20)

The following is due to Fréchét originally, and was rediscovered indepen-
dently, and later on, by Crámer and Rao.

Theorem 6 (The Information Inequality) Suppose T is a non-random func-
tion of n variables. Then, under “mild regularity conditions,”

Varθ(T (X)) ≥ [h′(θ)]
2

I(θ)
, (21)

for all θ, where h(θ) := Eθ[T (X)].

The regularity conditions are indeed mild; they guarantee that certain inte-
grals and derivatives commute. See (24) and (27) below.

The proof requires the following form of the Cauchy–Schwarz inequality:

Lemma 7 (Cauchy–Schwarz Inequality) For all rv’s X and Y ,

|Cov(X ,Y )|2 ≤ Var(X) ·Var(Y ), (22)

provided that all the terms inside the expectations are integrable.

Proof. Let X ′ := (X − EX)/
√

Var(X) and Y ′ := (Y − EY )/
√

Var(Y ). Then,

0 ≤ E
[
(X ′ − Y ′)2

]
= E[(X ′)2] + E[(Y ′)2]− 2E[X ′Y ′]

= 2

[
1− Cov(X ,Y )√

Var(X) ·Var(Y )

]
.

(23)
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This proves the result when Cov(X ,Y ) ≥ 0. When Cov(X ,Y ) < 0, we consider
instead E[(X ′ + Y ′)2]. �

Proof of the Information Inequality in the Continuous Case. Note that
if fθ is nice then∫ ∞

−∞
· · ·
∫ ∞
−∞

∂

∂θ
fθ(x) dx =

∂

∂θ

[∫ ∞
−∞
· · ·
∫ ∞
−∞

fθ(x) dx

]
= 0. (24)

This is so simply because [· · · ] = 1. Therefore,

Eθ

[
∂

∂θ
ln fθ(X)

]
=

∫ ∞
−∞

fθ(x)
∂

∂θ
ln fθ(x) dx = 0. (25)

This proves that

I(θ) = Varθ

(
∂

∂θ
ln fθ(X)

)
. (26)

Similarly, if things are nice then

Eθ

[
T (X)

∂

∂θ
ln fθ(X)

]
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

T (x)
∂

∂θ
fθ(x) dx

=
∂

∂θ

[∫ ∞
−∞
· · ·
∫ ∞
−∞

T (x)fθ(x) dx

]
=

∂

∂θ
Eθ[T (X)] = h′(θ).

(27)

Combine (24) and (27) to find that

Covθ

(
T (X) ,

∂

∂θ
ln fθ(X)

)
= h′(θ). (28)

Thanks to Lemma 7,

|h′(θ)|2 ≤ Varθ(T (X)) ·Varθ

(
∂

∂θ
ln fθ(X)

)
= Varθ(T (X)) · I(θ). (29)

See (26). This proves the information inequality. �

A useful consequence of the information inequality is that, under mild con-
ditions, any unbiased estimator T (X) has the property that

Varθ(T (X)) ≥ 1

I(θ)
. (30)

This leads to the notion of MVU estimators: These are unbiased estimators
that have minimum variance. Thanks to (30), if we can find a function T such
that Var(T (X)) = 1/I(θ0), then we have found an MVU estimator of θ.
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Example 8 Suppose X1, . . . , Xn are i.i.d. N(θ , 1)’s. Let T be such that T (X)
is an unbiased estimator of θ. According to Example 4, I(θ) = n, so that

Varθ(T (X)) ≥ 1/n = Varθ(X̄n). That is, θ̂ := (X1+· · ·+Xn)/n has the smallest
variance among all unbiased estimators of θ. This is the “MVU” property.
More precisely, any estimator θ̂ is said to be MVUE when it is a (often, “the”)
minimum variance unbiased estimator of θ0.

Example 9 Suppose X1, . . . , Xn are Poisson(θ), where θ > 0 is an unknown
parameter. [The true parameter is some unknown θ0, so we model it this way.]
Because Eθ(X1) = θ, the law of large numbers implies that

X̄n :=
X1 + · · ·+Xn

n

Pθ→ θ. (31)

So, X̄n is a consistent estimator of θ0. Recall also that Varθ(X1) = θ, so that
Varθ(X̄n) = θ/n. We claim that X̄n is a minimum variance unbiased estimator.
In order to prove it it suffices to show that I(θ) = n/θ. But this was shown to
be the case already; see Example 5 on page 5.

4 A Glance at Confidence Intervals

Choose and fix α ∈ (0 , 1). A confidence set C with level (1−α) is a random set
that depends on the sample X, and has the property that Pθ{θ ∈ C} ≥ 1 − α
for all θ ∈ Θ. If C varies with n, and limn→∞ Pθ{θ ∈ C} ≥ 1− α for all θ ∈ Θ,
then we say that C is a confidence interval for θ0 with asymptotic level (1−α).

