Chapter 4 ## Integration **4.1.** There are two things to prove here: (i) $\sigma(X)$ is σ -algebra; and (ii) it is the smallest one with respect to which X is measurable. As regards (i), we check that $\varnothing \in \sigma(X)$ because $X^{-1}(\varnothing) = \varnothing$. Also if $A \in \sigma(X)$ then $A = X^{-1}(B)$ for some $B \in \mathcal{A}$. But then $A^c = (X^{-1}(B))^c$, which is in $\sigma(X)$. Finally, suppose A_1, A_2, \ldots are all in $\sigma(X)$. Then we can find B_1, B_2, \ldots such that $A_i = X^{-1}(B_i)$. Evidently, $\bigcup_{i=1}^\infty X^{-1}(B_i) = X^{-1}(\bigcup_{i=1}^\infty B_i)$. Because $\bigcup_{i=1}^\infty B_i \in \mathcal{A}$ (the latter is after all a σ -algebra), it follows that $\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty X^{-1}(B_i) \in \sigma(X)$. We have proved that $\sigma(X)$ is a σ -algebra. Note that X is measurable with respect to a σ -algebra $\mathcal G$ iff $X^{-1}(B) \in \mathcal G$ for all $B \in \mathcal A$. Therefore, a priori, X is measurable with respect to $\sigma(X)$, and any other $\mathcal G$ must contain $\sigma(X)$. **4.2.** Define $I(j, n) := [j2^{-n}, (j+1)2^{-n})$, and set $$\overline{f}_n(\omega) := \sum_{j \in \mathbf{Z}} \left(\frac{j+1}{2^n}\right) \mathbf{1}_{\mathrm{I}(j,n)}(f(\omega)), \quad \underline{f}_n(\omega) := \sum_{j \in \mathbf{Z}} \left(\frac{j}{2^n}\right) \mathbf{I}_{\mathrm{I}(j,n)}(f(\omega)).$$ Because f is bounded, these are finite sums. Also, the measurability of f ensures that \underline{f}_n and \overline{f}_n are measurable. Finally, note that $\underline{f}_n(\omega) \leqslant f(\omega) \leqslant \overline{f}_n(\omega)$. Also, $\overline{f}_n(\omega) \geqslant \overline{f}_{n+1}(\omega)$, whereas $\underline{f}_n(\omega) \leqslant \underline{f}_{n+1}(\omega)$. This does the job. **4.3.** By concentrating on f^+ and then f^- separately, we may assume without loss of generality that $f \ge 0$. Consider the proposed identity: $$\int f d\mu = \sum_{x \in \Omega} f(x). \tag{4.1}$$ This holds, by definition, if $f(x) = 1_A(x)$ for any $A \subseteq \Omega$. [The summability of f ensures that Ω is at most countable, so measurability issues do not - arise.] Therefore, (1.1) is valid for all elementary functions f. Choose a sequence of elementary functions f_n converging up to f pointwise. Eq. (1.1) then follows from the monotone convergence theorem. - **4.4.** If A_1,A_2,\ldots are disjoint and measurable then so are $f^{-1}(A_1),f^{-1}(A_2),\ldots$, and $f^{-1}(\cup_{n=1}^\infty A_n)=\cup_{n=1}^\infty f^{-1}(A_n)$. The rest is easy sailing.