Math 6070-1, Spring 2014; Assignment #5

Assigned on: Friday February 28, 2014 Due: Monday March 10, 2014

- 1. Read the module on χ^2 tests (http://www.math.utah.edu/~davar/math6070/2014/Chisquared.pdf).
- 2. A random sample of 100 people from a certain population resulted in the following:

Age Group	No. of samples
0-16	27
17-24	26
25-34	15
35 - 49	22
50-100	10

Perform a χ^2 test in order to see if the data is distributed uniformly across the mentioned age groups.

3. Consider two finite populations: One has respective proportions $\theta_1, \ldots, \theta_m$ for its individuals of types $1, \ldots, m$. The other has respective proportions p_1, \ldots, p_m for its individuals of type $1, \ldots, m$. Let $\boldsymbol{\theta} := (\theta_1, \ldots, \theta_m)'$ and $\boldsymbol{p} := (p_1, \ldots, p_m)'$ be the respective probability vectors. We assume that \boldsymbol{p} and $\boldsymbol{\theta}$ are unknown.

Independent samples are taken from each population [independently from one another]. Let the sample sizes be n_1 and n_2 respectively, and denote by $\hat{\theta}$ and \hat{p} the sample-proportion vectors of types.

(a) Prove that $\hat{\theta}$ converges to θ in probability in the following sense:

$$\left\| \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}} \right\| \stackrel{\mathrm{P}}{\longrightarrow} 0 \text{ as } n_1 \to \infty.$$

This, of course, would also prove that \hat{p} converges to p in probability as $n_2 \to \infty$, since the problem is symmetric in the two populations.

(b) Prove that the random vector $\sqrt{n_1}\{\hat{\theta} - \theta\}$ has a limiting distribution, as $n_1 \to \infty$. Identify that limiting distribution. Perform the analogous analysis for $\sqrt{n_2}\{\hat{p} - p\}$ [you do not need to reproduce the work; just work out the statement].

- (c) Consider the null hypothesis, $H_0: \boldsymbol{\theta} = \boldsymbol{p}$ against its two-sided alternative. Describe a condition under which you can ensure that the distribution of $\hat{\boldsymbol{\theta}} \hat{\boldsymbol{p}}$ as a large-sample asymptotically normal approximation. Carefully state your central limit theorem.
- (d) Use your central limit theorem to devise a χ^2 test for H_0 : $\boldsymbol{\theta} = \boldsymbol{p}$.