Example 10 Consider the model N(θ , 1) where θ ∈ Θ := R. Then, it easy to
see that

X̄n − θ
1/
√
n
∼ N(0 , 1) under Pθ. (32)

Here, “Under Pθ” is short-hand for “If θ were the true parameter, for all θ ∈ Θ.”
Consider the random set

C(z) :=

[
X̄n −

z√
n
, X̄n +

z√
n

]
, (33)

where z ≥ 0 is fixed. Then,

Pθ {θ ∈ C(z)} = Pθ

{
|X̄n − θ| ≤

z√
n

}
= Pθ

{
|X̄n − θ|

1/
√
n
≤ z
}

= P{|N(0 , 1)| ≤ z} = 2Φ(z)− 1.

(34)

See (32) for the last identity. Choose z = zα/2 such that 2Φ(zα/2)− 1 = 1− α
to see that Pθ{θ ∈ C(zα/2)} = 1 − α. That is, C(zα/2) is a confidence interval
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for θ0 with level 1 − α. Note that zα/2 is defined by Φ(zα/2) = 1 − (α/2).
The numbers zα/2 are called “normal quantiles,” because P{N(0 , 1) ≤ zα/2} =
Φ(zα/2) = 1− (α/2).

Example 11 Consider the model Binomial(n , p), where n is a known integer,
but p ∈ [0 , 1] is an unknown constant. Here, Θ = [0 , 1], and every p ∈ Θ is a
parameter. We consider the estimate

p̂ :=
Sn
n
, (35)

where Sn denotes the total number of successes in n independent samples. Ev-
idently, Sn ∼ Binomial(n , p) under Pp. Therefore, Ep(p̂) = p and Varp(p̂) =
p(1− p)/n.

By the central limit theorem, as n tends to infinity,

Sn − np√
np(1− p)

d→ N(0 , 1), (36)

under Pp. (Why?) Equivalently,

p̂− p√
p(1− p)/n

d→ N(0 , 1), (37)

under Pp. Also, by the law of large numbers, p̂
Pp→ p. (Why?) Apply the latter

two results, via Slutsky’s theorem, to find that under Pp,

p̂− p√
p̂(1− p̂)/n

d→ N(0 , 1). (38)

Now consider

Cn(z) :=

[
p̂− z

√
p̂(1− p̂)

n
, p̂+ z

√
p̂(1− p̂)

n

]
. (39)

Then, we have shown that

lim
n→∞

Pp {p ∈ Cn(z)} = P{|N(0 , 1)| ≤ z} = 2Φ(z)− 1. (40)

Therefore, Cn(zα/2) is asymptotically a level-(1− α) confidence interval for p.

There are many variants of confidence intervals that are also useful. For
instance, a one-sided confidence interval is a half-infinite random interval that
should contain the parameter of interest with a pre-described probability. Sim-
ilarly, there are one-sided confidence intervals that have a given asymptotic
level. Finally, there are higher-dimensional generalizations. For example, there
are confidence ellipsoids, confidence bands, etc. All of them are random sets—
often with a pre-described geometry—that have exact or asymptotic level (1−α)
for a pre-described level α ∈ (0 , 1).
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5 A Glance at Testing Statistical Hypotheses

Someone proposes the theory that a certain coin is fair. To test this hypothesis,
a statistician can flip the said coin n times, independently. Record the number
of heads Sn. In any event, we know that Sn ∼binomial(n , p) for some p. Thus,
we write the proposed hypothesis as the null hypothesis, H0 : p = 1

2 , versus the
alternative, H1 : p 6= 1

2 . If the null hypothesis is correct, then p̂ := Sn/n is close
to p = 1/2 with high probability. Fix α ∈ (0 , 1), and consider the confidence
interval Cn(zα/2) from Example 11 on page 8. It is more convenient to write
PH0 here instead of Pp. With this in mind, we know then that for large n,

PH0

{
p 6∈ Cn(zα/2)

}
≈ α. (41)

Here is how we make an inference about H0: If p 6∈ Cn(zα/2), then we reject the
null hypothesis H0. Else, we accept H0, but only in the sense that we do not
reject it. There are two sources of error in testing statistical hypotheses:

1. Type-I Error: This is the probability of incorrect rejection of H0. In our
example, (41) shows that the type-I error is asymptotically α.

2. Type-II Error: This is the probability of incorrect acceptance of H1. In
our example, type-II error is

β = PH1

{
p ∈ Cn(zα/2)

}
, (42)

which goes to zero as n→∞.

A slightly more general parametric testing problem is to decide between
H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, where Θ0 and Θ1 are subsets of Θ. It need
not be the case that Θ0 ∪ Θ1 = Θ, but it must be that Θ0 ∩ Θ1 = ∅. Our
answer is typically found by finding a confidence interval (or set, or . . . ) C of
a predescribed asymptotic level (1 − α) such that PH0

{θ ∈ C} ≈ 1 − α, and
hopefully PH1{θ ∈ C} is small. If C ∩Θ0 = ∅ then reject H0, else accept H1.
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